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Advanced Statistical Physics II – Problem Sheet 5

Problem 1 – Heat diffusion

Let two heat reservoirsRA andRB with temperatures TA and TB be connected by an heat-conducting solid,
such that a heat current can flow from one reservoir to the other. Additionally, the reservoirs are isolated,
so there is no other heat exchange with the surrounding, and so large that the heat current is not changing
their temperatures. Furthermore, we assume the problem to be one-dimensional such that the solid has the
length L and the interface between RA and the solid is at x = 0. At t = 0 the temperature in the solid is
T (x, 0) = TA and we have TA < TB for 0 < x < L.
Hint: We do not have mobile particles here. What does this mean for the substantial time derivative and the mass
density ρ(x, t)?

a) (2P) The heat flux Jq(x, t) through a solid is connected with the temperature gradient by the thermal
conductivity coefficient k:

Jq(x, t) = −k
∂T (x, t)

∂x
. (1)

Show that the temperature-field in the heat-conducting solid T (x, t) is described by the equation

∂T (x, t)

∂t
=

k

cρ

∂2T (x, t)

∂x2
, (2)

Use the definition of the specific heat capacity c and the mass density ρ of the solid and the conservation
equation for the energy from the lecture.

b) (1P) The entropy current Js in the solid is given by Js = Jq/T . Show with the help of the conservation
equation for the entropy that the entropy production is given by

σs = k

(
1

T

∂T (x, t)

∂x

)2

. (3)

c) (2P) Find the stationary solution Ts(x) of Eq. 2. Calculate the total entropy production in the solid in the
stationary case, which is given as

Ps = A

∫ L

0

dxσ(x, t) (4)

d) (1P) We define the temperature profile T̃ (x, t) as T̃ (x, t) = T (x, t) − Ts(x). Rewrite Eq. 2 in terms of
T̃ . What are the initial condition T̃ (x, 0) and the boundary conditions T̃ (0, t) and T̃ (L, t) for the resulting
equation?



e) (3P) Separate the time dependence from the space dependence by introducing T̃ (x, t) = A(t)B(x). Show
that this leads to the equation

d2B(x)

dx2
= −λB(x) . (5)

Solve this equation and show that λ = n2π2/L is the only non-trivial choice satisfying the boundary condi-
tions.

f) (2P) Solve the resulting equation for A(t) and write down the full result for T̃ (x, t) as an infinite sum the
form

T̃ (x, t) =

∞∑
n=1

DnAn(t)Bn(x) . (6)

Use the initial condition T̃ (x, 0) to get an equation that determine the coefficients Dn.

g) (3P) Use the orthonormality of the trigonometric functions to compute the coefficients Dn and write
down the full result for T (x, t).

Problem 2 –Functional derivatives and extremizing functionals

A functional is a ”function of functions”, i.e. a mapping

P :M −→ R; f(x) ≡ f 7−→ P [f ] , (7)

where M is some function space of interest. In the lecture we defined the functional derivative as

δP [f(·)]
δf(x̃)

:= lim
ε→0

P [f(x) + εδ(x− x̃)]− P [f(x)]

ε
, (8)

which is a function of x̃. Calculate the derivatives of the following functionals, with functions fi, g : R→ R
such that the integral converges.

a) (1P)

P1 [f1(·)] =
∫ ∞
−∞

dx (f1(x))
n (9)

b) (1P)

P2 [f2(·)] =
∫ ∞
−∞

dx eaf2(x) (10)

c) (1P)

P3 [f3(·)] = exp

(∫ ∞
−∞

dx g(x)f3(x)

)
(11)

d) (1P)

P4 [f4(·)] =
∫ ∞
−∞

dx (f ′4(x))
n (12)

e) (2P) Let L = L (f(x), f ′(x), x) be a function of f(x), f ′(x) and x. Further let J be

J [f(·)] =
∫ x1

x0

dxL (f(x), f ′(x), x) = 0 (13)

Show that the function f(x) that extremizes J with fixed boundaries x0, x1 fulfills the Euler-Lagrange equa-
tion

∂L

∂f
− d

dx

∂L

∂f ′
= 0 . (14)

Hint: Consider a multidimensional Taylor-series.


