Advanced Statistical Physics II – Problem Sheet 6

Problem 1 – Harmonic oscillator

Consider the harmonic oscillator with the Hamiltonian $H(\mathbf{q}, \mathbf{p}) = \sum_{i=1}^{3N} \frac{p_i^2}{2m} + \sum_{i=1}^{3N} \frac{1}{2}m\omega^2 q_i^2$.

a) Calculate the phase space density $\rho(\mathbf{q}, \mathbf{p})$ with initial condition \mathbf{q}_0 and \mathbf{p}_0 .

b) Show explicitly from your result in a) that $\frac{\partial \rho}{\partial t} + v_j \nabla_j \rho = 0$, where $\mathbf{v} = (\dot{q}_1, \dots, \dot{q}_N, \dot{p}_1, \dots, \dot{p}_N)$ and $\nabla = (\partial_{q_1}, \dots, \partial_{q_N}, \partial_{p_1}, \dots, \partial_{p_N})$

c) Consider the one-dimensional case with given total energy of H(q, p) = E = const. How long does it take to visit every point in phase space? Sketch the phase space trajectory.

Problem 2 -Liouville operator

a) Derive the adjoint L^{\dagger} of the Liouville operator L. Recall that the definition of the adjoint is given by

$$\langle A, L\rho \rangle = \langle L^{\dagger}A, \rho \rangle, \tag{1}$$

where $\langle X, Y \rangle = \int dq^{3N} dp^{3N} XY$ is the scalar product in phase space. Is the Liouville operator self-adjoint, not self-adjoint, or anti self-adjoint?

b) Derive an expression for the adjoint of L^n .

Problem 3 – Liouville equation

a) Prove

$$\int dp dq \rho(\tilde{q}, \tilde{p}, t+\tau; q, p, t) = \rho(\tilde{q}, \tilde{p}, t+\tau),$$
(2)

where $\rho(\tilde{q}, \tilde{p}, t+\tau; q, p, t)$ is the joint probability distribution resulting in the probability $\rho dp dq d\tilde{q} d\tilde{p}$ of finding the system at \tilde{q}, \tilde{p} at time $t + \tau$, and at q, p at time t. For this use Bayes' theorem (relation for conditional probabilities) and the Liouville propagators $e^{-\tau L}$ and e^{-tL} .

b) Show that if $\rho_0(q, p)$ is a stationary distribution then

$$e^{-tL(q,p)}\rho_0(q,p) = \rho_0(q,p),$$
(3)

where L(q, p) is the Liouville operator.

Problem 4 – Green's functions

The concept of Green's functions is a useful tool to solve inhomogeneous linear partial differential equations. Consider the general form

$$Ly(\mathbf{x}) = f(\mathbf{x}),\tag{4}$$

where *L* is a linear differential operator, $y(\mathbf{x})$ is a function that one wants to solve for, and $f(\mathbf{x})$ is an inhomogeneity. The function that satisfies $LG = \delta(\mathbf{x} - \mathbf{x}_0)$ is called the Green's function. The general solution of Eq. (4) is then given by

$$Ly = f = \delta \star f = (LG) \star f = L(G \star f)$$
(5)

$$y = G \star f = \int dx' G(x - x') f.$$
(6)

The star operator \star describes the convolution operator. We want to use this concept to find a solution to the Poisson equation $\Delta \Phi = \rho(\mathbf{r})$ in 3D.

a) Write down the equation that defines the Green's function $G(\mathbf{r})$.

b) Fourier transform the Eq. in a) and derive an expression for the Fourier transform of Green's function $\tilde{G}(\mathbf{k})$.

c) Back-transform $\tilde{G}(\mathbf{k})$ to $G(\mathbf{r})$ to obtain the Green's function in real space and write down the formal solution of the Poisson equation.

Hint: For the back-transform use spherical coordinates for ${\bf k}$ and ${\bf r}$

d) Now consider the differential operator $L = \partial_t^2 + 2\gamma \partial_t + \omega_0^2$ of the damped 1D harmonic oscillator. Derive its Green's function G(t) that solves $LG(t) = \delta(t)$.