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The gapless surface states of topological insulators (TI) can potentially be used to detect and
harvest low-frequency infrared light. Nonetheless, it was shown that significant surface photocurrents
due to light with frequency below the bulk gap are rather hard to produce. Here we demonstrate that
a periodic magnetic pattern added to the surface dramatically enhances surface photocurrents in
TI’s. Moreover, the sensitivity of this set-up to the wavelength of the incident light can be optimized
by tuning the geometry of the magnetic pattern. The ability to produce substantial photocurrents
on TI surfaces from mid-range and far-infrared light could be used in photovoltaic applications, as
well as for detection of micrometer wavelength radiation. For light of wavelength greater than 15µm
we estimate that at room temperature, a detector based on the effect we describe can have a specific
detectivity as high as 107 cm

√
Hz/W (i.e. 109 Jones). The device can therefore operate at much

larger wavelengths than existing infrared detectors, while maintaining a comparable figure of merit.

I. INTRODUCTION

Light-matter interactions are central to modern science
and technology. It is the principle at the heart of many
solid-state material probes, and at the same time, it is
an important ingredient in our energy economy, particu-
larly through photovoltaic harvesting of solar energy. A
challenging problem of solar energy is how to harness the
infrared (IR) part of the spectrum. This could apply to
the solar radiation, as well as to Earth’s radiation, which
is almost exclusively in the infrared, and continuously has
the same energy flux as the sun [1]. Similarly, electric mid
and far infrared detection is essentially limited to a single
type of material: HgCdTe alloys. Additional platforms
are likely to be competitive in certain temperature and
frequency regimes.

Efforts to extend the spectrum accessible in photo-
voltaics concentrated on new low band-gap materials;
organics [2–5], as well as carbon nanotubes [6–8] were
shown capable of IR harvesting, albeit with a small effi-
ciency. Another approach utilizes plasmonics as an inter-
mediate step between IR and currents in a semiconductor
[9–12].

When mentioning new materials for IR harversting,
topological insulators [13–17] immediately come to mind.
On the one hand, they have a unique response to electro-
magnetic fields [18–20]. More importantly, their mid-gap
surface states exhibiting spin-momentum locking raised
hopes that surface photocurrents could easily be pro-
duce by irradiation with circularly-polarized light. These
hopes have gone unfulfilled. Even when including a series
of modifications to the band structure likely to appear
in real materials, such as warping, band curvature, or a
uniform magnetic field, the photocurrents produced in
response to sub-bandgap light were shown to be remark-

ably minute, even when a high-intensity laser is consid-
ered [21, 22]. The only scheme for producing a photo-
voltage so far relied on the unique thermoelectric effects
associated with a Dirac cone dispersion [23].

In this manuscript we describe how to turn a topo-
logical insulator surface with a simple Dirac dispersion
into a photocurrent rectifier. We show that by adding a
magnetic coating with a spatially periodic magnetic tex-
ture, the TI produces a significant surface photocurrent
in response to circularly polarized light in the IR regime.
This effect should, in principle, allow making diode-free
IR sensitive photocells from topological insulator films.
We discuss application of the effect to room temperature
infra-red detection, and show that it can lead to a de-
tector operating at much larger wavelengths then those
available with existing technologies. Beyond such appli-
cations, the effect can be used to investigate the unique
properties of TI surfaces using non-ionizing light (as in
[24]).

The paper is organized as follows. In Sec. II, we give
a description of the device and summarize our main re-
sults. In Sec. III we present the model describing the
magnetically patterned TI surface. The symmetries of
the model are discussed in Sec. IV. In Sec. V we derive
the equations describing the photocurrent response of the
device. We consider the implications of the symmetries
on the photocurrent response (Sec. VA), and find the
conditions under which a large photocurrent response is
obtained. A perturbative calculation of the photocurrent
response is given in Sec. VB. Our main results for the
frequency dependent photocurrent response of the device
are given in Sec. VI. Several applications of the device,
and in particular, room temperature infra-red detection
are discussed in Sec. VII. We close with concluding re-
marks in Sec. VIII.
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II. THE PROPOSED DEVICE AND SUMMARY
OF THE MAIN RESULTS

The device we propose and analyze in this paper con-
sists of a bulk three dimensional topological insulator,
whose surface is coated with stripes of magnetic mate-
rial, see Fig. 1. We consider magnetic stripes which are
evenly spaced. The stripes’ spacing defines a wave vec-
tor q in the plane of the surface and normal to the ori-
entation of the stripes. Via their magnetic coupling to
the electrons in the surface state of the TI, the magnetic
stripes break symmetries which suppress the photocur-
rents in their absence. Thereby, the magnetic stripes
dramatically enhance the photocurrent response of the
TI’s surface. The magnetic stripes are taken to be mag-
netically ordered in the same direction. As we explain in
Sec. IV, the direction of the stripes’ magnetization needs
to have non-zero components both normal to the surface
as well as along the vector q. The photocurrents flow
parallel to the direction of the stripes (perpendicular to
q), as shown in Sec. IV.

The photocurrent response of the device can be de-
scribed by a dimensionless, frequency dependent response
function η(ω). In Sec. VI we demonstrate a key fea-
ture of η(ω): it exhibits a strong maximum at frequency
ω ≈ 1.7vF |q|, where vF is the velocity associated the
Dirac cone. This result has significant implications in fu-
ture applications of the proposed device: the frequency
corresponding to the peak sensitivity of the device can be
tuned by appropriately choosing the spacing of the mag-
netic stripes. In Sec. VIA, we analyze the performance
of this set-up at finite temperature and with the chemical
potential tuned away from the Dirac point. This analysis
gives an “operational” region for the device: we show that
the performance of the device is not significantly reduced
for temperatures up to ~vF |q|, which could translate to
300K in practical realizations. Similarity, we show that
deviations of the chemical potential from the Dirac point
do not significantly hinder the the performance, as long
as they remain below ~vF |q|.

Quantitative estimates for the photocurrent response
in several applications are given in Sec. VII. We estimate
that the two dimensional photocurrent density resulting
from illumination with sunlight could reach 10−8 A

m . Il-
lumination with a conventional laser beam can yield cur-
rents of the order of 10−4 A

m . A particularly appealing
application of the device is room temperature detection
of infra-red radiation. We explore the potential of this
system to detect black-body radiation emitted at a vari-
ety of different source temperatures. We conclude that
the device may be able to detect black-body radiation of
objects at room temperature while itself being at a com-
parable temperature. Finally, we explore several theoret-
ical figures of merit for the device as a room temperature
IR detector. In particular we calculate the device’s exter-
nal quantum efficiency and its specific detectivity, which

𝐸 (ω) 

𝐽 

Figure 1: Proposed scheme for achieving a photovoltaic ef-
fect on a topological-insulator surface, coated by a magnetic
grating. When the magnetization (depicted as yellow arrows)
breaks both rotation and reflection symmetries, circularly po-
larized light induces a photocurrent (green) in the direction
parallel to the stripes.

gives its normalized signal to noise ratio [25] . Near room
temperature and with peak sensitivity tuned to wave-
lengths near 15µm we estimate a quantum efficiency of
0.01% and a specific detectivity ∼ 107 cm

√
Hz/W, be-

fore any device optimization takes place. Such a detec-
tivity compares well with the detectivity of current room
temperature photo-detectors [26], which can usually only
detect up to 10µm [26–31]. Importantly, the proposed
device has the potential to be functional for wavelengths
greater than 15µm. Our findings therefore support the
idea that this set-up may be promising for room temper-
ature detection of long wavelength infrared radiation.

III. MINIMAL MODEL FOR SURFACE
PHOTOCURRENT RECTIFICATION

Our photocurrent rectification scheme emerges from
the minimal model of a surface of a 3D topological in-
sulator (TI). With the surface lying in the xy plane, the
Hamiltonian describing the surface electrons is

H0 = vF (pxσ
y − pyσx) , (1)

where σx, σy are Pauli matrices, and p = (px, py) =(
~
i
∂
∂x ,

~
i
∂
∂y

)
. This model is clearly time-reversal and ro-

tationally invariant, T H0T −1 = UφH0U
†
φ = H0, with the

symmetry operators

T = iσyK, Uφ = eiφ(σz/2+Lz/~). (2)

Here, K denotes complex conjugation, Lz = xpy − ypx
is the orbital angular momentum normal to the surface,
and φ the angle of rotation.

These two symmetries immediately imply no current
response to incident light at normal incidence. Time-
reversal invariance requires that the incident beam is cir-
cularly polarized to see any response. Since circularly po-
larized light, however, has no preferred direction on the
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surface, the rotational symmetry rules out any net pho-
tocurrent from forming. In materials such as Bi3Se2, the
lattice structure reduces the full SO(2) rotational sym-
metry to a C3 symmetry, with φ = 2π/3 in Eq. (2). This
allows H0 to have a trigonal warping term [32]. However
even with the reduced symmetry, no photocurrents are
possible [21, 22].

Next, we consider a magnetic grating structure de-
posited on the surface, see Fig. 1. Consider strips of
a ferromagnetic material set parallel to the y axis, and
placed periodically with a wave number q = (q, 0). We
model the proximity-induced ferromagnetic interaction
on the surface electrons by

V = u · σ cos(qx). (3)

Once the magnetic structure is introduced, it is conve-
nient to enumerate the eigenstates of the full Hamilto-
nian, H = H0 + V within the reduced Brillouin zone
(BZ) in terms of the quasi-momentum kx ∈ [− q2 ,

q
2 ] in x-

direction, using Greek indices to denote the bands. Thus
denote the eigenstates as |kx, ky;α〉. We use the conven-
tion that conduction bands are enumerated by α > 0 and
valence bands by α < 0, as illustrated in Fig. 2

IV. SYMMETRY CONSIDERATIONS OF THE
MODIFIED SURFACE

The addition of the magnetic strips on the surface al-
ters its symmetries. Time-reversal symmetry remains, as
long as we consider a modified operator which concate-
nates time reversal with a spatial translation: T̃ = TM
with MxM† = x + π/q. The eigenstates and energies
transform as

|−kx,−ky;α〉 = T̃ |kx, ky;α〉 , E−kx,−ky ;α = Ekx,ky ;α

(4)
Particle-hole symmetry is also present. First define Πa as
the spatial reflection operator about the a = x, y direc-
tions, e.g., ΠxxΠx = −x. Now, C = ΠxΠyT implements:

|kx, ky;−α〉 = C |kx, ky;α〉 , Ekx,ky ;α = −Ekx,ky ;−α. (5)

Additional symmetries appear restricted due to the arbi-
trary form of V .

Nonetheless, a gauge transformation allows us to can-
cel an arbitrary uy component of V , and allows additional
mirror symmetries. Define the gauge transformation

G = exp

(
i
uy

~vF q
sin qx

)
. (6)

It is easy to verify that

H̃ = GHG−1 = H − uyσy cos qx

= H0 + (uxσ
x + uzσ

z) cos qx. (7)

With uy eliminated, we can construct the mirror trans-
formation

Px = ΠyK. (8)

The only term that can possibly be affected by this com-
pounded transformation is actually invariant,

ΠyK[~vFi (−σx∂y)]K−1Πy

= Πy[~vFi (σx∂y)]Πy = ~vF
i (−σx∂y),

(9)

so that PxH̃P−1
x = H̃. Since complex conjugation im-

poses (kx, ky) → (−kx,−ky), and Πy reverses −ky back
to ky, we have:

|−kx, ky;α〉 = Px |kx, ky;α〉 , E−kx,ky ;α = Ekx,ky ;α. (10)

By compounding Px with time reversal, T̃ , we also obtain
a reflection about the x-axis: T̃ Px : (kx, ky)→ (kx,−ky).
Below we will first discuss the equations describing the
photocurrent response of the device, and then consider
the consequences of the symmetries on the resulting pho-
tocurrent.

V. CALCULATION OF THE PHOTOCURRENT
RESPONSE

Within Fermi’s golden rule, we expect that the pho-
tocurrent response to a particular frequency will be
quadratic in the photon field. We restrict ourselves to
normally incident photons, at frequencies which allow us
to approximate the vector potential as spatially uniform,
A(x, t) = ReA0(ω)eiωt. Then, the k,m, n = x, y compo-
nent of the photocurrent is quite generally given by:

jk(ω) =
eτ

4~ω2
Em(ω)Qkmn(ω)E∗n(ω). (11)

Here, repeated indices are summed, E(ω) = −iωA0.
Also, in Eq. (11) we assume that the current decays on a
time scale τ . Quite remarkably, in the presence of a pe-
riodic structure of magnetic strips lying along the y-axis,
we will find that there is only one independent element
of Qkmn(ω) which is nonzero:

Q(ω)y,x,y = Q(ω)∗y,y,x = −Q(ω)y,y,x.

To calculate Qkmn(ω), we first write the surface
photon-electron interaction, which we assume follows the
minimal coupling prescription:

Ĥint = e
∂H0

∂p
·A(x, t). (12)

The presence of the photon field can either excite elec-
trons to a higher sub band or allow them to relax to a
lower sub band through emission. Taking these possibili-
ties into account we have the following result forQkmn(ω)

Qkmn(ω) =

ˆ
d2k

(2π)2

∑
α,β

Qαβkmn(k, ω, T, µ), (13)
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where Qαβkmn(k, ω, T, µ) describes the excita-
tion/relaxation of electrons at momentum k and
temperature T . An application of Fermi’s golden rule
yields:

Qαβkmn(k, ω, T, µ) = x̂k ·
(
v

(α)
k − v

(β)
k

)
Mαβ
mn(k)

×2πδ(E
(α)
k − E

(β)
k − ω)(n0

k,β − n0
k,α),

(14)

where n0
k,β is a Fermi function at a temperature T and

chemical potential µ and the velocities in the band α

are given by v
(α)
k = 〈k;α| ∂H0

∂p |k;α〉, and the matrix ele-
ments are given by

Mαβ
mn(k) = 〈k, α|Γm |k, β〉 〈k, β|Γ†n |k, α〉 , (15)

with Γm = e∂H0

∂p · x̂m. From this definition it is clear
that Mαβ

mn(k) =
(
Mαβ
nm(k)

)∗, i.e., it is hermitian. At zero
temperature and with the chemical potential tuned to the
Dirac point the valance sub bands are entirely full and
the conduction sub bands completely empty. In this case
only electron excitation is possible and we may excite
electrons from any sub band of the valence band to any
sub band of the conduction band, and at any momentum.
Therefore:

Qkmn(ω) =

ˆ
d2k

(2π)2

∑
α>0,β<0

Qαβkmn(k, ω), (16)

where Qαβkmn(k, ω) = Qαβkmn(k, ω, T → 0, µ = 0) accounts
for excitations from the valence band β < 0 to the con-
duction band α > 0 at momentum k. It is this limiting
case that we will develop first, and then move on to dis-
cuss how temperature and chemical potential effect these
results. Setting T → 0 and µ = 0 in Eq. (14) now gives

Qαβkmn(k, ω) = x̂k ·
(
v

(α)
k − v

(β)
k

)
Mαβ
mn(k)

×2πδ(E
(α)
k − E

(β)
k − ω),

(17)

A. Implications of the symmetries

The calculation of the photocurrent response in the
presence of the magnetic texture can now follow. Signif-
icant simplifications can be made by taking into account
the symmetries discussed in Sec. IV. We first define

Q̃αβkmn(k) =
∑

σ,σ′=±1

Qαβkmn(σkx, σ
′ky), (18)

which sums the contributions of the four mirror-related
momenta, (±kx, ± ky), and is defined for kx, ky > 0. This
definition takes into account all symmetry-related current
cancellations. Assuming that uy has been gauged away,
we use Eqs. (4) and (10) to connect the contributions
arising from the four momenta (±kx, ±ky). Due to these

𝑘𝑥 

𝐸 𝛼 
3 

2 
1 

−1 
−2 

−3 

Figure 2: Effective bandstructure of the proposed heterostruc-
ture, cut along the line ky = 0 (units such that |q| = 1).
Band indices are shown on the left. Transitions yielding a
negative (positive) contribution to Qyxy(ω) are shown in red,
blue (purple, green). The corresponding momentum depen-
dent Qα,βyxy(ω) are given in Fig. 6 of the appendix.

symmetries, along with the particle-hole transformation,
Eq. (5), we have:

vαx (σkx, σ
′ky) = σvαx (kx, ky),

vαy (σkx, σ
′ky) = σ′vαy (kx, ky),

vα(k) = −v−α(k)
(19)

for σ, σ′ = ±1.
The same symmetries, applied to the matrix elements

yield the relations

T̃ : Mαβ
mn(−k) = Mαβ

nm(k)

Px : Mαβ
xy (−kx, ky) = −Mαβ

yx (k)

Px : Mαβ
nn (−kx, ky) = Mαβ

nn (k). (20)

The diagonal elements, Mαβ
nn (k), are the same at all four

points (±kx, ±ky). This makes the contribution of these
points to a current in any direction cancel identically,
since the velocities obey the mirror symmetries in Eq.
(19). From Eqs. (19) and (20), we find that the only
nonzero elements of the tensor Q̃αβkmn(k) are

Q̃αβyxy(k) = 8πi
[
(v|α|y (k) + v|β|y (k)

]
Im
[
Mαβ
xy (k)

]
(21)

× δ(E
(α)
k − E

(β)
k − ω)

and Q̃αβyyx(k) = −Q̃αβyxy(k). These conclusions confirm
our claim regarding the photo-response tensor, Qkmn(ω)
defined in Eq. (17): It has only one independent nonzero
contribution, Qyxy(ω) = −Qyyx(ω), which is imaginary.
This implies that the current in the x direction vanishes,
i.e., the photocurrent is always parallel to the magnetic
pattern. Furthermore, this current is only induced by the
circular component of the incident light.

This result also lets us determine what magnetic pat-
terning vector u is necessary for a finite response. As
it turns out, having either ux = 0 or uz = 0 leads to
ImMαβ

xy = 0, and to a vanishing response. To see this,
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consider the composite transformation U = ΠxΠyσ
zT̃ .

The first part of the transformation, ΠxΠyσ
z, imple-

ments a π rotation on the bare model, H0, and leaves it
invariant. If ux = uy = 0, then H(z) = H0 +uzσ

z cos(qx)

is also invariant this transformation. T̃ then leaves H(z)

invariant, and reverses momentum directions. Together,
they make an anti-unitary transformation which leaves
the momentum p invariant. Its effect on the transition
matrix is Mαβ

mn(k) = Mαβ
nm(k) = Mαβ

mn(k)∗. The same
relation is obtained also for the case uz = 0 with a finite
ux, with UM used instead of U (with M the half-period
translation operator). Thus both uz and ux must be fi-
nite for a finite photo-response.

B. Perturbative photocurrent calculation

The summed momentum-specific photocurrent contri-
butions, Q̃αβkmn(k), can be found analytically to lowest or-
der in the strength of the magnetic texture. To do so, we
expand the eigenstates of the Hamiltonian that appear
in the definition of Mαβ

mn(k) in Eq. (15), and also sep-
arate the current inducing processes Q̃αβkmn(k) according
to channels of interband scattering. In terms of momenta
in the extended BZ, the possible scattering processes to
order V 2 are k → k + q, k → k − q, and k → k. The
resulting photocurrent can be written as

Q̃ext
yxy(k) = 2πuxuz(evF )2

∑
λ=0,+,−

Fλ(k)δλ(ω,k), (22)

where the functions Fλ, λ = +,−, 0 account for the above
scattering processes and are given by

F0(k) = vF
−512ik2

yk
2
x

|k|2(−4k2
x + q2)2

F±(k) = vF
8ik2

yq
2

|k|2 |k± q|2(|k± q| − |k|)2
. (23)

The delta functions in Eq. (22) were abbreviated to
δλ(ω,k) = δ(Ek+λq+Ek−ω). The momentum integrated
response tensor becomes Qkmn(ω) =

´
d2k
2π Q̃

ext
kmn(k),

where the integral is taken over the kx, ky > 0 quad-
rant of the extended BZ [51] (see the appendix for more
information).

VI. RESULTS: PHOTOCURRENT RESPONSE
OF THE PROPOSED DEVICE

Our results are best expressed in terms of the intensity,
I, of the light field. For a coherent monochromatic circu-
larly polarized wave with electric-field amplitude E0, we
have I = ε0cE

2
0 . This yields the current response:

jy(ω) =
e3v2

F qτ

ε0c~2

I

ω2
η(ω) (24)

0 1 2 3 4 5 6

-0.01

0

0.01

0.02

0.03

0.04

0 0.5 1 1.5 2
0

0.02
0.04
0.06
0.08
0.1
0.12
0.14

!/vF q

u/~vF q

⌘
(!

)

Figure 3: The dimensionless response function η(ω), for
ux/~vF q = uz/~vF q = 0.1, 0.2, 0.3 (purple, blue and red,
respectively). The horizontal axis gives the frequency ω in
units of vF q. The inset shows the saturation value η of the
response function at high frequencies ω � vF q, as a function
of u/~vF q, with u = ux = uz.

in terms of the dimensionless frequency-dependent re-
sponse, η(ω), defined by Qyxy(ω) = 2

e2v2F q
~ η(ω). For a

continuous spectrum with intensity per unit angular fre-
quency, containing both circular polarizations, we write
I(ω)dω = 2ε0c|E(ω)|2. The total current response is
then:

jy =
e3v2

F qτ

2ε0c~2

Ω̂

0

I(ω)

ω2
η(ω)dω, (25)

where Ω is the high-frequency cutoff.
Fig. 3 displays our numerical results for the dimen-

sionless response η(ω) for three magnetic patterning
strengths. We make three observations: (1) Most of
the contribution to the current density arises from fre-
quencies ω > vF q. (2) For ω � vF q, the dimensionless
response η(ω) approaches a constant. (3) η(ω) changes
sign at Ω∗ ∼ vF q. The latter observation can also be
deduced from Eq. (23), as F0(k) differs in sign from the
two other contributions, and dominates below Ω∗.

Further intuition for the origin of the photocurrent dis-
tributions can be gained by studying the momentum-
specific response Q̃αβyxy(k, ω). These are plotted in
Fig. 6 of the appendix, which demonstrates that the mo-
menta contributing to the photocurrent are uniformly
distributed in the reduced BZ. Furthermore, in agree-
ment with the perturbative results, the sign change of
η(ω) is shown to arise due to processes involving scat-
tering by momentum ±q (indicated in red and blue in
Fig. 2) which dominate for ω > Ω∗; they contribute with
opposite sign to momentum conserving processes (green
and purple in Fig. 2), which dominate at low frequencies.



6

!/vF q !/vF q

µ
/~

v F
q

µ/~vF q

k
B

T
/
~v

F
q

k
B

T
/
~v

F
q

⌘ ⌘ ⌘

Figure 4: Device performance for various temperatures and chemical potential strengths. Left: η plotted over a space of T
and ω values with µ = 0, middle: η plotted for a small but finite temperature of T = 10−3~vF q/kB over a space of ω and µ
values, and right: the peak value of η for various different chemical potential strengths and at different temperatures. In all
plots we have fixed the strength of the magnetic coupling such that ux = uz = 0.3~vF q. Notice that η remains large up until
kBT ∼ ~vF q indicating that the proposed device may still be functional at large temperatures. Similarly, η is nonzero for a
wide range of chemical potentials showcasing the freedom this device has in where its Fermi level is set.

A. Temperature and chemical potential
dependence of the photocurrent response

Next let us illuminate the potential operating regime
of such a device. More specifically, let us address the
question of functionality of the above device over a range
of temperatures and chemical potential. Towards this
end, we have evaluated the dimensionless response, η(ω),
at several operating temperatures and with the chemical
potential tuned away from the Dirac point. Our results
of this calculation are summarized in Fig. 4.

By studying Fig. 4 we learn several important fac-
tors for the operation of the device. First, by examin-
ing Fig. 4a we see that for temperatures kBT ≤ ~vF q
the features of η(ω) are not significantly changed; rather,
increasing the temperature in this range seems only to
moderately suppress η(ω). Consequently, the peak of
η(ω) is suppressed by about 60% at kBT = ~vF q. For
kBT > ~vF q the peak becomes very flattened out and is
lost.

Second, in Fig. 4 we study the effect of the chemical
potential. We see that for µ < ~vF q (µ = 0 signifies the
Dirac point), tuning the chemical potential away from
the Dirac point leads to an overall moderate suppression
of η(ω) but has little effect on its functional form. Fur-
thermore, we see that the value of η(ω) becomes almost
entirely “turned off" after a critical value of µ ' ±ω/2.

A heuristic understanding for this behaviour is as fol-
lows. At zero temperature all states with energy above µ
are empty, and those with energy below µ are occupied.
Moreover, as discussed previously, the system is particle-
hole symmetric. A major contribution to η comes from
electrons at energy −ω/2 being excited into states at en-
ergy ω/2. As µ is tuned away from zero this is changed
very little until it reaches ω/2 (or −ω/2). At this point
the transition from −ω/2 to ω/2 is no longer possible
because the state at energy ω/2 (-ω/2) is full (empty).

Thus the value of η is largely suppressed after this point.

Finally, Fig. 4c shows the behaviour of the peak η
value as a function of µ and T . This plot summarizes
our main conclusion of this part of the paper: the zero
temperature, zero chemical potential results are not sig-
nificantly changed provided kBT and µ are within ~vF q
of zero. For T and µ outside of this region the current
is highly suppressed. This gives the appropriate opera-
tional region for such a device. In a typical TI one can
expect vF ∼ 105m/s. With this and a reasonable grating
pitch of q ∼ 108m−1 the operational temperature scale is
set at approximately 380K.

In the above discussion we treated the effects of finite
temperature by considering its effect on the electronic oc-
cupation of the surface states. Another effect will come
from phonon scattering at finite temperature. Scattering
from phonons will lift the momentum conservation con-
ditions assumed above. The strength of electron-phonon
interactions on the surface of a TI is presently an active
area of research [33–40]. The role that phonons will play
in this device is also an open issue. Intuitively one may
expect that the phonons will scatter photoexcited elec-
trons thereby reducing the photocurrent. It may, how-
ever, be possible to see an analogue of the phonon assisted
transitions recently predicted in graphene [41]. We leave
a rigorous consideration of these two situations to future
work. In our present treatment all scattering effects are
incorporated into the relaxation time τ . At low tempera-
tures phonon modes are frozen out and scattering should
be dominated by disorder [52]. As working estimates we
take τ ∼ 1ps at low temperatures and τ ∼ 0.1ps near
room temperature [33, 34].
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VII. APPLICATIONS

Here we outline several appealing practical aspects of
this device. We begin by calculating some representa-
tive photocurrents for the illumination of the device by
particular radiation sources. We move on to discuss the
“tunability" of the device with q and consider its appli-
cation to room temperature black body detection. We
close with a theoretical treatment of the figures of merit
for the device as a room temperature IR detector. We
show that at room temperature, the normalized signal
to noise ratio (specific detectivity) is comparable with
present technologies. Importantly, the device can achieve
this signal to noise ratio for wavelengths which go beyond
those accessible for current technologies.

A. Solar energy

An appealing application of the magnetically pat-
terned surface is solar energy harvesting, particularly in
the IR range. The intensity spectrum of the sun, for
low frequencies, is approximately given by the Rayleigh-
Jeans law, I = kBTsun

4π2c2 ω
2. At the Earth’s distance from

the sun, at normal incidence we expect this to be sup-
pressed by (Rsun/RSun−Earth)

2 ≈ 2 · 10−5. Combined,
this yields the 2d closed-circuit current expected for nor-
mally incident sunlight:

j(solar)
y ≈ e3v2

F qτ

2ε0c~3

kBTsun
4π2c2

(
Rsun

RSun−Earth

)2

Egapη∞,

(26)
where Egap is the bandgap of the topological insulator
hosting the Dirac cone, and η∞ is the constant char-
acterizing η(ω) at frequencies ω � vF q. We use a
scattering timescale of τ = 1ps, a typical bandgap of
Egap ≈ 0.3eV , and a wavenumber for the magnetic struc-
ture q = 108m−1. For low magnetic coupling, we obtain
η ≈ 0.0345( u

~vF q )2, see Fig. 3. Taking a typical Fermi
velocity of vF = 5 · 105 m

sec , we use η∞ = 0.01 which cor-
responds to a magnetic coupling of about 17meV. The
above parameters yield j(solar)

y ≈ 4η × 10−7A/m

B. Laser induced photocurrents

The effect can also easily be explored using monochro-
matic laser light. Using the same parameters as above,
Eq. (24) yields:

jy ≈ 2 · 1021 I

ω2
η(ω)

Am

Jsec
(27)

For laser light of intensity I = 105W/m2 [24] at angular
frequency ω = 3 · 1014s−1, with η(ω) ∼ .1 this yields
jy ∼ 2 · 10−4A/m.
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Figure 5: ηpeak as a function of the ratio of device temperature
to black body temperature (Tdevice/TBB). Here we have also
fixed ux = uz = 0.3(~vF q). The figure shows that up to 55%
of ηpeak remains intact when Tdevice = TBB . This implies that
the proposed device may be able to detect radiation from
a black body at temperature TBB while itself being at this
temperature.

C. Room temperature detection of infrared
radiation

A particularly appealing application of the device is
detection of infrared radiation. We now look at the
question of optimal detection of thermal radiation for
different emitter and device temperature. Our results
show that the device can serve as an efficient room tem-
perature detector of IR radiation. For the purposes of
this discussion we will assume the radiation comes from
a black body in equilibrium with its environment at a
temperature TBB . Such an object radiates at intensity
I(ω, TBB) = 1

4π2
~ω3

c2
1

e~ω/kBTBB−1
, which has a maximum

at frequency ωpeak = bkBTBB/~ and b = 2.8.
Keeping this fact in mind, we now point out the follow-

ing desirable quality of the our proposed set-up: the fre-
quency that the device is most sensitive to can be tuned
by changing the grating pitch q, since the peak in η(ω)
occurs at ω ' 1.7vF q, see Fig. 3. Note that this obser-
vation is very insensitive to temperature. Given this we
now imagine fabricating our device such that the peak in
η(ω) and the peak in the black-body spectrum coincide,
this requires that we set q = ωpeak/(1.7~vF ).

We now gauge the performance of the system for dif-
ferences in temperature between the device and the radi-
ation source. We define ηpeak(Tdevice/TBB) as η(ωpeak)
when the device is set with q = ωpeak/(1.7vF ) and is
operated at a temperature Tdevice and chemical poten-
tial µ = 0. We plot ηpeak(Tdevice/TBB) in Fig. 5. As
expected, the function decreases with Tdevice/TBB . In-
terestingly, we see that for Tdevice/TBB ' 1, i.e., a device
and black body at similar temperatures, nearly 55% of



8

the peak value of η(ωpeak) remains. This is of particular
interest to room temperature detection of IR radiation,
where both the device and the black body are near the
same temperature and where the black-body radiation
lies within the gap of the TI.

We now move on to discus the figures of merit [25,
42, 43] for the detector we have described above. The
first is the external quantum efficiency. This figure of
merit quantifies the optical absorption of the device and
is defined as EQ = ~ω

e RI where the responsivity, RI , is
given by RI = iphoto/(AIincident), where Iincident is the
intensity of the incident radiation and A = LxLy is the
area of the device absorbing this radiation. In our device
Ly is the length parallel to the stripes and Lx the length
perpendicular to them.

By defining the dimensionless frequency ω = vF qω̄ we
can write

EQ =
e2

2~cε0
vF τ

Ly

η(ω̄)

ω̄
(28)

There are several interesting pieces of information in this
expression. First, we see that reducting Ly leads to a
higher quantum efficiency. Second, similar to the dis-
cussion above, the frequency at which the device has the
highest quantum efficiency is completely tunable with the
grating wave vector q. In other words, this frequency
scale is not set by a band gap as it is in traditional semi-
conductor based detectors. Third, the above is a result
for a single device. We could in principle layer thin films
of this device in order to multiply the efficiency; the in-
cident light not absorbed by one layer has the potential
to be absorbed by other layers. Finally, at room temper-
ate an optimized value of EQ ∼ 0.01% is obtained using
τ = 0.1ps and Ly = 100nm. This value is independent of
the wavelength λ of the incident radiation, if the device’s
grating pitch q is set to optimize EQ. As a comparison,
the room temperature detector proposed in Ref. [26],
functional near λ ' 10.6µm, has a quantum efficiency
∼ 0.01% as well.

The second figure of merit we wish to consider is the
specific detectivity of the device. One issue with a pho-
todetector is differentiating a photo-induced current from
other “dark" currents, i.e. those created by noise. Here
we will call these noise currents inoise. In principle
one would like the signal-to-noise ratio iphoto/inoise to
be large. In practice, it is useful to define something
called the specific detectivity, D∗ =

√
A∆fRI/inoise

[53], where A and RI are the area and responsivity
that we defined previously and ∆f is the range of op-
erational frequencies of the device used to measure cur-
rent (used here for illustration only, as it will ultimately
cancel out). We will assume our system is prone to
shot and thermal noise which gives rise to[43] inoise =√(

2eiinduced + 4kBT
RD

)
∆f . Here, RD is the resistance of

the device, and iinduced is the current from sources other

than noise (e.g. photocurrent and/or the current from a
bias etc.). With this model, and assuming the only in-
duced current in the device is the photocurrent, we find
the specific detectivity of our proposed device is

D∗ =
e2

2~cε0
τ

~q

√
Lx
Ly

η(ω̄)

ω̄2
(29)

×
[

4kBT

e2RD
+

e2

~cε0
τ

~q
η(ω̄)

ω̄2
LxIincident

]−1/2

where Iincident is the incident intensity of radiation, and
we have assumed a monochromatic source of light.

Similar to the external quantum efficiency, the detec-
tivity of this device only depends on the frequency of in-
cident radiation through η(ω̄) and as such can optimized
by choosing q. Second, near room temperature the first
term on the second line of Eq. (29) dominates and we
see D∗ scales with

√
Lx/Ly and so having a “rectangu-

lar" device which is large in the x direction compared
to the y direction is most beneficial. Third, we again
note that the above expression is for a single device. One
could imagine engineering a layered geometry of many
of these devices. The signal current would increase with
the number of layers whereas the noise would scale as the
square root of these layers. Thus overall D∗ should scale
like the square root of the number of layers.

The utility of D∗ is that it enables a comparison of
performance across different detector technologies. We
present such a comparison in Table I, where we give
results for the detectivity of our proposed device (for
several different values of q) alongside D∗ for several
other high temperature IR detectors. The table demon-
strates that the specific detectivity of the proposed de-
vice compares well with recent measurements in other
technologies capable of detecting IR radiation at room
temperature[26–31, 44]. Importantly, the proposed de-
vice achieves these values at large wavelengths, which are
beyond reach for these technologies. In fact, note that for
the proposed device, D∗ grows with increasing λ. This is
a very desirable property for building a room tempera-
ture mid and far-IR detector[42]. Finally, we remind the
reader that the above numerical estimates do not include
any of the possible device optimization routes outlined
above.

VIII. CONCLUSIONS

The unique properties of the surfaces of topological in-
sulators beg to be translated into practical applications.
The lack of a generic photocurrent response on such sur-
faces so far has stifled the possibility of applications in
light detection and photovoltaics. In this manuscript we
demonstrated how surface magnetic patterning employs
the spin-orbit locking, and allows for a substantial pho-
tocurrent response even to low-intensity sources such as
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Device Temperature D∗ Incident λ
Magnetically Coated TI (q = 3× 108m−1) 300K 5× 106cm

√
Hz/W 10µm

Magnetically Coated TI (q = 2× 108m−1) 300K 7× 106cm
√
Hz/W 15µm

Magnetically Coated TI (q = 0.5× 108m−1) 300K 1.4× 107cm
√
Hz/W 31µm

Graphene geometric diode rectenna[26] 300K 106 − 108cm
√
Hz/W 10.6µm

HgCdTe Photon Detector[26, 30] 300K 108cm
√
Hz/W 10.6µm

Ni-NiO-Ni travelling wave MIM rectenna[26, 44] 300K 109cm
√
Hz/W 10.6µm

Table I: Specific detectivities of the device proposed in this paper compared to other devices. For our calculations we have used
the estimates Lx = 1mm, Ly = 100nm, Iincident ∼ 104W/m2 and RD ∼ 105Ω [45]

the low-energy solar spectrum. The surface is naturally
sensitive to photon energies below the bandgap of 0.3eV ,
as opposed to semiconductor based photovoltaics, which
require energies that exceed the material’s bandgap. As
such, this effect can be used for detection of microme-
ter wavelength radiation - a range with limited electric
detection schemes. Our estimates give a specific detectiv-
ity of ∼ 107 cm

√
Hz/W at 15µm and room temperature,

with the ability to go to higher wavelengths by adjusting
the separation between magnetic strips. This value of
the specific detectivity has room for further optimization
by, e.g. creating a layered device. Present technologies
with comparable room temperature detectivities are con-
fined to wavelengths ≤ 10µm and therefore the proposed
device represents a significant potential advancement in
mid-IR and far-IR detection. We note that magnetic
coating of topological insulators has been experimentally
demonstrated in refs. [46–48], as well as studied numer-
ically using first principle calculations [49]. The use of
magnetic insulators, such as the ones used in [48], will
be advantageous in order to minimize effects such as ab-
sorption by the magnetic coating and electron doping of
the TI surface.

Many aspects remain unexplored. To understand how
the TI surface could be harnessed for solar energy har-
vesting, we need to understand what the natural open-
circuit voltage is. In addition, we have only provided a
crude account of disorder and phonon scattering effects
on the surface, and completely ignored the possibility of
bulk contributions at high frequencies. Lastly, we are
confident that the magnitude of the effect could be im-
proved by optimizing our device by using other magnetic
patterns, or different materials. For instance, we expect
that a similar affect will exist in arrays of 2d topolog-
ical insulator strips, e.g., HgTe/CdTe heterostructures,
put in an in-plane spatially varying field. We intend to
explore at least some of these issues in future work.
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Appendix A: PHOTOCURRENT DUE TO THE SOLAR SPECTRUM

We begin with the photocurrent induced by the incident radiation

j = e

ˆ
d2k

(2π)2

∑
α

[
vα,k(nk,α − n0

k,α)
]

(A1)
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where n0
k,αis the equilibrium distribution function, and nk,αis the distribution function induced by the incident light.

Here we derive the result for the chemical potential is at the Dirac point and zero temperature. The generalization
to finite chemical potential and temperatures will be discussed later. We model the relaxation of the system within
the relaxation time approximation. Working at µ = kBT = 0 all negative energy states are occupied and all positive
energy states are vacant in the absence of the light. Owing to this the light must excite a negative energy electron
into a positive energy state. This ultimately leads to the results

(nk,α − n0
k,α) = τ

∑
β<0

Γ(k, β → k, α)(n0
k,β − n0

k,α), α > 0

and

(nk,−β − n0
k,−β) = −(nk,β − n0

k,β), β > 0.

where Γ(k, β → k, α) is the transition rate for an electron to move from state (k, β) to state (k, α). The above
considerations give us

j = eτ

ˆ
d2k

(2π)2

∑
α>0,β<0

[vα,kΓ(k, β → k, α)− vβ,kΓ(k, β → k, α)] . (A2)

As an approximation of the transition rates we use Fermi’s golden rule which gives

Γ(k, β → k, α) =
|〈k, α|Hint(ω)|k, β〉|2

~
2πδ(Ek,α − Ek,β − ω) (A3)

for a time dependent Hamiltonian containing a single frequency.
The interaction hamiltonian is written as

Ĥint = e
∂H0

∂p
·A(x, t) (A4)

We assume a circularly polarized light:

E(t) = Ec(x̂ cosωt+ ŷ sinωt) (A5)

This corresponds to a vector potential

A(ω) = Ec

ω (x̂ sinωt− ŷ cosωt)

= 1
2i
Ec

ω ((x̂− iŷ)eiωt − (x̂+ iŷ)e−iωt),
(A6)

The current response to this field is:

jk =
eτ

~ω2
Em(ω)Qkmn(ω)E∗n(ω). (A7)

where Ex(±ω) = Ec/2, Ey(ω) = ±Ec

2i . The Qkmn(ω) tensor, is given by integrating over the momentum resolved
Qαβkmn(k, ω) as

Qkmn(ω) =

ˆ
dkxdky
(2π)2

∑
α>0,β<0

Qαβkmn(k, ω). (A8)

The momentum resolved Qαβkmn(k, ω) are in turn given by

Qαβkmn(k, ω) = x̂k ·
(
v

(α)
k − vk

(β)
)
Mαβ
mn(k)

×2πδ(E
(α)
k − E

(β)
k − ~ω), (A9)

The matrix elements are given by
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Mαβ
mn(k) = (evF )

2 〈k, α|σm|k, β〉〈k, β|σ†n|k, α〉. (A10)

In the following, we carry out the calculation for a non-monochromatic source of light, which has an intensity
ditribution as a function of angular frequency, I(ω). The monochromatic limit is easy to extract, by setting I(ω) to
be proportional to a delta-function. The intensity of light at a given frequency with amplitude Ex and Ey is:

I(ω)dω =
1

2
ε0c(E

2
x + E2

y) (A11)

The 1/2 comes from averaging the cos2(ωt), sin2(ωt) over time. For the two circular polarizations of light this gives:

I(ω)dω =
1

2
ε0c(2E

2
c+ + 2E2

c−) = ε0c(E
2
c+ + E2

c−) = 2ε0cE
2
c+ (A12)

where we assumed that the two circular polarizations have the same amplitude. So our circular polarization in terms
of the solar intensity is:

E2
c =

1

2ε0c
I(ω)dω. (A13)

Collecting all the coefficients, and using the property of the tensor Qkmn, we get

jy =
eτ

2~cε0

ˆ
dω2Qyxy(ω)

1

4

I(ω)

ω2
. (A14)

We now define η(ω) as a dimensionless quantity that encodes the photocurrent respnse as a function of frequency,
which also contains all the intrinsic numerical factors:

η(ω) =
1

2

1

(evF )
2

q/2ˆ

−q/2

dkx
2πq

∞̂

−∞

dk̃y
2πq

~vF q
Qyxy(k, ω)

vF
, (A15)

Using this quantity in Eq. (A14) , we get:

jy =
e3τv2

F q

2cε0~2

ˆ
dωη(ω)

I(ω)

ω2
(A16)

Now let us substitute I(ω) for the sun. For a black body at Temperature T , the black-body luminosity per ω is:

I(ω, T ) =
1

4π2

~ω3

c2
1

exp(~ω/kBT )− 1
(A17)

where I(ν, T ) is the energy per unit time (or the power) radiated per unit area of emitting surface in the normal
direction per unit solid angle per unit frequency by a black body at temperature T. The power per unit area arriving
at the earth, and assuming normal incidence is:

ISE(ω, Tsun) =
R2
sun

R2
earth

I(ω, Tsun) (A18)

For low frequencies, we can approximate the black-body spectrum as

I(ω, T ) =
kBTω

2

4π2c2
(A19)

which is the Rayleigh-Jeans law. Inserting this into Eq. (A16), and taking η(ω) = η (appropriate for large frequencies),
we get

jy =
e3τv3

F q
2

2cε0~2
ηI0

ωmax
vF q

(A20)
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where the constant

I0 =
kBTsun
c2(2π)2

(
R2
sun

R2
earth

)
(A21)

In order to extend the above analysis to finite temperature and chemical potential we must make an observation
which ultimately lead to a simple modification of the formula above. For a system at finite temperature and with
the chemical potential at an arbitrary point the incident light can excite or relax (through absorption or emission)
electrons from any initial state to any final state. This must be accounted for in our model for the steady state nk,α.
This physical considerations lead to a description identical to the one above, provided we use the following modified
form for Qαβkmn(k, ω)

Qαβkmn(k, ω, T ) = Qαβkmn(k, ω)(n0
k,β − n0

k,α) (A22)

𝑘𝑥 

𝐸 𝛼 
3 

2 
1 

−1 
−2 

−3 

𝑘𝑥 

𝐸 

𝑘𝑥 

𝐸 

  

Figure 6: Top left: Effective bandstructure of the proposed heterostructure, cut along the line ky = 0 (units such that |q| = 1).
Band indices are shown on the left. Transitions contributing to the summed momentum specific tensor Qαβkmn(k) are depicted by

arrows. (a)-(d) Numerical results for
´
dωQ̃αβyxy(k) , in units of e

2v3F
c2

. The colors indicate the photon frequency of the transition
as determined by the δ functions in Eq. (22). Panels (a) and (b) contain the tensors for the transitions (α, β) = (1,−1) and
(2,−2), respectively, in which the excitation leaves the electron momentum unchanged. These transitions indicated by green and
purple arrows, respectively, in the top left panel renormalize the conduction and valence bands. (c) Same for (α, β) = (2,−1)
and (1,−2) (blue arrows in the top left panel). (d) Same for (α, β) = (3,−1) and (1,−3) (red arrows).

.

Appendix B: MOMENTUM SPECIFIC RESPONSE

In order to get some intuition for the origin of the photocurrent contributions, we study the momentum-specific
response Q̃αβyxy(k, ω). This quantity allows us to understand which parts of the BZ contribute most to the effect. This
function is plotted in Fig. 6 (a-d), where in addition to the response as a function of momentum, the photon energy
responsible for the transition at each momentum is encoded in the color. We see that the effect is not exclusively due
to the edges of the BZ. Rather, the contribution is uniformly distributed in momentum space, validating a perturbative
perspective on the effects of the magnetic surface texture. Fig. 6 also demonstrates that the sign change of η(ω) arises
due to a sign difference between: (i) contributions of processes involving scattering by momentum ±q (indicated in
red and blue in Fig. 6) which dominate for ω > vF q and (ii) contributions of momentum conserving processes (green
and purple in Fig. 6) which dominate for ω < vF q
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Appendix C: PERTURBATIVE ANALYSIS OF THE PHOTOCURRENT RESPONSE

In the following, we shall calculate the response tensor, accounting for the surface magnetic pattern within second
order perturbation theory. This can be most conveniently expressed using momenta in the extended Brillouin zone.
Denoting by |ψ(0)(k, α)〉 the eigenstates of H0 (without the magnetic structure), we expand the eigenstates in second
order perturbation theory in V = V + + V − = (u · ~σ)eiq·r + h.c., as

|ψ(k, α)〉 = |ψ(0)(k, α)〉+ |ψ(1)(k, α)〉+ |ψ(2)(k, α)〉 (C1)

with α = c, v for conduction and valence bands. The first and second order corrections are given by

|ψ(1)(k, α)〉 =
∑
σ=±

1

Eαk −H(k + σq)
V σ|ψ(0)(k, α)〉 (C2)

and

|ψ(2)(k, v)〉 = P ck
∑
σ=±

1

Evk − Eck
V σ†

1

Evk −H(k + σq)
V σ|ψ(0)(k, v)〉.

|ψ(2)(k, c)〉 = P vk
∑
σ=±

1

Eck − Evk
V σ†

1

Eck −H(k + σq)
V σ|ψ(0)(k, c)〉.

(C3)

where P ck is a projector on the conduction band state with momentum k. In second order perturbation theory, the
total photocurrent response can be written as

Qext
yxy(k) = 2π(evF )2

∑
λ=0,+,−

ŷ ·
(
vck+λq − vvk

)
Mλ
xy(k)δλ(ω,k) (C4)

where vvk and vck denote the velocities in the conduction and valence bands, and the delta functions in Eq. (C4)
were abbreviated to δλ(ω,k) = δ(Eck+λq + Evk − ω). The index λ = 0,+1,−1 denotes process which correspond to
k, v → k, c, k, v → k + q, c and k, v → k− q, c, respectively. Our goal is to calculate the matrix elements:

Mλ
mn(k) = 〈ψ(k + λq, c)|σm|ψ(k, v)〉 〈ψ(k, v)|σn|ψ(k + λq, c)〉, (C5)

to second order in V . First, we describe transitions from k, v → k + q, c in the extended BZ. Two substitutions of
|ψ(1)(k, v)〉 from Eq. (C2) into Eq. (C5) yield

M+
mn(k) =

∑
r,s

uru
∗
s [F v,vmrsn(k) + F v,cmrns(k) + F c,vrmsn(k) + F c,crmns(k)] (C6)

where

Fαβmnrs(k) = Tr
[
P ck+qσmR

α
+(k)σnP

v
kσrR

β
+(k)σs

]
(C7)

with α, β = v, c and

Rv±(k) =
1

Evk −H(k± q)

Rc±(k) =
1

Eck±q −H(k)
(C8)

Note the permutation of the indices in Eq. (C6).
Next we compute the matrix elements for transitions which in the extended BZ, correspond to transitions k→ k−q.

By taking q→ −q in Eq. (C7,

M−mn(k) =
∑
r,s

u∗rus [Bv,vmrsn(k) +Bv,cmrns(k) +Bc,vrmsn(k) +Bc,crmns(k)] (C9)



15

with

Bαβmnrs(k) = Tr
[
P ck−qσmR

α
−(k)σnP

v
kσrR

β
−(k)σs

]
. (C10)

Next, we calculate the elements M0
mn which correspond to transitions k, v → k, c. These can give a non zero

contribution to the current in second order perturbation theory due to the renormalization of the bands, c.f. Eq. (C3).
This yields

M0
mn(k) =

∑
r,s

u∗rus

{ 1

Evk − Eck

(
W+
nmrs +W−nmsr + (W+

mnsr)
† + (W−mnrs)

†
)

− 1

Evk − Eck

(
W̃+
mnrs + W̃−mnsr + (W̃+

nmsr)
† + (W̃−nmrs)

†
)

+ Z+
mnrs + Z−mnsr + (Z+

nmsr)
† + (Z−nmrs)

†
}
, (C11)

where

W ρ
mnrs = Tr

[
P ckσmP

c
kσnP

v
kσrR

v
ρ(k)σs

]
,

W̃ ρ
mnrs = Tr

[
P vkσmP

v
kσnP

c
kσrR̃

c
ρ(k)σs

]
,

Zρmnrs = Tr
[
P ckσmP

v
kσrR

v
ρ(k)σnR̃

c
ρ(k)σs

]
,

(C12)

and where we have introduced the notation

R̃cρ(k) =
1

Eck −H(k± q)
. (C13)

In Eq. (C11), the first (second) term arises due to the second order corrections to the valence (conduction) states
at momentum k, c.f. first (second) line in Eq. (C3). The third term in Eq. (C11) arises due to first order corrections
(as in Eq. (C2)) to both the valence and conduction bands.

To make a connection with the results presented in the main text, we would like to sum over momenta in the four
quadrants of the BZ, and obtain the the momentum summed response tensor,

Q̃ext
yxy(k) =

∑
σ,σ′=±

Qext
yxy(σkx, σ

′ky) (C14)

Note that the energy differences obey the symmetries

Ec(kx,ky)+λq − E
v
(kx,ky) = Ec(−kx,ky)−λq − E

v
(−kx,ky), (C15)

and the velocities obey the symmetries appearing in Eq. (17) of the main text. Using these symmetries, it is natural
to define the functions Fλ(k) which were used in Eq. (20) the main text,

Fλ(k) =
∑

σ,σ′=±
Mλ·σ
xy (σkx, σ

′ky)
(
vcy(k + λq)− vvy(k)

)
σ′ (C16)

The functions Fλ(k) sum the matrix elements for the four transitions (kx,±ky)→ (kx,±ky) + λq, and (−kx,±ky)→
(−kx,±ky)−λq. These transitions occur at the same photon frequency, by Eq. (C15). Therefore, using the functions
Fλ(k), Eq. (C4) can be written as

Q̃ext
yxy(k) = 2πRe {uxu∗z} (evF )2

∑
λ=0,+,−

Fλ(k)δλ(ω,k) (C17)
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1. Second order perturbation theory in the reduced Brillouin zone scheme

In this section, we will make the connetion between the response tensor Q̃ext
kmn(k) obtained in second order pertur-

bation theory, and the response tensor Q̃αβkmn(k) for the reduced Brillouin zone. First, we note the relation between
the unperturbed eigenstates in the reduced BZ, which we denote by |k, α〉, with α a positive (negative) integer for
bands with E > 0 (E < 0), to those in the extended BZ, which we denote by |ψ(0)(k, a〉, with a = v, c. We will be
interested only in the quadrant with kx, ky > 0 due to the symmetries discussed in the main text.

|k, α〉 →
∣∣∣ψ(0)

(
k− (−1)αbα

2
cq, a

)〉
, (C18)

where in the above equation, set a = c for α > 0 and a = v for α < 0. For the response second order perturbation

Reduced zone Q̃αβyxy(k) Extended zone Q̃λ(kE)

α β kE λ

2n+ 3 −(2n+ 1) k + nq +1

2 −1 k −1

2n+ 1 −(2n+ 3) k + (n+ 1)q −1

2n+ 4 −2(n+ 2) −k + (n+ 1)q +1

1 −2 −k + q −1

2n+ 2 −(2n+ 4) −k + (n+ 2)q −1

2n+ 1 −(2n+ 1) k + nq 0

2n+ 2 −(2n+ 2) −k + (n+ 1)q 0

Table II: Mapping between the response tensors in the reduced Brillouin zone Q̃αβyxy(k) and the results obtained in second order
perturbation theory. Only the values for the pairs (α, β) that have non zero rate in second order perturbation theory are shown.
Note that the functions Q̃αβyxy(k) are defined for momenta k in the kx > 0, ky > 0 of the reduced Brillouin zone. The value
of these functions, in second order perturbation theory, corresponds to Q̃λ(kE), where λ and kE take the values shown in the
table. In the left two columns, the n is an integer such that n ≥ 0.

theory, it is convenient to define each of the terms appearing in Eq. (C17) as

Q̃λ(k) = 2πRe {uxu∗z} (evF )2Fλ(k)δλ(ω,k) (C19)

From Eq. (C18), we get a map between the response tensors Q̃αβkmn(k) defined in the kx > 0, ky > 0 quadrant
of the reduced Brillouin zone, to the processes corresponding to Q̃λ(kE) in Eq. (C19), where kE takes value in the
kx > 0, ky > 0 quadrant of the extended Brillouin zone. This map is constructed such that both kE and λ are
functions of k, α and β. This map is given explicitly in Table II.


