19.11.2018 Due date: 26.11.2018

http://www.physik.fu-berlin.de/en/einrichtungen/ag/ag-netz/lehre

Advanced Statistical Physics II – Problem Sheet 5

Problem 1 – Ornstein-Uhlenbeck process

Consider the Ornstein-Uhlenbeck process, which is a slight generalization of the Langevin equation introduced in the lecture,

$$m\dot{v}(t) = -\gamma[v(t) - \bar{v}] + F_R(t), \tag{1}$$

where m is the mass, γ is the friction constant, \bar{v} is an additional constant velocity and $F_R(t)$ is the random force which fulfills $\langle F_R(t) \rangle = 0$ and $\langle F_R(t) F_R(t') \rangle = 2\gamma k_B T \delta(t-t')$.

a) (3P) Derive the solution for the above equation

$$v(t) = v(0)e^{-\gamma t/m} + \bar{v}\left[1 - e^{-\gamma t/m}\right] + \frac{1}{m} \int_0^t dt' e^{-\gamma(t-t')/m} F_R(t'), \tag{2}$$

using the same method of variation of the constant as in the lecture.

- b) (2P) By averarging over the random force find the average velocity $\langle v(t) \rangle$ and its behaviour in the short $\langle v(0) \rangle$ and long time limits $\langle v(\infty) \rangle$.
- c) (2P) Derive the velocity autocorrelation $\langle v(0)v(t)\rangle$ and its long time limit $\langle v(0)v(\infty)\rangle$. Use that $\langle v^2(0)\rangle=k_BT/m$.
- d) (3P) Derive the equal time velocity correlation $\langle v^2(t) \rangle$ and its long time limit $\langle v^2(\infty) \rangle$.

Comment 1: The kinetic energy at $t=\infty$ contradicts the equipartition theorem. Does the term $\gamma \bar{v}$ in the equation of motion follow from Hamilton's equation?

Comment 2: The Ornstein-Uhlenbeck process is often used in financial modelling, an example is the Vasicek model. Can you understand its advantages for this application from the previous results?

Problem 2 - Mean squared displacement

- a) (6P) Now use eq. (2) to calculate the mean squared displacement $MSD(t) = \langle (x(t) x(0))^2 \rangle = \langle \int_0^t d\tau \int_0^t d\tau' v(\tau) v(\tau') \rangle$. Hint: Remember that $\int_0^t dt' \int_0^{t'} dt'' f(t'', t') = \int_0^t dt'' \int_{t''}^t dt' f(t'', t')$
- b) (2P) What is the scaling of the mean squared displacement MSD(t) in the long time limit $t \to \infty$? In constrast, what is the scaling in the case of $\bar{v} = 0$.
- c) (2P) Expand the exponential to second order in t to obtain the short time limit of the mean squared displacement MSD(t).