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Advanced Statistical Physics II – Problem Sheet 10

Problem 1 – Stationary solution of the Fokker-Planck equation (2P)
Show that the Boltzmann distribution ρeq(x, p) ∝ e−H(x,p)/kBT with H(x, p) = p2/2m+ U(x)
is a stationary solution of the Fokker-Planck equation for a massive particle in one dimension:
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Problem 2 – Mapping of the diffusion equation onto the Schrödinger equation (2P)
Make the ansatz ρ(x, t) =

√
ρeq(x)ψ(x, t), where ρeq(x) = e−U(x)/kBT /Z is the equilibrium

distribution, and show that the diffusion or Smoluchowski equation
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can be cast into a Schrödinger-like equation
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with an effective “potential” Ueff(x).

Problem 3 – Dissociation of a diatomic molecule
Consider the following potential:
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a) (3P) Using Kramer’s formula derived in the lecture, calculate the reaction time for the
potential (4) and friction constant γ.

b) (1P) Is (4) a realistic pair-potential for the atoms in a diatomic molecule? Think about
why it (still) may be used to calculate/estimate the dissociation time of a diatomic
molecule using Kramer’s formula.

c) (3P) As an application, we want to use our model to calculate the dissociation time of a
Cl2 molecule in water at 300 K: The dissociation energy of Cl2 is 242 kJ/mol which we
choose as the barrier height. We estimate the friction constant γ from the diffusion
constant D = 2 nm2ns−1 of a single chloride ion at 300 K in water. For the location of the
maximum x0, we choose the bond length which is roughly 0.1 nm.
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Problem 4 – Diffusion in a potential well
Solve the Smoluchowski equation for the potential

U(x) =

{
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(5)

where it is assumed that the flux J(x, t) defined via
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vanishes at the boundaries x = 0 and x = L.

a) (6P) Make the separation ansatz ρ(x, t) = A(t)B(x) for the region 0 < x < L and show
that this leads to
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for some real constant λ. Show that λ = n2π2

L2 is the only non-trivial choice which yields a
solution that fulfils the boundary conditions. Derive the final result
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b) (3P) Assume an initial distribution ρ(x, t = 0) = δ(x− x0) with 0 < x0 < L and determine
the coefficients cn. Hint: Recall that

∫ π
0 dx cos(mx) cos(nx) = π

2 δn,m.
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