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Advanced Statistical Physics II — Problem Sheet 12

Problem 1 — Many-Particle Non-Equilibrium System
In the lecture, we discussed a class of non-equilibrium systems whose dynamics can be modelled by the
following multi-dimensional Langevin equation

(1) = —Akmzm () + PemFm(t), (Fn(@)Fn(t)) = 26,n0(t —t') . (1)

Note, that we make use of the Einstein summation convention for double indices. The corresponding
Fokker-Planck equation reads

P(Z,t) = [VikAkmZm + ViV Cim] P(Z,1),  Cij i= @Dy, . ()

a) (5P) Use a Gaussian ansatz Py(2) = N~ !exp(—z; E{jlzj /2), for the stationary solution. Here E;; = (2;z;)
denotes the entries of the symmetric covariance matrix. Derive the Lyapunov equation discussed in the
lecture:

AikErj + Aji B = 2C;; @3)

b) (5P) As a concrete example, we will discuss a simple system of an overdamped particle in harmonic
confinement of strength M. Furthermore, it is harmonically coupled to a second particle:

Hr,y) = 5 2>+ o (e —y) @

Both particles are subject to friction v, , and noise of strength b, ,,. This leads to
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In equilibrium, friction and noise strength are related via b /v = bz /vy = kpT. Formally, we can

understand departure from equilibrium by introducing different temperatures for each particle kg7, =
b2 /v, and kT, = b /~,. Find the entries of the covariance matrix
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by solving the Lyapunov equation (3). Express the resulting covariances in terms of the dimension-less
parameter
oL b %)
T, B Yy
which quantifies departure from equilibrium, and in terms of T’,. Check that in equilibrium (o = 0) the
equipartition theorem for the variables x and = — y is obeyed.

«

c) (3P) Consider a hypothetical experiment in which only the position  can be observed. Thus the position
y of the other particle is a hidden degree of freedom. An example would be a colloid in a laser trap whose
position is tracked. In equilibrium, the position of the trapped particle obeys a Boltzmann distribution

Peg(x) oc e~ Ma* /25T 8)

i.e. the variance is given by (z%) = kT /M. How does the variance/width of the observed distribution

change for T}, > T,y and T, < T},?



Problem 2 — Run and Tumble Particle
Consider the following dynamics of a free, overdamped particle in d dimensions:

Z(t) = @(t) + v 'Fr(t),  (Fr(t)Fr(t)) = 2dkpT~5(t —t) )

Here, ~ denotes the friction coefficient and Fg(t) is the random force, which accounts for thermal fluctua-
tions. The particle propels itself forward at constant velocity |i(t)| = vo. (For vy = 0 (and thus @(t) = 0), this
corresponds to standard Brownian motion.) The particle goes in the same direction for an average time 7
and then chooses a new direction completely at random - independent of the previous orientation and ther-
mal noise. Assuming the time for going in one direction is exponentially distributed, the autocorrelation of
(t) is given by

(a(t)a(t')) = vge =0V (10)

This model has been proposed for the dynamics of bacterial motility. Fig. 1 shows a simulated trajectory of
such a run and tumble particle.
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Figure 1: Trajectory of a run and tumble particle in two dimensions.

a) (4P) Calculate the mean-square displacement Az?(t) = {(z(t) — z(0))?). Note that you need to aver-
age over both Fr(t) and (t). Hint: It is helpful to first calculate the velocity autocorrelation function
(Z(t)Z(t')) and then obtain the mean-square displacement via integration.

b) (3P) For both short and long times ¢, the dynamics is diffusive. Calculate the diffusion constants for
short and long times:
Az?(t)
2t
Interpret the result. How does the active self propulsion affect the diffusion constant?

D= lim Az*(t) (11)

D, = lim
short t—0 —00 2t



