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We present a scalable architecture for fault-tolerant topological quantum computation using networks of
voltage-controlled Majorana Cooper pair boxes, and topological color codes for error correction. Color codes
have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based
systems, namely the Clifford gates. In this way, we establish color codes as providing a natural setting in
which advantages offered by topological hardware can be combined with those arising from topological error-
correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our
architecture including the underlying physical ingredients. We start by showing that in topological superconduc-
tor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation,
and present protocols for realizing topologically protected Clifford gates. These hexagonal cell qubits allow for
a direct implementation of open-boundary color codes with ancilla-free syndrome readout and logical T -gates
via magic state distillation. For concreteness, we describe how the necessary operations can be implemented
using networks of Majorana Cooper pair boxes, and give a feasibility estimate for error correction in this archi-
tecture. Our approach is motivated by nanowire-based networks of topological superconductors, but could also
be realized in alternative settings such as quantum Hall-superconductor hybrids.

I. INTRODUCTION

Physical realizations of large-scale quantum computers re-
main a paramount experimental challenge due to the unavoid-
able presence of environmental decoherence. Topological
quantum computing is generally seen as paving the way to-
wards a solution of this problem [1–3]. In fact, this is expected
to be true in more than one sense: In a mindset of condensed
matter physics, excitations of topological phases of matter
have been identified as candidates for physical qubits that are
robust to local perturbations, and on which a certain set of
quantum gate operations can be performed largely noise-free.
In the context of quantum information theory, topological
quantum error-correcting codes have been devised as codes
featuring high error tolerance which only require the mea-
surement of local stabilizer operators. While clearly related,
these predominantly hardware-based and software-based ap-
proaches constitute two distinctly different readings of topo-
logical quantum computing.

On the hardware side, the interplay of superconductiv-
ity, spin-orbit coupling and single spin-polarized conducting
channels has inspired various proposals for experimental real-
izations of Majorana zero modes [4–9], subsequently simply
referred to as Majoranas. Quantum information can be en-
coded using spatially separated pairs of Majoranas [10] whose
parity state is unaffected by local perturbations. We refer to
qubits encoded using this parity state as physical qubits aris-
ing from topological hardware. Furthermore, the exchange of
pairs of Majoranas constitutes a nontrivial braiding operation
which can be used for the implementation of robust quantum
gates. Recent experiments have provided increasing evidence
for the emergence of Majorana zero modes in semiconducting
nanowires with mesoscopic superconducting islands [11–15].
In such setups, the state of the Majorana pair depends on the
fermion parity of the mesoscopic island. Therefore, electrons
tunneling onto the island can change the parity state and thus

spoil any quantum information encoded by the Majoranas.
This process is called quasiparticle poisoning. Among other
error sources, its rate defines a finite lifetime for Majorana-
based qubits.

If one aims at storing and manipulating quantum informa-
tion beyond the quasiparticle poisoning time – in fact, in prin-
ciple, for arbitrary times – errors need to be actively corrected.
This can be achieved by making use of topological error-
correcting codes. The basic principle of such codes is to fight
local errors with entanglement, so that local noise cannot af-
fect the logical information [16]. This is done by using multi-
ple physical qubits to encode a single logical qubit, which we
refer to as topological software.

Recent proposals [17–21] have taken key steps in the direc-
tion of combining topological hardware with software. Impor-
tantly, the combination of Majorana-based qubits with topo-
logical surface codes has been studied. Yet, while the re-
placement of physical qubits with logical qubits enhances re-
silience against noise, one must be aware that one also substi-
tutes physical gates with logical gates. Topological protection
of gates on the physical level does not necessarily translate to
logical gates, since in general, physical and logical gates are
unrelated. Any error-correcting code is in principle allowed
to have a (non-universal [22]) set of transversal gates – i.e.,
logical gates that correspond to the simultaneous application
of the same physical gate to all physical qubits – but surface
codes do not have any transversal gates.

In this work, we go a significant step further and establish
two-dimensional topological color codes as the natural fit to
enhance fault tolerance of Majorana-based quantum comput-
ers, as they perfectly combine topological protection due to
the topological hardware with the topological error-correcting
software. In contrast to surface codes, color codes not only
have a set of transversal gates, but this set also coincides with
the gates that are accessible by braiding of Majoranas, namely
the Clifford gates [23, 24]. We hence further contribute to
identifying the precise advantages offered by topological pro-
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a) Majorana Cooper pair box b) Physical qubits: hexagonal cells
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FIG. 1. Overview of the design for a scalable fault-tolerant topological quantum computer presented in this article. The basic building block
is the Majorana Cooper pair box (a) consisting of a topological superconducting island with charging energy EC and Josephson energy EJ
hosting a pair of Majoranas γ1 and γ2. Parity measurements of the island are controlled by a gate voltage Vg . Multiple connected Majorana
Cooper pair boxes form a topological superconductor network through which Majoranas can be moved, and which allows for the measurement
of 2n-Majorana parity operators. A triangular lattice of hexagonal cell qubits (b) allows for universal quantum computation with topologically
protected Clifford gates. Fault-tolerance is added by encoding hexagonal cell qubits in diamond color codes (c) with transversal Clifford gates.
These form a square lattice of logical qubits. Arranging qubits on a line (d) with a magic state distillery and a CNOT bypass completes the
universal gate set with a logical T -gate, and allows for CNOT gates between any pair of data qubits with constant time overhead.

tection both as far as the underlying condensed matter physics
is concerned, as well as on the level of logical encoding.

In the following sections, we describe our design for a
scalable fault-tolerant topological quantum computer from
the ground up, discussing the microscopic details of the
Majorana-based physical qubits, their encoding in topological
superconductor networks, and the arrangement and manipu-
lation of logical qubits for quantum computing (see Fig. 1).
We begin in Sec. II by describing how networks of topolog-
ical superconducting islands can be used for universal quan-
tum computation with topologically protected Clifford gates.
We require topological superconductor networks to be capable
of three operations: Moving Majoranas through the network
by coupling neighboring islands, measuring 2n-Majorana par-
ity operators on connected islands, and lifting the degener-
acy of the parity states on an island. We show that in such
networks, physical qubits can be arranged in hexagonal cells
with six nearest neighbors, such that the qubits form a trian-
gular lattice (gray hexagons in Fig. 1b). Universal quantum
computation requires the implementation of a universal set of
quantum gates. One such set consists of the Clifford gates
(Hadamard, π/4- and CNOT-gate) and the T -gate (or π/8-
gate). We present protocols for single-qubit Clifford gates via
braiding inside a hexagonal cell, and CNOT gates between
any pair of cells via braiding and parity measurements. The
addition of an unprotected T -gate – which is not accessible
via braiding of Majoranas – by controlled splitting of the de-
generacy completes the universal gate set.

While the Clifford gates of these Majorana-based qubits are
topologically protected, the T -gate requires fine-tuning of the
device control parameters, which can easily lead to errors in
the T -gate. Instead of attempting to implement a robust T -
gate on the level of physical qubits [25, 26], we address this
problem using magic state distillation. This is a common pro-
posal for a fault-tolerant implementation of the T -gate on the
level of logical qubits, the precision of which scales with the
protocol length [27]. These protocols typically include many

multi-target CNOT gates (i.e., multiple CNOT gates with the
same control but different target qubits). We show how par-
ity measurements in topological superconductor networks can
be used for fast multi-target CNOT gates, replacing multiple
CNOT gates by a protocol that is as fast as a single CNOT.

Another advantage of Majorana-based qubits is ancilla-free
syndrome readout. Quantum error-correcting codes typically
require the measurement of stabilizer operators of the form
σ⊗nz , where σz is a Pauli matrix and n is the number of qubits
involved in the measurement. In conventional setups for quan-
tum computing, such n-qubit parity operators are typically
not directly measurable, but require a lengthy protocol in-
volving an ancilla qubit and n CNOT gates. Since in topo-
logical superconductor networks, the parity of 2n Majoranas
can be measured directly if the Majoranas are moved onto a
single connected superconducting island, n-qubit parity op-
erators can be measured without the use of ancilla qubits. In
preparation for the color code, we demonstrate how hexagonal
cell qubits can be used to measure the required 6-qubit parity
operators.

The triangular lattice of physical qubits allows for a di-
rect implementation of triangular color codes with transver-
sal Clifford gates. In contrast to fermionic codes [18, 28–30]
where each lattice site corresponds to a Majorana fermion, we
use a bosonic code where each lattice site is a bosonic degree
of freedom, since our physical qubits are comprised of four
Majorana fermions each, and are therefore bosonic qubits. In
our encoding scheme, the logical qubits are arranged on a
square lattice, where each logical qubit has four nearest neigh-
bors. As this leaves some unused hexagonal cells, we extend
the triangular color codes to diamond-shaped color codes (see
Fig. 1c), which have the same code distance as their triangu-
lar counterparts, but a lower logical error rate. In Sec. III, we
show that a square arrangement of diamond color code qubits
(see Fig. 1d) can be used for universal fault-tolerant quan-
tum computing with topologically protected Clifford gates,
constant-time CNOT gates between any pair of logical qubits,
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and logical T -gates with arbitrary precision. We discuss vari-
ous protocols for logical CNOT and multi-target CNOT gates,
based on transversal gates and lattice surgery [31].

In order to show a possible scalable realization of topolog-
ical superconductor networks, we review Majorana Cooper
pair boxes [18, 32–37] in Sec. IV as basic building blocks
of the physical architecture. In our description of Majorana
Cooper pair boxes (see Fig. 1a), we revisit how topological
superconducting islands combined with capacitive coupling
via a top gate and Josephson coupling to a bulk supercon-
ductor can be used for parity-to-charge conversion [32]. We
demonstrate that networks of Majorana Cooper pair boxes
are capable of performing the aforementioned required oper-
ations. These can be implemented using proximitized semi-
conductor nanowires, on which recent experiments have fo-
cused, but possibly also in other platforms such as hybrid
structures based on quantum Hall, quantum spin Hall or quan-
tum anomalous Hall edge states.

Finally, in Sec. V, we consider the main error sources in
our physical architecture and give a feasibility estimate. There
are three time-scales that characterize networks of Majorana
Cooper pair boxes: the time required to move Majoranas, the
duration of parity measurements, and the quasiparticle poison-
ing time. We identify constraints that physical setups need to
satisfy in order to operate below the error threshold of color
codes. Using a Monte Carlo simulation, we study the im-
proved performance of diamond color codes over triangular
color codes, and give an estimate of the space overhead – i.e.,
the number of physical qubits per logical qubit – required for
the logical qubits to reach sufficiently long survival times for
quantum computation on the basis of experimental measure-
ments of quasiparticle poisoning times [38–40].

It should be clear that this article is aimed at both the con-
densed matter and quantum information communities. There-
fore, we have made an effort to include basic introductions to
the relevant concepts.

II. TOPOLOGICAL HARDWARE:
HEXAGONAL CELL QUBITS

In a topological superconductor network, each supercon-
ducting island can host a pair of Majoranas γ1 and γ2 with de-
generate even |e〉 and odd |o〉 eigenstates of the fermion parity
operator iγ1γ2. We require the network to be capable of three
basic operations:

1. Majoranas can be moved from island to island by
connecting neighboring superconducting islands (see
Fig. 2).

2. For 2n Majoranas on a single connected island, the to-
tal parity operator in

∏2n
j=1 γj of 2n Majoranas can be

measured projectively.

3. The degeneracy between |e〉 and |o〉 can be split tem-
porarily and restored again.

B1,2
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FIG. 2. Protocols for braiding operations in a double T-junction,
where red dots denote Majoranas and red lines connect the coupled
superconducting islands (orange). Left: Braiding of γ1 and γ2 is
achieved via a three-point turn in the left T-junction. Right: To braid
γ2 and γ3, first γ3 is moved from the right island to the bottom right
island. Then, γ2 is moved to the right island by first connecting all
three islands in the right T-junction and then disconnecting the right
island. Finally, γ3 is moved to the center island.

We now show that such networks can be used to realize a
universal quantum computer. Even though a pair of Majo-
ranas is a two-level system, no superposition of |e〉 and |o〉
can exist due to fermion-parity superselection, and therefore
a pair of Majoranas cannot be used as a qubit. Instead, qubits
are encoded using two islands hosting four Majoranas with
fixed total fermion parity (see Fig. 2), either in the even parity
sector

|0〉 = |e, e〉, |1〉 = |o, o〉 , (1)

or in the odd parity sector

|0〉 = |e, o〉, |1〉 = |o, e〉 . (2)

To initialize a qubit in one of these states, the two-Majorana
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γ1 γ2
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γ1 γ2 γ3 γ4

FIG. 3. Left: Hexagonal cell hosting four Majoranas encoding one
qubit. The single-qubit Clifford gates can be performed by braiding
in the double T-junction in the lower part of the cell. In a network of
such cells, each cell has up to six neighbors. Right: In a rectangular
network, hexagonal cells can be equivalently deformed to rectangles
with six nearest neighbors in a brick wall geometry.

fermion parity of both islands is measured. Both encodings
can be used interchangeably, as in both cases the qubit is mea-
sured in the computational basis by measuring the parity on
the first island.

Furthermore, in both encodings, the exchange of γ1 and γ2,
and of γ2 and γ3 performs the same braiding operations B1,2

and B2,3 respectively. Since the braiding operator [8]

Bi,j =
1 + γiγj√

2
(3)

describes the clockwise exchange of Majoranas γi and γj , the
braiding operators describe the qubit operations

B1,2 = e−i
π
4 σz , B2,3 = e−i

π
4 σx . (4)

Here, σz and σx are Pauli operators in the computational basis
{|0〉, |1〉}. In terms of Majorana operators, σz = iγ1γ2 and
σx = iγ2γ3.

Universal quantum computation requires a universal set of
quantum gates, i.e., a set of unitary operations on the qubits,
such that any n-qubit unitary operation can be constructed as a
product of unitaries from the universal set. One such universal
gate set is the standard set {H,T, S,CNOT} [41], in which
S = exp(−iπσz/4) and T = exp(−iπσz/8) are the S and
T -gate (equivalently π/4 and π/8-gate), and H and CNOT
are the Hadamard and controlled-not gate

H =
1√
2

(
1 1
1 −1

)
, CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (5)

The gates generated by the non-universal set {H,S,CNOT}
form the set of so-called Clifford gates, which are those gates
that map multi-qubit Pauli operators to Pauli operators under
conjugation.

A. Clifford gates in hexagonal cell qubits

From Eq. (4) it is evident that the single-qubit Clifford
gates can be implemented by braiding, since S = B1,2 and

|c〉 •

|t〉

=

|c〉
P

σm2
z

|+〉 H
P

H

|t〉 H H σm1+m3
x

m1

m2

m3

FIG. 4. Quantum circuit for a CNOT gate using parity measurements
and an ancilla qubit initialized in the |+〉 state. First, the parity op-
erator σz ⊗σz of control and ancilla is measured, with outcome m1.
Next, the parity operator σx ⊗ σx of ancilla and target is measured,
with outcome m2. Finally, the ancilla is measured in the computa-
tional basis σz with outcome m3. The three outcomes determine the
final correctional operation σm2

z ⊗ σm1+m3
x on control and target,

which can also be done by updating the Pauli frame.

H = iB1,2B2,3B1,2 = iB2,3B1,2B2,3. A topological su-
perconductor network that allows for both exchanges is the
double T-junction [32, 42]. In this five-island geometry, the
upper and right superconducting islands host four Majoranas
encoding a qubit. Figure 2 shows protocols for the braiding
operations B1,2 via a three-point turn in the left T-junction,
and B2,3 using the right T-junction.

In the remainder of this section, we will show that arrays
of hexagonal cell qubits depicted in Fig. 3 can be used for
universal quantum computation, where qubits are arranged on
a triangular lattice with up to six nearest neighbors for each
qubit. Since the lower part of the hexagonal cell is a double
T-junction, it can be used for single-qubit Clifford gates by
braiding. Such hexagonal cells do not necessarily require a
hexagonal network of superconducting islands. For instance,
in a rectangular topological superconductor network, hexago-
nal cells are equivalent to nine-island rectangular cells. In a
brick wall geometry, each cell has six nearest neighbors.

Braiding of Majoranas does not allow for a CNOT gate.
However, qubit parity measurements and single-qubit Clifford
gates can be used to construct a CNOT gate using an ancilla
qubit [43]. Consider the quantum circuit shown in Fig. 4. The
action of a CNOT gate is to flip the target qubit |t〉 if the con-
trol qubit |c〉 is in the |1〉 state, and apply the identity if it is
in the |0〉 state. Using an ancilla qubit initialized in the state
|+〉 = (|0〉 + |1〉)/

√
2 , a CNOT gate can be implemented

by a series of qubit parity measurements and some corrective
operations. In the first step of the quantum circuit, the two-
qubit parity operator σz ⊗ σz between the control and ancilla
qubit is measured, yielding a measurement outcome m1 = 0
for even and m1 = 1 for odd parity. Next, the rotated parity
operator σx⊗σx between ancilla and target qubit is measured
with outcome m2, which is equivalent to a σz ⊗ σz measure-
ment with basis-rotating Hadamard gates applied before and
after the measurement. Finally, the ancilla qubit is measured
in the computational (σz) basis with outcome m3. The three
measurement outcomes are used to determine the correctional
operation on the control and target qubit σm2

z ⊗σm1+m3
x . This

procedure can be seen as a topological version of the non-local
CNOT gates considered in Ref. [44].

Since the correctional operation consists of Pauli gates, and
Pauli gates can be commuted past Clifford gates generating
only other Pauli gates, it is not necessary to physically perform



5

a2 a1
a3

a4

t1 t2
t3

t4

c4 c3 c2

c1

Ĥ Ĥ
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FIG. 5. Protocol for a CNOT between two adjacent hexagonal cell qubits using the quantum circuit in Fig. 4. In the cell occupied by the control
qubit (red), an ancilla (blue) is initialized in the |0〉 state and moved to the double T-junction of the cell. a) The ancilla and target (green) are
rotated via a Hadamard gate. b) The first two Majoranas of the control c1 and c2 and ancilla a1 and a2 are moved onto a connected island and
the four-Majorana fermion parity −a1a2c1c2 is measured, corresponding to a two-qubit parity measurement σz ⊗ σz with outcome m1. c)
The ancilla is moved back to the double T-junction for another H-gate. d) The ancilla and target parity m2 is measured via a four-Majorana
parity measurement in the right cell. e) An H-gate is applied to the ancilla and target qubits in their respective double T-junctions. f) Finally,
all qubits return to their initial positions and the ancilla qubit is measured by measuring the two-Majorana fermion parity ia1a2 with outcome
m3.

the actual gate corresponding to the correction. Therefore, as
long as the gate circuit consists only of Clifford operations,
Pauli gates only need to be tracked by a classical computer by
updating the so-called Pauli frame, using a procedure known
as Pauli tracking [45]. This is strictly speaking no longer the
case when T -gates are involved, since σxT = T †σx. In this
case, gate synthesis at later steps needs to replace T by T †

when commuting σx past a T -gate.
This parity measurement-based protocol for a CNOT gate

can be readily implemented in hexagonal cell qubits, see
Fig. 5. First, the ancilla qubit is initialized in the hexagonal
cell occupied by the control qubit. After the application of
Hadamard gates on the ancilla and target qubit (a), the two-
qubit parity operator σz ⊗ σz of control and ancilla qubit is

|c〉 •

|t1〉

|t2〉

|t3〉
...

...
...

=

|c〉
P

σm2
z

|+〉 H

P

H

|t1〉 H H σm1+m3
x

|t2〉 H H σm1+m3
x

|t3〉 H H σm1+m3
x

...
...

...
...

...
...

...

m1

m2

m3

FIG. 6. Quantum circuit for a multi-target CNOT gate using parity
measurements and an ancilla qubit initialized in the |+〉 state. First,
the parity operator σz ⊗ σz of control and ancilla is measured, with
outcomem1. Next, the parity operator σx⊗σ⊗nx of ancilla and n tar-
gets is measured, with outcome m2. Finally, the ancilla is measured
in the computational basis σz with outcomem3. The three outcomes
determine the final correctional operation σm2

z ⊗ (σm1+m3
x )⊗n on

control and targets, which can also be done by updating the Pauli
frame.

measured by moving the first two Majoranas of each qubit
onto three connected superconducting islands (b). Since the
total fermion parity of the connected islands (ic1c2)(ia1a2)
is precisely the qubit parity operator, the measurement of the
four-Majorana fermion parity yields the two-qubit parity. Af-
ter another H-gate (c), the same parity measurement is re-
peated for ancilla and target qubit (d). After the final set
of H-gates, all Majoranas are returned to their initial posi-
tions and the ancilla qubit is read out by measuring the two-
Majorana parity ia1a2. The ancilla qubit may be discarded
after the protocol. This concludes the protocol for a CNOT
gate between adjacent hexagonal cell qubits. In Appendix A,
we demonstrate that this scheme can also be used for CNOT
gates between arbitrary hexagonal cell qubits. Moreover, we
show that multiple CNOT gates applied in a transversal fash-
ion can be applied simultaneously.

This parity measurement-based protocol for a CNOT gate
can be extended to multi-target CNOT gates. A multi-target
CNOT gate corresponds to the application of n CNOT gates
with one control qubit |c〉 and n different target qubits |ti〉.
Such multi-target CNOT gates are part of magic state distil-
lation protocols, which are used for the implementation of a
robust logical T -gate. Using the protocol in Fig. 4, a multi-
target CNOT with n targets would require n ancilla qubits and
3n parity measurements. A faster alternative uses only one an-
cilla qubit and a parity measurement involving the ancilla and
all n target qubits, see Fig. 6. This multi-target CNOT pro-
tocol replaces 3n measurements for n CNOTs by just three
measurements for an n-qubit multi-target CNOT. A proof of
the circuit identity in Fig. 6 is given in Appendix B. The ap-
plication of this (transversal) multi-target CNOT gate to dis-
tillation protocols in topological superconductor networks is
discussed in Sec. III.
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Q1

σ⊗6z

Q5

Q2

Q3

Q4

Q6
meas. cell

FIG. 7. Six-qubit parity measurement in a triangular lattice of hexag-
onal cell qubits. Six hexagonal cell qubits Q1 - Q6, are arranged
around an empty cell that is used for the measurement of the parity
operator σ⊗6

z . For clarity, the Majoranas of each qubit are colored red
and blue in an alternating fashion. The first two Majoranas of each
qubit are moved to this cell, such that 12 connected superconductors
host 12 Majoranas. The total 12-Majorana parity of this island is
precisely the six-qubit parity operator.

B. T -gates and stabilizer measurements

So far, we have only shown the implementation of the non-
universal set of Clifford gates in topological superconductor
networks. In fact, by virtue of the Gottesman-Knill theorem,
Clifford quantum computers are no more powerful than clas-
sical computers [46]. Unfortunately, the T -gate, which com-
pletes the universal gate set, cannot be done using a combina-
tion of braiding of Majoranas and parity measurements. An
unprotected, error-prone T -gate can be achieved by splitting
the degeneracy of the parity states on the island hosting the
first two Majoranas, such that the energy splitting between
|0〉 and |1〉 is ∆E. After a time τ = π/4 · ~/∆E, the dy-
namic phase accumulated by time evolution will correspond
to the T -gate, and the degeneracy is restored again. In con-
trast to the Clifford gates, this protocol requires fine-tuning of
the device control parameters and does not protect the T -gate
against errors. There exist more sophisticated protocols for
physical T -gates in Majorana-based setups [25, 26], but for
our purposes, any implementation of physical T -gates is suf-
ficient, as these gates can be used to implement T -gates with
arbitrary precision using the magic state distillation procedure
outlined in Sec. III.

In preparation for error correction using color codes, we
also demonstrate the measurement of six-qubit parity opera-
tors σ⊗6

z without the need for ancilla qubits. Consider the
six hexagonal cell qubits in Fig. 7 arranged around an empty
hexagonal cell. If the first two Majoranas of each surrounding
qubit are moved onto 12 connected islands, the total parity of

this island will be the 12-Majorana operator
∏6
j=1 iγj,1γj,2,

which is precisely the six-qubit parity operator σ⊗6
z . This

allows for the direct readout of the parity, circumventing
the usual procedure [47] involving an ancilla qubit and six
CNOTs between the ancilla and each qubit. The measurement
of such n-qubit parity operators is required for quantum error
correction, where they are the stabilizers of the code.

In summary, we have shown that topological superconduc-
tor networks which allow for the movement of Majoranas,
2n-Majorana parity measurements, and tuning of the energy
splitting between parity states constitute universal quantum
computers. In particular, triangular lattices of hexagonal cell
qubits feature topologically protected Clifford gates and a T -
gate requiring fine-tuning. Furthermore, n-qubit parity opera-
tors σ⊗nz can be measured without the need for ancilla qubits,
and multi-target CNOT gates require only three parity mea-
surements regardless of the number of target qubits.

III. TOPOLOGICAL SOFTWARE:
DIAMOND COLOR CODES

Unless the topological hardware is perfect, qubit errors will
occur after a certain number of gate operations. These errors
change the outcome of the quantum computation, and there-
fore need to be actively corrected. In quantum error correc-
tion, multiple physical qubits are used to encode a single error-
resilient logical qubit. In so-called stabilizer codes [3, 49], the
logical qubit is encoded in the degenerate ground state space
of a Hamiltonian

HS = −
∑
i

Oi , [Oi,Oj ] = 0 . (6)

Here, Oi are operators with eigenvalues ±1, which are called
stabilizers and are products of Pauli operators. Since all sta-
bilizers commute, the ground state space is spanned by the si-
multaneous +1-eigenstates of all stabilizers. Logical informa-
tion can be stored in this degenerate ground state space, also
referred to as code space. For the logical qubits discussed in
this work, the ground state space is doubly degenerate, where
the eigenstates define the logical qubit states |0L〉 and |1L〉.
Note that the Hamiltonian HS does not necessarily describe
the physical system used for quantum computation. Instead,
HS merely defines the code space, into which the physical
system is projected by measuring all stabilizer operators.

Errors occurring on physical qubits will change the eigen-
value of certain stabilizers. The so-called code distance is the
minimum number of qubits that need to be affected by errors
in order to change the logical subspace, i.e., map |0L〉 onto
|1L〉 and vice versa. In order to prevent this from happening,
all stabilizer operators are measured periodically before phys-
ical errors can affect the encoded information. These mea-
surements reveal the so-called error syndrome, which is a list
of all stabilizer measurement outcomes ±1. This information
is used to correct the errors that have occurred. The practical
problem that has to be overcome is that only the syndrome
is available, while the actual errors are unknown. Formally
speaking, errors that are in the same homology class have the
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physical qubit
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FIG. 8. First three topological triangular color codes with code distances 3, 5 and 7 (where the smallest one is equivalent to the Steane
code [48]). These 6.6.6 color codes are defined on a hexagonal lattice, where each vertex is a physical qubit and each face is an X-type
and a Z-type stabilizer involving the surrounding qubits. Physical errors on a qubit affect the three different-colored stabilizers and edges
surrounding the qubit. In the triangular lattice of hexagonal cell qubits, the empty cell in the center of each face can be used for stabilizer
measurement.

same effect on the encoded information. The classical algo-
rithm finding the most likely error configuration belonging to
a given syndrome is called a decoder [50–55].

Typically, quantum error-correcting codes operate in code
cycles. In every code cycle, logical operations are performed,
the syndrome is read out by making use of stabilizer measure-
ments and the errors on physical qubits are actively corrected.
But even logical qubits only have a finite survival time, as
quantum error-correcting codes merely replace a physical er-
ror rate by a (preferably lower) logical error rate. The min-
imum number of physical qubits that need to be affected by
errors within a code cycle, such that the errors are no longer
correctable, scales with the code distance. There are two pre-
scriptions how a higher-distance code can be obtained from
a low-distance code: code concatenation [49] and topological
codes. Code concatenation has the drawback that it requires
the measurement of increasingly non-local stabilizer operators
with increasing code distance. In contrast, the stabilizers of
topological codes remain spatially local as the code distance
is increased. Moreover, in topological codes, the encoded
logical quantum information is protected from local perturba-
tions because virtual transitions require an order in perturba-
tion proportional to the system size. In such codes, errors gen-
erate and propagate anyons that are manifested in a changed
stabilizer measurement outcome. This implies that for topo-
logical codes defined on a lattice, anyons need to propagate
through the entire lattice in order to affect the logical sub-
space, i.e., errors need to form along a nontrivial line through
the lattice. The locality of stabilizers and high error-resilience
are the two key advantages that distinguish topological from
non-topological codes.

In fault-tolerant quantum computing, it is desirable to per-
form all gate operations on the level of encoded logical qubits
without the need to decode them back to error-prone physi-
cal qubits [16]. However, the physical operations that con-
stitute a logical gate UL are typically entirely different to the
known physical gates U . An exception are so-called transver-
sal gates, which for our purposes are logical gates that are
precisely the application of the corresponding physical gate

(or its Hermitian conjugate) on each qubit, i.e., UL = U (†)⊗n.
This has the advantage that errors due to faulty implementa-
tions of single physical gates do not spread to other physical
qubits. Moreover, transversal gates directly employ physical
gates to implement logical gates, enabling us to carry over the
topological protection of physical gates to the level of logical
gates. However, the Eastin-Knill theorem states that no code
can have a set of transversal gates which is also a universal
gate set [22].

One family of topological codes with transversal gates are
topological color codes [23]. Their set of transversal gates
are the Clifford gates. Since this set coincides with the set
of topologically protected operations of topological supercon-
ductor networks, color codes are a natural fit to Majorana-
based hardware. In comparison to the closely related [56]
surface codes, which have no transversal gates, color codes
also feature a higher error threshold. The error threshold is
the maximum physical error rate below which logical errors
are suppressed by increasing the code size, allowing for quan-
tum computation of arbitrary duration. We note that in circuit
models where Clifford gates are error-prone and stabilizers
are measured using ancilla qubits and CNOT gates, surface
codes indeed feature a lower threshold than color codes [57].
However, in the limit of topological hardware where Clifford
operations have a vanishing error-rate and stabilizer readout
does not require ancilla qubits, color codes outperform surface
codes even in the presence of measurement errors during syn-
drome readout [58, 59]. In addition, since the Clifford gates
are transversal for color codes, their implementation only re-
quires one code cycle. This reduces time overhead compared
to surface codes, where their implementation requires multi-
ple code cycles [47].

A. Triangular and diamond color codes

Color codes are stabilizer codes that are defined on lattices
with 3-colorable faces. Physical qubits sit on the vertices and
the stabilizers are operators acting on all qubits surrounding
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transversal CNOT

physical CNOT

transversal S

magic state distillery

data qubit
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FIG. 9. Color codes feature transversal Clifford gates. While the logical Hadamard gate is simply HL = H⊗n, the logical S-gate SL is a
mixture of physical S- and S†-gates. Using a bicoloration of the physical qubits, such that the sublattice involving the corner qubits is blue
and the other one is orange, SL requires physical S-gates on blue qubits and S†-gate on orange qubits. The logical CNOT gate corresponds
to n physical CNOTs between pairs of qubits from two triangles. Since this requires the movement of ancilla qubits from one triangle to the
other, this leaves some unused space in-between that can be used for the diamond color codes. These form a square lattice of logical qubits.
Universal fault-tolerant quantum computation can be achieved on a line of data qubits with a magic state distillery and a CNOT bypass.

a face. Figure 8 shows a family of color codes that is de-
fined on a hexagonal lattice of physical qubits, namely the
triangular 6.6.6 color codes. Here, all stabilizers involve ei-
ther four or six qubits. There are two stabilizers per face f ,
an X-type stabilizer OX =

⊗
i∈f σx and a Z-type stabilizer

OZ =
⊗

i∈f σz . Thus, the logical qubits in the color code are
encoded in the ground state space of the Hamiltonian

Hcolor code = −
∑
faces

OX −
∑
faces

OZ . (7)

To initialize a color code qubit in the logical |0L〉 state, all
physical qubits are initialized in the |0〉 state, the stabilizers
are measured, and the errors corrected.

Every physical qubit is part of up to three different-colored
X-type and Z-type stabilizers. At the boundaries, qubits are
only part of one or two stabilizers, but if one assigns colors
to the boundaries (see Fig. 8), every qubit is part of three
different-colored stabilizers or boundaries. A σz-type Pauli
error on a physical qubit will flip the three surrounding red,
green and blue X-type stabilizers. Conversely, a σx-type er-
ror will flip three Z-type stabilizers. In the language of topo-
logical codes, flipped stabilizers with eigenvalue −1 host an
anyon. Thus, errors generate and propagate strings with red,
green and blue anyons at their endpoints. Each edge can ab-
sorb anyons of its respective color. A logical error occurs,
when physical errors propagate a red, a green and a blue anyon
to the red, green and blue edges respectively. Thus, a logical
(σz)L-operator is given by any string of physical σz-operators
that propagates anyons in this way. In particular, physical σz-
operators on all physical qubits sitting on any one of the three
edges propagate anyons accordingly, and therefore correspond
to logical (σz)L-operators. Similarly, logical (σx)L-operators
correspond to strings of physical σx-operators.

Each code cycle consists of three steps. First, logical op-
erations are performed on the encoded qubits. Next, the error
syndrome is extracted by measuring all stabilizers, and then

given to the decoder. Finally, the corrections proposed by the
decoder are applied. Note that it is not necessary to physically
correct the errors, as they can be handled classically by Pauli
tracking [45], under the assumptions discussed in Sec. II.

In the triangular lattice formed by hexagonal cell qubits,
the cell in the center of each stabilizer is not occupied by a
physical qubit. Instead, these cells can be used for stabilizer
measurements, as shown in Fig. 7 for Z-type stabilizers. X-
type stabilizers can be measured by applying a Hadamard gate
to all qubits before and after the measurement. Color codes
fall into the class of CSS codes [48, 60], i.e., all stabilizers
are products of only σz-operators or only σx-operators. CSS
codes have a transversal implementation of the CNOT gate,
where the logical CNOT gate corresponds to the application of
physical CNOTs between all corresponding physical qubits of
two codes, see Fig. 9. Moreover, color codes are strong CSS
codes, because the support of Z-type and X-type stabilizers
coincides. This implies that Hadamard gates are transversal,
and the logical Hadamard gate HL = H⊗n maps stabilizer
states onto other stabilizer states. In general, this is not true
for the application of physical S-gates on all qubits. There-
fore, the transversal SL-gate requires greater care, as some
physical S-gates need to be replaced by S†-gates. One general
prescription is to bicolor the vertices of the color code graph,
such that neighboring qubits have different colors. In Fig. 9,
we color the sublattice containing the corner qubits blue, and
the other sublattice orange. The logical SL-gate then corre-
sponds to physical S-gates on blue qubits and physical S†-
gates on orange qubits [61].

All physical operations required for single-qubit transversal
gates can be applied simultaneously, since they only require
braiding within each hexagonal cell qubit. As we show in Ap-
pendix A, also for transversal CNOTs, all physical CNOTs
can be performed simultaneously in a hexagonal cell qubit
geometry. However, this requires the triangles encoding the
control and target qubit to be oriented the same way. Thus,
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for ZZ-parity measurement:
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FIG. 10. Left: Fault-tolerant ZZ-parity (XX-parity) measurement between two diamond color code qubits by lattice surgery [31], denoted
by black lines crossing the neighboring boundaries. First, new three- and four-qubit green stabilizers are introduced, and new eight-qubit
stabilizers are obtained by merging red plaquettes along the boundary. These stabilizers are measured along with all other stabilizers in order
to obtain the ZZ-parity (XX-parity), where the new green boundary stabilizers are only measured in the Z-basis (X-basis) and the red
eight-qubit stabilizers only in the X-basis (Z-basis). (All stabilizers are explicitly shown in Fig. 21 in Appendix C.) The product of the green
boundary stabilizers is precisely the two-qubit parity. Finally, the stabilizers are returned to their initial configuration before the lattice surgery.
Top right: Protocol for a fault-tolerant CNOT using lattice surgery. A logical ancilla is initialized in the |+〉 state. The ZZ-parity between
control and ancilla is measured, and the ancilla is moved through the CNOT bypass to the target. Finally, the XX-parity between ancilla and
target is measured, and the ancilla is read out. The length of this protocol scales linearly with the distance between control and target. Bottom
right: Lattice surgery-based CNOT protocol with constant time overhead. The ZZ-parities between control and three ancilla qubits in the |+〉
state are measured simultaneously using the three lattice surgeries indicated in the figure. Next, the XX-parity between ancilla 3 and target
is measured. Finally, ancilla 3 is read out in the Z-basis, while ancillas 1 and 2 are measured in the X-basis. In the presence of measurement
errors during syndrome readout, this protocol scales logarithmically with the distance between control and target.

the densest packing of triangular color codes along one line
is not practical. Instead, we choose to extend the upward-
pointing triangular codes into the unused space on their right,
forming diamonds, as shown in Fig. 9. Since all stabilizers of
one type and color can be measured simultaneously, this hap-
pens at no increase in space or time overhead. Moreover, our
Monte Carlo simulation in Sec. V shows that diamond codes
even feature a lower logical error rate compared to triangular
codes with the same code distance. Note that when extending
triangles to diamonds, only one of the edges becomes longer
compared to the triangular code. As the code distance is given
by the length of the shortest edge, the extension to diamond
color codes lowers the logical error rate despite leaving the
code distance unchanged.

Universal fault-tolerant quantum computation with logical
diamond color code qubits requires the implementation of
a universal gate set {HL, SL,CNOTL, TL}. The first two
gates are implemented directly in a transversal fashion. The
CNOTL-gate requires special care. Even though it can be
done transversally, CNOTs in hexagonal cell qubits use phys-
ical ancilla qubits, which are not protected against noise. In
the remainder of this section, we show that a one-dimensional
arrangement of data qubits with a magic state distillery above
and a CNOT bypass below (see Fig. 9) implements the re-
maining two logical gates in a fault-tolerant fashion. A magic
state distillery is an array of qubits used for magic state distil-

lation, whereas data qubits are qubits used for quantum com-
putation but not for distillation. We present protocols that use
the CNOT bypass to implement a fault-tolerant CNOTL-gate
with an overhead that scales with neither the code distance
nor the distance between the control and target qubits. Fur-
thermore, we demonstrate how the magic state distillery can
be used to produce and store magic states, which allow for a
fault-tolerant implementation of the TL-gate.

B. Logical CNOT gates

We present three protocols for logical CNOT gates between
data qubits. In the first protocol, the control qubit is moved to
the target qubit through the CNOT bypass, and the CNOT gate
is performed transversally, see Fig. 9. However, the ancilla
qubits in this protocol are physical qubits and therefore sus-
ceptible to errors. Moreover, since measurements are part of
the CNOT protocol, a physical CNOT gate may introduce ad-
ditional errors if measurements are not perfect. Both factors
increase the noise level for logical CNOT gates. The noise
level can be decreased by substituting physical ancilla qubits
by a logical ancilla qubit.

An implementation of the circuit in Fig. 4 with logical
qubits requires parity measurements between logical qubits.
Since the logical σz-operator is a nontrivial string of physi-
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cal σz-operators through the code, the two-qubit ZZ-parity
operator of two distance d codes is a product of at least 2d
σz-operators. One method of fault-tolerantly and projectively
measuring the two-qubit parities of logical qubits is called lat-
tice surgery [31]. Here, new stabilizers are temporarily intro-
duced on the boundary between two logical qubits. In Fig. 10,
we show a lattice surgery protocol along the green boundaries
of two diamond color code qubits, although any two bound-
aries can be used regardless of color as long as they have equal
lengths. In this protocol, the red four-term X-stabilizers at
the boundaries are merged to form eight-term stabilizers. The
corresponding Z-stabilizers remain unchanged (see Fig. 21 in
Appendix C). Green three- and four-term stabilizers are intro-
duced which commute with all other stabilizers and involve
each boundary qubit exactly once. Therefore, these stabiliz-
ers are only measured in the Z-basis, as the product of all
green boundary stabilizers is precisely the ZZ-parity. If these
stabilizers are measured along with the other stabilizers, qubit
errors can be corrected and the parity measurement is fault-
tolerant. The error due to faulty measurements can be reduced
by repeating sufficiently many rounds of syndrome extraction.
After the product of the green boundary stabilizers is deter-
mined – and therefore the two-qubit parity – the stabilizers
are reverted to the initial configuration. Similarly, the XX-
parity can be obtained by swapping X- and Z-stabilizers in
the aforementioned protocol. We stress that the lattice surgery
protocol projectively measures the logical two-qubit parity
without revealing any additional information, as we discuss
in greater detail in Appendix C.

Thus, the second protocol is a CNOT with a logical an-
cilla shown in Fig. 10. A logical |+〉-ancilla is initialized in
the CNOT bypass next to the control qubit. The ZZ-parity
between ancilla and control is measured by lattice surgery,
and the ancilla is moved to the target qubit. Finally, the XX-
parity between ancilla and target is measured, and the ancilla
is measured in σz-basis. Although this protocol yields a logi-
cal CNOT gate with arbitrary precision, it still has one major
drawback: The protocol length increases linearly with the dis-
tance between the control and target qubit.

This can be alleviated by using two additional ancilla qubits
with long edges, which replaces the movement of the ancilla
qubit by a number of simultaneous stabilizer measurements at
the long edge. The third protocol is a CNOT with constant
time overhead (see Fig. 10). Three |+〉-ancillas are arranged
such that ancillas 1 and 2 both have a short and a long edge,
and cover the entire distance between control and target qubit.
Using lattice surgery, the ZZ-parities between control and an-
cilla 1, between ancillas 1 and 2, and ancillas 2 and 3 can be
measured simultaneously. This is equivalent to measuring the
two-qubit parities between the control qubit and each of the
ancilla qubits. Therefore, ancilla 3 can be directly used as the
CNOT ancilla. Its XX-parity with the target qubit is mea-
sured, and it is read out in σz-basis. Ancillas 1 and 2 cannot
be discarded right away, as they are still entangled with the
control qubit. They can be disentangled by measuring the an-
cillas in the σx-basis with measurements outcomes m1 and
m2, and applying a σm1+m2

z -correction to the control qubit.
An explanation of the quantum circuit corresponding to this

protocol is found in Appendix E.
In the absence of measurement errors, this protocol has a

constant time overhead. This is no longer true, if syndrome
measurements are faulty. Such a measurement can be de-
scribed by a perfect measurement, followed by the identity
map with probability p and a flipped outcome with probabil-
ity 1− p. Since more boundary stabilizers are involved in the
parity measurement involving ancillas 1 and 2, they need to
be measured more often to achieve the same accuracy as the
other parity measurements. However, because the measure-
ment error probability decreases exponentially with each rep-
etition, whereas the number of boundary stabilizers only in-
creases linearly with the distance between control and target,
the time overhead of this CNOT only scales logarithmically
with the control-target distance.

We have presented three protocols for logical CNOT gates.
The transversal protocol between nearest-neighbors is fast, but
has a fixed accuracy and a time overhead that scales linearly
with the control-target separation. The second protocol uses
a logical ancilla, and can therefore achieve arbitrary accu-
racy, but is slower than the first protocol as it requires mul-
tiple code cycles. The third protocol eliminates the time over-
head, or replaces it by a time overhead that scales favorably
as the logarithm of the distance between control and target.
By adding rows to the CNOT bypass, multiple spatially inter-
twined CNOT gates can be performed simultaneously. Note
that with hexagonal cell qubit, logical diamond color code
qubits can move through one another, similar to ancilla qubits
in transversal CNOT protocols.

C. Magic state distillation

The only gate remaining for a universal fault-tolerant quan-
tum computer is the logical TL-gate. We point out that even
if the physical hardware had a topologically protected phys-
ical T -gate, there would be no way of directly using this
for a TL-gate as the T -gate cannot be transversal in a code
with transversal Clifford gates due to the Eastin-Knill theo-
rem [22], which states that the ability of a quantum code to
detect arbitrary errors on any single physical subsystem is in-
compatible with the existence of a universal, transversal en-
coded gate set for the code. There exist code switching meth-
ods that allow to switch the logical qubit from one code to
another code with a different set of non-universal transversal
gates. However, in order for this set to include the T -gate and
for the stabilizers to still remain local, the qubits need to be
arranged in three dimensions instead of two [62].

|ψ〉 T =
|ψ〉 • Smz

|m〉 mz

FIG. 11. State injection algorithm: A CNOT between a qubit |ψ〉
and a magic state |m〉 = (|0〉 + eiπ/4|1〉)/

√
2, followed by a mea-

surement of |m〉 with outcome mz and a correctional Smz -gate is
equivalent to a T -gate on the qubit.
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|ψ〉

|ψL〉

FIG. 12. Code injection procedure which encodes an unknown phys-
ical state |ψ〉 (gray qubit) into a logical state |ψL〉. First, the stabilizer
state in the left panel is prepared by measuring all shown stabiliz-
ers. Finally, we cease measuring the green stabilizers at the bottom
boundary, and start measuring the red stabilizers.

One possibility to implement a logical low-error T -gate
using logical Clifford gates and a physical T -gate is magic
state distillation. Consider the state injection circuit shown
in Fig. 11, which is equivalent to a T -gate on the qubit
|ψ〉. Using an ancilla magic state |m〉 = T |+〉 =(
|0〉+ eiπ/4|1〉

)
/
√

2, a CNOT between the qubit and one pre-
pared in a magic state followed by the measurement of the
magic state with outcome mz corresponds to a T -gate up to a
correctional Smz operation. Such a procedure of effectively
generating a quantum gate by making use of suitable quantum
state resources is referred to as gate teleportation.

In order for this state injection algorithm to yield a logical
T -gate, the magic state |m〉 needs to be an encoded logical
qubit. However, since the physical T -gate is not topologi-
cally protected and physical qubits are not protected against
errors during the encoding process, we can only generate
faulty magic states that are well-approximated by |m̃〉 =(
|0〉+ ei(π/4+ε)|1〉

)
/
√

2, even though further errors are ex-
pected and allowed for. Magic state distillation is an algo-
rithm deeply related to quantum error correction that gener-
ates low-error magic states using many faulty magic states
|m̃〉 with angle deviations ε of up to 17.3% [27]. Many such
algorithms exists, such as a 15-to-1 protocol [27], a 10-to-2
protocol [63], or more generally for an integer k a 3k+8-to-k
protocol [64, 65]. These protocols only require (transversal)
Clifford gates, in particular multi-target CNOT gates. Combi-
nations of these protocols [64] can be used to generate magic
states – and therefore effectively T -gates – with the desired
precision.

Logical magic states can be encoded from physical magic
states using a variant of the code injection procedure described
in Ref. [31]. In Fig. 12, we depict this procedure for a dia-
mond color code. A detailed explanation of the presented pro-
tocol is given in Appendix D. The protocol can correct errors
on any pair of physical qubits, but certain errors with support
on three qubits cause the injection of a faulty state, regardless
of the code distance of the used diamond code. This further
substantiates the need for magic state distillation.

In principle, the multi-target CNOTs in the distillation pro-
tocols can be done using many iterations of the logical CNOT
gates that we discussed previously. However, for logical
CNOTs between data qubits, we focused on these operations
having a low error-rate. Since distillation protocols are only

FIG. 13. Inflation protocol for transversal multi-target CNOT gates
in 15-to-1 magic state distillation. Each logical qubit is increased
to 16-times its size, such that all 15 qubits can be moved through
one another. The physical qubits involved in transversal multi-target
CNOT gates are now close to each other.

performed once, and afterwards magic state qubits are merely
stored until their use, the priority of their multi-target CNOTs
should be speed over accuracy of individual gates, such that
magic states can be distilled fast.

Majorana-based qubits offer the possibility of a fast multi-
target CNOT gate using the protocol in Fig. 6. Even though
this gate is transversal for color code qubits, the parity mea-
surements involve physical qubits that are spatially sepa-
rated – i.e., every first physical qubit of each involved logical
qubit, every second physical qubit, and so on. One method
to bring them closer together is by rearranging the physical
qubits using the inflation protocol shown in Fig. 13 for the
example of 15-to-1 conversion. Here, the 15 logical qubits
are inflated to 16-times their size. Now, all 15 qubits can be
moved inside one another such that the physical qubits in-
volved in a transversal multi-target CNOT gate are close to
each other. This effectively rearranges the physical qubits of
15 logical qubits, such that they form blocks of 15 physical
qubits that are part of multi-target CNOT gates. After suf-
ficiently many rounds of magic state distillation, the magic
state is ready for state injection via a CNOT gate using any of
the protocols outlined in the previous subsection.

Clifford gates and magic state distillation operate indepen-
dently from each other. That is, during the application of
Clifford gates on the data qubits in the quantum computa-
tion, magic states can be distilled in parallel and stored for
later use in the magic state distillery. Magic states can even
be prepared offline and stored for future quantum computa-
tions. Since magic state distillation is the part of the quantum
computation that requires the greatest effort, magic states are
resource states for quantum computation. With pre-distilled
magic states, any quantum computation reduces to the appli-
cation of (constant time overhead) logical Clifford gates.

In conclusion, we have constructed logical diamond-shaped
color code qubits with transversal Clifford gates. Arranged
on a line with a CNOT bypass and a magic state distillery,
they feature a robust T -gate and a CNOT gate with constant
time overhead. The single-qubit Clifford gates are topolog-
ically protected due to the protection of the topological su-
perconductor network. We note that apart from transversal
CNOTs and fast multi-target CNOTs, the remaining proto-
cols make no use of the diamond shape. In fact, if for data
qubits one abandons the fast transversal CNOT protocol, each
diamond-shaped data qubit can be replaced by two triangular
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color code qubits with a straightforward generalization of the
lattice surgery protocols. This reduces the spatial overhead for
data qubits by a factor of two, but also slightly increases the
logical error rate. The same is not true for magic state dis-
tillery qubits, as the inflation protocol for fast distillation still
benefits from diamond color codes.

IV. PHYSICAL ARCHITECTURE:
MAJORANA COOPER PAIR BOXES

In the previous sections, we have demonstrated that we can
construct a fault-tolerant universal topological quantum com-
puter on the basis of a topological superconductor network.
Our construction requires that Majoranas can be moved, their
parities measured, and the degeneracy of their parity states
lifted. In this section, we review how this can be achieved
using Majorana Cooper pair boxes following the scheme sug-
gested in Ref. [32] (see also [18, 35–37]). While here, we fol-
low Ref. [32], other implementations of Majorana qubits can
also be combined with a color code as discussed in this paper,
as long as these architectures are capable of the three required
operations. For instance, this scheme can in principle also be
realized in Majorana box qubits [66] and related setups [67],
where Majoranas are not moved directly by coupling neigh-
boring islands, but via braiding by measurement [68].

Pairs of Majorana zero modes can emerge at the ends
of one-dimensional spinless p-wave superconductors [10].
Even though there are candidates for p-wave superconduc-
tors such as Sr2RuO4 [69], ordinary superconductors ex-
hibit s-wave pairing. To effectively obtain the required
p-wave pairing from s-wave pairing – and thereby Majo-
rana zero modes – three essential ingredients are required
(see Fig. 14): an s-wave superconductor, spin-orbit cou-
pling, and one-dimensional spin-polarized conducting chan-
nels [4–9]. Experiments have focused on realizing this by us-
ing nanowires [11–14] or by appropriate patterning of two-
dimensional electron gases [15, 70], but in principle, this
could also be achieved in edge states of quantum Hall, quan-
tum spin Hall, or quantum anomalous Hall systems [4, 71–
74].

Unlike in ordinary s-wave superconductors, where the min-
imal excitation energy is given by the pairing gap ∆, the Ma-
joranas have zero excitation energy. Each pair of Majoranas
combines into a complex fermion that can be empty or occu-
pied. Unpaired electrons can occupy these fermionic states
at zero energy cost. When the island has one Majorana at
each end, there is one complex zero-energy fermion. The oc-
cupation of this energy level is associated with the fermion
parity of the mesoscopic island, i.e., the level is unoccupied
for even and occupied for odd fermion parity. These state-
ments hold true when the Majorana wire is proximity coupled
to a grounded s-wave superconductor. If the superconductor
is floating, the combined system of wire and proximity cou-
pled superconductor has a finite charging energy which will
in general lift the degeneracy between the even and odd parity
states [75–77].

A powerful scheme to manipulate Majorana zero modes

superconductor

Vg

EJ

EC

top gateEC

gate-tunableEJ
Josephson junction

bulk

spin-polarized
conducting channel

mesoscopic superconductor
with spin-orbit coupling

Majorana zero modesγ1 γ2

FIG. 14. A Majorana Cooper pair box as a basic building block of
the topological hardware. Top: A pair of Majorana zero modes γ1
and γ2 at the ends of a p-wave superconductor can be effectively ob-
tained by depositing an s-wave superconductor with strong spin-orbit
coupling on top of a material with a single spin-polarized conduct-
ing channel, such as a semiconducting nanowire in a magnetic field,
a quantum anomalous Hall insulator or a 2DEG in a strong mag-
netic field. Bottom: A Majorana Cooper box requires the addition of
charging energyEC and Josephson energyEJ on the mesoscopic su-
perconducting island. A top gate which is capacitively coupled to the
superconducting island imposes a certain total charge on the island
governed by the gate voltage Vg and the (fixed) charging energy. Fur-
thermore, a bulk superconductor is Josephson-coupled to the meso-
scopic island through a gate-tunable Josephson junction, which tunes
the Josephson energy and imposes a certain phase on the island.

exploits Majorana Cooper pair boxes, see Fig. 14 [32]. A
gated wire coated by a superconducting island is coupled to
a bulk superconductor through a tunable Josephson junction.
Opening the Josephson junction effectively grounds the island
which will then support a Majorana degeneracy. This degen-
eracy will be progressively lifted by Coulomb charging effects
as the Josephson coupling is reduced.

The low-energy Hamiltonian of the Majorana Cooper pair
box [32] is given by the sum H = HC + HJ of a charging
term

HC = EC

(
N̂ −N0

)2

(8)

with charging energy EC , and a Josephson term

HJ = −EJ cos ϕ̂ , (9)

with Josephson energyEJ . Here, N̂ is the operator that counts
the electrons on the island and N0 = eVg/(2EC) is the back-
ground charge controlled the gate voltage Vg applied to the
capacitively coupled gate. The operator ϕ̂ is the phase of
the superconducting island, obeying the commutation relation
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Majorana regime Intermediate regime Coulomb regime

∂〈N̂〉
∂Vg

N − 1 N N + 1

EC

FIG. 15. Parity-to-charge conversion in the Majorana Cooper pair box, as described in Ref. [32], and energy levels of the Majorana Cooper
pair box HC + HJ as a function of gate voltage Vg and for different ratios EJ/EC . In the Majorana regime EJ � EC , charging energy is
negligible and the spectrum is insensitive to Vg . The ground state is given by nearly-degenerate states of opposite parity (blue and orange),
where the maximum separation ∆E vanishes exponentially inEJ/EC , whereas the distance to the first excited states increases with

√
EJEC .

As EJ is decreased by decreasing the coupling to the bulk superconductor, the ground state degeneracy is lifted in the intermediate regime.
Here, varying the gate voltage distinguishes the parity states through their differential capacitance C = ∂〈N̂〉/∂Vg , which is larger for the
orange parity than for the blue parity. Finally, in the Coulomb regime EJ � EC , the spectrum is given by parabolas with well-defined charge
number N . If Vg is tuned to a minimum of a charge parabola, the two lowest-energy parity states are separated by EC , which can be used
to impose a certain parity on the island. The intermediate regime can also be understood from the emergence of avoided crossings between
charge states of equal parity as EJ is increased.

[ϕ̂, N̂ ] = 2i. Even and odd parity states obey periodic and an-
tiperiodic boundary conditions when writing the wave func-
tion in the phase representation [75].

Figure 15 shows the spectrum of H in three characteristic
regimes [32]. In the Majorana regime EC � EJ , the phase ϕ̂
is fixed by the bulk superconductor and the spectrum is almost
Vg-independent. In this regime, there are two nearly degener-
ate ground states whose splitting ∆E is exponentially small
in EJ/EC . These ground states are separated from excited
states by an energy ∼

√
EJEC . In the opposite Coulomb

regime EC � EJ , the eigenstates are well-defined charge
states. The two lowest charge states with even and odd parity
are split for all values of Vg , except at the charge degener-
acy points where N0 is half integer. Depending on whether
N0 is closer to an even or odd integer, the ground state has
either even or odd fermion parity. Thus, one can impose a de-
sired fermion parity on the state of the Majorana Cooper pair
box by tuning it to the Coulomb regime and relaxation to the
ground state. The intermediate regime with EC ∼ EJ can
be understood starting from the Majorana regime as the re-
sult of Coulomb charging lifting the ground-state degeneracy
or from the Coulomb regime as the result of forming avoided
crossings between states of equal fermion parity by Cooper
pair tunneling in and out of the island.

Using these three regimes of the Majorana Cooper pair
box, all operations required for color code quantum comput-
ing with a topological superconductor network can be imple-
mented. In a network, islands hosting Majoranas that encode
a qubit are tuned to the Majorana regime, such that the parity
states – and therefore the encoded qubits – are degenerate. All
other (empty) islands are tuned to the Coulomb regime. The
remainder of this section is devoted to showing how to use

these two regimes to move Majoranas through the network
and how to employ the intermediate regime for parity mea-
surements [32]. This is complemented by degeneracy splitting
which is straightforwardly implemented by decreasing EJ on
an island.

A. Moving Majoranas

Neighboring Majorana Cooper pair boxes with individually
controllable gate voltage and Josephson energy are connected

bulk

bulk SC

Vg,1

Vg,2

EJ,1

EJ,2
pincher gate

transmission τ

FIG. 16. Two Majorana Cooper pair boxes connected to the same
bulk superconductor with Josephson energiesEJ,1 andEJ,2, and top
gate voltages Vg,1 and Vg,2 respectively. The islands are connected
through the spin-polarized conducting channel, in which the inter-
island transmission probability τ can be tuned by a pincher gate.
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Majorana regime

Majorana regime Majorana regime

Majorana regime

Coulomb regime

Coulomb regime

γ1

γ1

γ1

γ2

γ2

γ2

FIG. 17. Two-step protocol for moving Majoranas γ1 and γ2 from
the left island, initially tuned to the Majorana regime, to the right
island, initially tuned to the Coulomb regime with even parity. First,
the two islands are coupled by increasing the transmission to τ =
1 and tuning the right island to the Majorana regime, shuttling γ2
to the right island. The two islands now form a single connected
superconducting island with Majoranas γ1 and γ2. In order to move
γ1 to the right island, the transmission is reduced back to τ = 0, and
the left island is tuned to the Coulomb regime.

via tunnel coupling, see Fig. 16. The inter-island transmission
probability τ can be controlled by a pincher gate located be-
tween the islands. Following Ref. [32], this junction can be
used to move Majoranas between islands. Starting with two
decoupled islands (τ = 0) in the Majorana (left island) and
Coulomb (right island) regime (see Fig. 17), γ2 is moved to
the right island by increasing the inter-island coupling while
tuning the right island to the Majorana regime by increasing
its Josephson coupling to the bulk superconductor. This places
the system into an eigenstate of the total parity iγ1γ2 of both
islands. One should ensure that at the beginning of the proto-
col, the right island is initialized into the even parity sector by
tuning Vg accordingly, so that moving the Majorana will not
flip the parity state. Finally, γ1 can be moved to the right is-
land by decoupling the two islands while tuning the left island
into the Coulomb regime.

Majorana Cooper pair boxes arranged in a T-junction geom-
etry with three pincher gates between three islands (see Fig.
18) form the basic building block of our proposed network and
implement all required moving operations. Opening any pair
of pincher gates couples the respective islands. For instance,
opening the right and bottom pincher gates in the left configu-
ration of Fig. 18 moves γ3 from the right island to the bottom
island. Opening the remaining pincher gate connects the left
island to the other two superconductors, such that γ2 becomes
a Majorana shared by all three islands.

B. Fermion parity measurements

The set of required operations is completed by measure-
ments of the fermion parity of 2n-Majoranas. The fermion

γ1 γ2 γ4

γ2

γ3

γ1

Vg,1

Vg,3

Vg,2

γ3 γ4

Vg,1

Vg,3

Vg,2

FIG. 18. T-junction geometry consisting of three mesoscopic super-
conducting islands coupled through a three-terminal junction involv-
ing three pincher gates. Left: If all three pincher gates are closed,
the islands are decoupled and host a pair of Majoranas each. In dis-
persive readout, tuning Vg,1 and Vg,2 is used to measure the parities
iγ1γ2 and iγ3γ4 respectively. Right: Opening the right and bottom
pincher gate while tuning the bottom island into the Majorana regime
moves γ3 to the bottom island. Subsequently opening the left pincher
gate connects all three islands, where γ2 is shared by all islands in the
three-terminal junction. Connecting any of the top gates to a resonant
circuit allows for dispersive readout of the total parity −γ1γ2γ3γ4.

parity iγ1γ2 of an island can be measured by tuning to the
Coulomb regime and measuring the charge on the island
(parity-to-charge conversion). In an alternative scheme, the
superconducting island is tuned into the intermediate regime
EJ ∼ EC with the gate voltage set such that N0 is, say, an
even number. Then, the even parity state is at the minimum of
a charge parabola, while the odd parity state sits at an avoided
crossing between two charge parabolas. Consequently, the
charge on the island is insensitive against variations of the gate
voltage in the even parity state, but susceptible in the odd state,
i.e., the two parity states differ in the differential capacitance

C =
∂〈N̂〉
∂Vg

. (10)

When incorporating the island into a resonant circuit, the reso-
nant frequency depends on the differential capacitance. Thus,
a measurement of the resonance frequency constitutes a par-
ity measurement, referred to as dispersive readout [78–81] or
charge reflectometry [66].

This dispersive readout scheme can be generalized to mea-
suring the fermion parity of 2n-Majoranas. Moving the 2n
Majoranas onto one connected superconducting island which
is tuned away from the Majorana regime with suitably cho-
sen gate voltage, the parity can be read out by incorporating
this island into a resonant circuit and proceeding as before.
An experimental limitation is set by the decrease of the charg-
ing energy with increasing island size. This scheme can for
instance be applied to measure the four-Majorana parity oper-
ator −γ1γ2γ3γ4. In the right configuration of the T-junction
in Fig. 18, all pincher gates are opened and the three islands
form one connected mesoscopic superconductor hosting four
Majorana zero modes. The spectrum of this effective Majo-
rana Cooper pair box will be the same as in Fig. 15, but with
a correspondingly lower charging energy and states differing
in total parity (iγ1γ2)(iγ3γ4). Thus, dispersive readout now
measures this four-Majorana parity operator.

Having implemented the operations required of topological
superconductor networks, we now turn to investigating error
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sources of Majorana Cooper pair boxes and how well they can
be corrected by diamond color codes in the following section.

V. FEASIBILITY ESTIMATE

The performance of diamond color code qubits in topolog-
ical superconductor networks depends on the error sources of
Majorana Cooper pair boxes. Even though the parity states
are degenerate in the Majorana regime for EJ � EC , a fi-
nite overlap between Majorana wavefunctions on one island
will split the degeneracy. Still, this splitting is exponentially
suppressed in the island size. Overlap between Majoranas of
neighboring islands can also lead to errors, but it is propor-
tional to the controlled tunneling amplitude between neigh-
boring islands and thus also exponentially small.

An error that is not necessarily exponentially suppressed
occurs when an outside electron tunnels onto an island. This
process is called quasiparticle poisoning, which is presumably
the dominant error source in Majorana-based qubits. In the
following, we model poisoning on any of the two islands en-
coding a physical qubit by the application of one of the four
Majorana operators. This does not only change the total parity
sector of the qubit, but also leads to a logical Pauli error de-
pending on the Majorana involved in the process. The change
of the parity sector is inconsequential to the qubit, since in
the encodings of both parity sectors in Eqs. (1) and (2), the
physical qubit operators are σz = iγ1γ2 and σx = iγ2γ3.
Therefore, merely switching the parity sector leaves both the
logical information and the logical braid operations B1,2 and
B2,3 unchanged. However, γ1 anticommutes with σz , γ2 an-
ticommutes with σz and σx, and γ3 anticommutes with σx.
Therefore, poisoning of γ1 leads to a σx-error, of γ2 to a σy-
error, of γ3 to a σz-error, and of γ4 to no error. We discuss this
in further detail in Appendix F. Moreover, we discuss more
general error sources that are not described by a single Majo-
rana operator.

Since σy-errors correspond to both a σx and a σz-error, the
quasiparticle poisoning time defines a time-scale, on which
σx-type and σz-type errors occur at equal rates. Current
experiments suggest that the quasiparticle poisoning time of
mesoscopic superconducting islands might be of the order of
milliseconds [38–40], although we point out that these experi-
ments were performed in a regime where the superconducting
islands were not floating but connected to a pair of normal-
metal leads. We note that even though the regime of equally
likely σx- and σz-type errors is the one considered in the fol-
lowing discussion, this is actually the worst-case scenario for
error correction. If one error type is known to occur more of-
ten, these errors have been shown to be correctable with fewer
resources [82], albeit by changing the code and therefore giv-
ing up on transversal gates. But even without abandoning
color codes, a biased error source can be taken into account by
measuring the corresponding syndrome type more frequently
than the other, thereby reducing the code cycle duration and
hence the error rate.

In non-topological architectures, random Pauli errors are
usually not a realistic error model, since relaxation processes
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FIG. 19. Logical error rate as a function of physical error rate ob-
tained from Monte Carlo simulation with a lookup table decoder for
triangular (solid line) and diamond (dashed line) color codes with
code distances d = 3 and d = 5, and for the triangular color code
with d = 7. The sample size is between 107 and 1010 trials for
data point corresponding to high and low logical error rates respec-
tively. The upper line show the logical error rate without quantum
error-correction.

from excited states to ground states are not described by uni-
tary operations. For topological hardware, on the other hand,
there are no transitions between different parity states that
would allow for relaxation from one qubit state to the other.
Therefore, we believe that random Pauli errors should be a
reasonable error model for topological physical qubits. With
this error model, the physical error threshold for color codes
is ∼ 11% [55, 59], where the physical error rate is the proba-
bility for a physical error on one physical qubit after one code
cycle. For our physical hardware, this physical error rate is
pphys = 1− e−τc/τp ≈ τc/τp, where τp is given by the quasi-
particle poisoning time and τc is the duration of a code cy-
cle. As moving Majoranas can be done at nanosecond time-
scales [83] without introducing significant diabatic errors, the
code cycle duration is mainly determined by the time required
for parity measurement. Dispersive readout on superconduct-
ing qubits suggests that this can be done on microsecond time-
scales [78, 79] or faster. For quasiparticle poisoning times
of the order of milliseconds, the physical error rate would be
pphys ≈ 10−3, which is well below threshold.

In order to estimate the survival time of logical qubits and
the performance gain of diamond color codes over triangular
color codes, we use a Monte Carlo simulation of the quantum
error-correcting code for the aforementioned error model us-
ing a lookup table decoder. We note that our decoder does
not take correlations between σx- and σz-errors into account,
which could further enhance the correction procedure with a
suitable decoder. A detailed discussion of the simulation is
found in Appendix G. In Fig. 19, we show the logical er-
ror rate as a function of physical error rate for the first three
lowest-distance triangular color codes and first two diamond
color codes. The simulation reproduces the error threshold of
∼ 11%, and shows that the logical error rate of diamond color
codes is indeed lower compared to triangular color code of the
same code distance. Furthermore, we find that already for the
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d = 5 diamond color code of Fig. 9 with pphys = 10−3, the
survival time of logical qubits is approximately 35000 code
cycles until the probability for a logical error reaches 1%. In
order to determine the survival time for larger code distances,
a more efficient decoder needs to be used, such as an iter-
ative decoder [54] or a color clustering decoder [55]. Both
slightly lower the error threshold to 7.8% and 9.75% respec-
tively. However, we may extrapolate our results to at least
estimate the survival time for higher-distance codes. Details
on this are found in Appendix G. The extrapolation suggests
that for pphys = 10−3, τc = 1µs, and the more stringent re-
quirement that the logical error probability stays below 10−6,
the d = 19 diamond color code has a survival time of several
years, implying that with an overhead of roughly 400 phys-
ical qubits per logical qubit quantum computations may run
for reasonably long durations.

VI. CONCLUSION

In this work, we have studied the interplay of topologi-
cal hardware and topological error-correcting software. Us-
ing topological superconductor networks, we have devised a
scalable architecture for universal fault-tolerant topological
quantum computation, which can be realized with voltage-
controlled Majorana Cooper pair boxes as basic building
blocks. The underlying physical qubits are hexagonal cell
qubits, which allow for universal quantum computing with
topologically protected Clifford gates, fast multi-target CNOT
gates, and ancilla-free syndrome readout. For quantum error-
correction, we employ topological color codes. Their set of
transversal gates coincides with the topologically protected
Clifford gates, which enables the logical gates to retain their
topological protection due to the topological hardware. This
makes color codes a natural fit to Majorana-based hardware,
as they perfectly combine topological hardware with topolog-
ical software. Moreover, color codes also feature a reduced
time-overhead for gate operations and a higher error threshold
compared to surface codes, even in the presence of measure-
ment errors during stabilizer readout. In a qubit arrangement
consisting of a row of data qubits, a magic state distillery, and
a CNOT bypass, logical single-qubit Clifford gates have a fast
transversal implementation, CNOTs between any pair of data
qubits have a constant time overhead, and magic states can be
distilled faster using transversal multi-target CNOT gates. Our
architecture is not restricted to implementations using Majo-
rana Cooper pair boxes, but can be applied to any realization
of a topological superconductor network, provided that Majo-
ranas can be moved, that their parities can be measured and
that some implementation of a physical T -gate is available.

Considering the particular geometry of a Majorana-based
color code quantum computer presented in this work, i.e.,
hexagonal cell qubits and 6.6.6 diamond color codes, we make
no claim of this geometry being optimal in terms of space and
time overhead. Studies of different network layouts and color
code schemes may reduce the overhead. Still, it is not clear
how different code layouts and decoders affect the logical er-
ror rate. In particular, 4.8.8 color codes require fewer phys-

ical qubits compared to 6.6.6 codes with the same code dis-
tance. However, as we show in Appendix H, they also feature
a higher logical error rate, even though they have the same
code distance and error threshold. Similarly, for the compar-
ison of triangular and diamond codes, neither code distance
nor error threshold are predictive figures of merit for logical
error rates. We therefore encourage studies of the logical error
rate of topological codes, in order to quantify the performance
of codes beyond the already well-studied error thresholds and
code distances. Moreover, in order to further quantify the per-
formance of a topological color code quantum computer, it
would be interesting to estimate the number of code cycles
required for actual computational tasks in an arrangement of
data qubits and magic state distilleries.

On the hardware side, the past years have shown consider-
able experimental progress towards the realization of Majo-
rana zero modes through the interplay of superconductivity,
spin-orbit coupling and one-dimensional spin-polarized chan-
nels. This work is expected to provide further motivation for
ongoing efforts to achieve braiding of Majoranas in these sys-
tems. On a more general note, aiming at merging ideas of both
hardware- and software-based topological protection, we hope
that our work further stimulates research efforts bringing the
fields of condensed matter physics and quantum information
theory closer together.
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Appendix A: Protocol for a transversal CNOT gate

In Fig. 20, we show that in hexagonal cell qubits, CNOT
gates between control and target qubits arranged on a line
can be performed simultaneously. This is a generalization of
the protocol introduced in Fig. 5 using the quantum circuit in
Fig. 4. Since in diamond color codes, control and target qubits
are also arranged on a line, all transversal CNOT gates in color
codes can be performed simultaneously.

Appendix B: Multi-target CNOT by parity measurement

Here, we show that a multi-target CNOT gate can be real-
ized using Clifford gates and qubit parity measurements, see
Fig. 6. The multi-target CNOT operator

CNOTn = |0〉〈0| ⊗ 1⊗n + |1〉〈1| ⊗ σ⊗nx (B1)

flips all n target qubits if the control qubit is in the |1〉 state.
An n-qubit parity measurement with outcomem = 0 for even
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FIG. 20. Protocol for three simultaneous CNOTs between three control qubits Qc1−c3 and three target qubits Qt1−t3 using the quantum
circuit in Fig. 4. In the cell occupied by the control qubits (red), ancillas (blue) are initialized in the |0〉 state (a) and moved to the double
T-junction of the cell for a Hadamard gate (b). The first two Majoranas of the control and ancilla qubits are moved onto a connected island and
the four-Majorana parity is measured (c), corresponding to a two-qubit parity measurement with outcome m1. The ancillas are moved back
to the double T-junction for another H-gate (d). The third and fourth Majoranas a3 and a4 of each ancilla qubit are moved into the lower leg
of their hexagonal cell, such that the remaining ancilla Majoranas can move to the target qubit cells for a four-Majorana parity measurement
(e). The ancilla Majoranas are then moved back to the control cells for an H-gate (f). Finally, all qubits return to their initial positions (g)
and the ancilla qubits are measured by measuring the two-Majorana parity m3.
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m1 +m3 m2 Um1+m3,m2 Correction

0 0 |0〉〈0| ⊗ 1
⊗n + |1〉〈1| ⊗ σ⊗nx 1⊗ 1

⊗n

0 1 |0〉〈0| ⊗ 1
⊗n − |1〉〈1| ⊗ σ⊗nx σz ⊗ 1

⊗n

1 0 |1〉〈1| ⊗ 1
⊗n + |0〉〈0| ⊗ σ⊗nx 1⊗ σ⊗nx

1 1 |1〉〈1| ⊗ 1
⊗n − |0〉〈0| ⊗ σ⊗nx σz ⊗ σ⊗nx

TABLE I. Uncorrected gate Um1+m3,m2 and necessary correction
based on measurement outcomes m1, m2 and m3.

and m = 1 for odd parity is equivalent to an operation

Pz =
1

2

[
1
⊗n + (−1)mσ⊗nz

]
. (B2)

Similarly, an n-qubit parity measurement in the σx-basis is

Px = H⊗nPzH
⊗n =

1

2

[
1
⊗n + (−1)mσ⊗nx

]
. (B3)

Thus, the circuit in Fig. 6 in the basis |c〉 ⊗ |a〉 ⊗ |t〉⊗n,
where c, a, and t denote the control, ancilla, and the n target
qubits respectively, is

U =

(
1⊗ 1

2
[1 + (−1)m3σz]⊗ 1⊗n

)
×
(
1⊗ 1

2

[
1
⊗n+1 + (−1)m2σ⊗n+1

x

])
×
(

1

2

[
1
⊗2 + (−1)m1σ⊗2

z

]
⊗ 1⊗n

)
×
(
1⊗ |+〉〈+| ⊗ 1⊗n

)
,

(B4)

where the final correction is not yet applied. Tracing out the
ancilla qubit yields

U =
1

2

(
1 + (−1)m1+m3σz

)
⊗ 1⊗n

+
1

2
(−1)m2

(
1− (−1)m1+m3σz

)
⊗ σ⊗nx .

(B5)

Depending on the measurement outcomes m1 + m3 and m2,
there are four possible uncorrected operations Um1+m3,m2 ,
see Tab. I. Thus, after the correction σm2

z ⊗ (σm1+m3
x )

⊗n,
the circuit in Fig. 6 precisely yields the multi-target CNOT
gate CNOTn using only three measurements, as opposed to
3n measurements for n individual CNOTs.

Appendix C: Details on lattice surgery

The stabilizers that are measured during lattice surgery [31]
are shown in Fig. 21. In the following, we describe the pro-
tocol for ZZ-parity measurement, but this can be straightfor-
wardly used forXX-parity measurement by simply swapping
Z ↔ X in the protocol. As one can verify by direct inspec-
tion, in this ZZ-parity measurement between two distance
d codes, dd2e new Z-stabilizers are introduced and 2bd2c X-
stabilizers are replaced by bd2c octagon stabilizers. Since d

Z-stabilizers X-stabilizers

FIG. 21. Stabilizers that are measured to obtain the ZZ-parity be-
tween two logical qubits using lattice surgery. In contrast to usual
color code stabilizer measurements, lattice surgery requires measure-
ments where the support of X- and Z-stabilizers does not coincide.
The left panel shows the required Z-stabilizers, and the right panel
the X-stabilizers, which differ along the shared boundary. To obtain
the XX-parity between two qubits, one simply has to swap Z ↔ X
in the protocol.

is always odd, exactly one new stabilizer is introduced. This
reduces the number of logically encoded qubits by one, im-
plying that in this process, one bit of information is measured.
In the following, we would like to make the case that the mea-
sured bit is precisely the ZZ-parity.

First, notice that in the absence of errors, the extended oc-
tagon stabilizers will not detect anyons (i.e., have a measure-
ment outcome +1), since they are products of pre-existing sta-
bilizers. In this error-free setting, the only stabilizers that give
a non-trivial measurement outcome are the 2bd2c newly cre-
ated Z-stabilizers. The product of these stabilizers is exactly
the logical two-qubit parity (σzσz)L. Another way to under-
stand this process is in terms of anyons. If in the error-free
setting, an anyon is detected on one of the new Z-stabilizers
(depicted as green in Fig. 21), this means that the number
of strings from the upper code terminating on said plaquette
differs in parity from the number of strings coming from the
lower code. Thus, the total parity of all newly created plaque-
ttes measures exactly the difference of strings from the upper
and lower code, which is precisely the two-qubit parity.

Lastly, in order to convince oneself of the fault tolerance of
the above process, it is sufficient to check that strings corre-
sponding to logical operations in the new settings still involve
at least d physical qubits. In Fig. 21, this has to be fulfilled
for logical (σx)L, (σz)L and (σxσx)L operations, but not for
(σzσz)L, since this commutes with the parity measurement.

Appendix D: Details of color code state injection

Figure 12 shows the protocol for the injection of a single
qubit state |ψ〉 into a logical state |ψL〉 encoded in a diamond
color code. This is a direct adaptation of the protocol in Ref.
[31], where this protocol was introduced for the specific case
of triangular 4.8.8 color codes. Here, we explain how this
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protocol achieves the state injection adapted to our situation.
The left panel of Fig. 12 depicts the stabilizers measured

before state injection. The number of stabilizers is exactly
the same as the number of physical qubits and thus no logical
qubits can be encoded. Since all stabilizers are measured and
errors are corrected for, no anyonic excitations are present ini-
tially. The fact that there are only two boundaries implies that
an even number of strings has to leave each boundary. This
is a consequence of errors always creating pairs of anyons of
the same color or triples of all three colors (and combinations
thereof), and of the fact that boundaries can only host anyons
of their respective color.

In the concrete example shown in Fig. 12, theZ-parity of all
qubits along the blue boundary is even, σ⊗nz = +1. The same
holds for the X-parity and equivalent measurements along
the red boundary. Importantly, this statement generalizes and
holds for all color codes with two boundaries, regardless of
code distance, geometry and tiling.

To inject the state of the single physical qubit into the color
code, the stabilizers shown in the right panel of Fig. 12 are
measured. Even if no errors on physical qubits occur, the new
red plaquettes might still host anyons. Importantly, they are
not corrected according to the most likely error configuration
producing this syndrome; instead, they are moved over the red
boundary. If errors occur, they will manifest themselves in the
syndrome readout and can be corrected.

The blue boundary after state injection differs only by the
addition of the new physical qubit. Thus, measurements of
the logical state along this boundary are given by the state of
the new physical qubit alone. The way in which anyons on the
new red plaquettes are corrected ensures that the same holds
for all other measurements of logical operations as well. This
proves that the protocol successfully injects the state of the
single physical qubit |ψ〉 into the logical state |ψL〉 encoded
in the color code.

Appendix E: Constant time overhead CNOT

The quantum circuit in Fig. 22 describes the constant time
overhead CNOT protocol in Fig. 10. The protocol involves
a control qubit |c〉, a target qubit |t〉 and three |+〉-ancillas,
where the third ancilla may be thought of as the ancilla that
is part of the CNOT protocol of Fig. 4. The ZZ-parity be-

|c〉
P

σm4+m5+m6
z

|+〉
P

H

|+〉
P

H

|+〉 H

P

H

|t〉 H H σm1+m2+m3+m7
x

m1

m2

m3

m4

m5

m6

m7

FIG. 22. Quantum circuit corresponding to the constant time over-
head CNOT gate in Fig. 10.

tween this third ancilla and the control qubit is not measured
directly, but as the sum of the first three parity measurements
in the circuit m1 + m2 + m3. The XX-parity between the
third ancilla and the target is measured with outcome m4 and
the third ancilla is read out with outcome m7. This is the
reason for the σm1+m2+m3+m7

x correctional operation on the
target and the σm4

z -correction on the control qubit. However,
these operations alone leave the first two ancilla qubits en-
tangled with the control qubit in a state of the type |ψ〉 =
α|0, 0, 0〉 + β|1, 1, 1〉. In order to safely discard the two an-
cilla qubits without affecting the control qubit, they are mea-
sured in the X-basis with outcomes m5 and m6, leading to a
σm5+m6
z -correction on the control qubit.

Appendix F: Quasiparticle poisoning

In the following, we discuss qubit errors due to quasiparti-
cle poisoning. We find that merely changing the parity sector
of an island pair is inconsequential to the qubit, and consider
more general error sources that are not described by the pro-
cesses discussed in the main text. We define the three Pauli
operators in the space of even and odd parity states {|e〉, |o〉}
of a topological superconducting island

τx =

(
0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
. (F1)

The four Majorana operators γ1, . . . , γ4 of an island pair can
be represented in terms of these Pauli operators as

γ1 = τx ⊗ 1 , γ2 = −τy ⊗ 1 ,
γ3 = τz ⊗ τx , γ4 = −τz ⊗ τy ,

(F2)

upon choosing a specific order of modes and by invoking the
Jordan-Wigner transformation. These operators are Hermitian
γi = γ†i and fulfill the anti-commutation relations {γi, γj} =
2δi,j . Our two qubit encodings are

|0e〉 = |e〉 ⊗ |e〉 , |1e〉 = |o〉 ⊗ |o〉 (F3)

in the even parity sector and

|0o〉 = |e〉 ⊗ |o〉 , |1o〉 = |o〉 ⊗ |e〉 (F4)

in the odd parity sector. Therefore, in both parity sectors, the
logical qubit operators are σz = iγ1γ2 and σx = iγ2γ3. Con-
sider a quasiparticle poisoning event described by the applica-
tion of γ1. The operator γ1 maps |0e〉 ↔ |1o〉 and |1e〉 ↔ |0o〉,
i.e., it switches the parity sector and applies a logical σx-
operation. Similarly, Eq. (F2) implies that γ2 applies a log-
ical σy-operation and γ3 a logical σz-operation. The operator
γ4 only switches the parity sector without changing the log-
ical information. This is not surprising, since it is the only
Majorana operator that is not part of either σz or σx. What
is more, invoking the fermion-parity superselection rule, it is
clear that the specific order of modes used in this argument is
not relevant, i.e., that the specific Jordan-Wigner string plays
no role.
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To further demonstrate that, in general, the information
about the parity sector is irrelevant for quantum computation,
we write the state of an island pair as a product of the qubit
state and the parity state. An island pair is a four-level sys-
tem with the four basis states in Eqs. (F3) and (F4). Instead of
describing these states in terms of the fermion parities of the
first and second island, we can transform the basis to a prod-
uct of an eigenstate {|0〉, |1〉} of the qubit operator σz = iγ1γ2

(qubit state) and an eigenstate {|pe〉, |po〉} of the total parity
operator p = −γ1γ2γ3γ4 (parity state). In this basis, the four
states are

|0e〉 = |0〉 ⊗ |pe〉 , |1e〉 = |1〉 ⊗ |pe〉 ,
|0o〉 = |0〉 ⊗ |po〉 , |1o〉 = |1〉 ⊗ |po〉 .

(F5)

Incidentally, the transformation matrix which maps from (F3)
and (F4) to (F5) is a CNOT. Braiding operations and measure-
ments of the qubit only affect the qubit state but not the parity
state, since they are comprised of operators that are products
of γ1γ2 or γ2γ3, and therefore commute with the parity op-
erator p. After this mapping, the poisoning processes that we
considered previously (i.e., the application of a Majorana op-
erator) can be written as a product of operations on the qubit
state and on the parity state

γ1 = σ̃x ⊗ τ̃x , γ2 = −σ̃y ⊗ τ̃x ,
γ3 = σ̃z ⊗ τ̃x , γ4 = −1⊗ τ̃y ,

(F6)

where σ̃i and τ̃i are Pauli operators acting on the qubit and
parity spaces, respectively. Therefore, these operations do not
entangle the qubit with the parity degree of freedom. Fur-
thermore, any Jordan-Wigner string τz ⊗ τz associated with
the operators in Eq. (F2) is mapped onto 1 ⊗ τ̃z , which acts
trivially on the qubit state. However, a general operation can
in principle generate such an entangled state. Thus, the most
general description of the entire state of the system is a sum
over all 2n possible 2n-island parity sectors

|ψ〉 =
∑

parity sectors p

|ψp〉 ⊗ |p〉 , (F7)

where |p〉 contains all fermion parities of the n island pairs,
and |ψp〉 is an n-qubit state. But in our encoding, |p〉 carries
no information relevant to quantum computation. Tracing out
the parity state leaves the qubit state in a statistical ensemble.
Therefore, the parity degree of freedom acts like an environ-
ment, to which error sources can couple. Moreover, in the
absence of logical errors, different qubit states yield different
syndromes after stabilizer readout. Thus, measuring the syn-
drome breaks the entanglement between the qubit state and
parity state.

Error sources that entangle the qubit with the parity state
are not described by products of Majorana operators, but by
sums of products. Such errors are in principle allowed and
lead to a non-unitary evolution of the qubit state. These errors
are still correctable, but are not necessarily described by the
error model of random Pauli errors. One example for such an
effectively non-unitary process is swapping the parities of two
islands that belong to two different qubits, as this entangles the
qubit and parity degrees of freedom.

Appendix G: Monte Carlo simulation of the diamond color code

In order to study the performance gain of low-distance di-
amond color codes over triangular color codes, and estimate
the logical error rate for higher-distance codes, we sample the
logical error rate in a Monte Carlo simulation. The physical
error rate is the probability for at least one error event in a
code cycle

pphys = 1− lim
N→∞

(
1− 1

N

τc
τp

)N
= 1− e−τc/τp , (G1)

where τc is the duration of a code cycles and τp is the charac-
teristic time-scale on which bit flips and phase flips occur. A
physical bit flip or phase flip only occurs at the end of a code
cycle if the bit is flipped an odd number of times within a cy-
cle. The probability of a physical bit flip or phase flip can be
calculated from the probability of an odd number of successes
in n discrete trials with success probability p, which is

podd =
1− (1− 2p)n

2
. (G2)

Thus, the physical bit flip (and phase flip) probability is

pflip = lim
N→∞

1

2

(
1−

(
1− 2

N

τc
τp

)N)

=
1

2

(
1− e−2τc/τp

)
= pphys −

1

2
p2

phys .

(G3)

We define the logical error rate plog as the probability for a
logical bit flip (or phase flip). Without quantum error correc-
tion, plog 6= pphys since the absence of a logical error requires
the absence of both σx and σz errors. Thus, the physical qubit
needs to pass two trials and the logical error rate is

plog = 1− (1− pflip)
2
. (G4)

To calculate plog with error correction, we sample through er-
ror configurations with a bit flip probability pflip on each phys-
ical qubit, attempt to correct the error using a decoder, and
count the number of failure events. The logical error rate is

plog = 1−
(

1− fails

trials

)2

. (G5)

Our decoder is a pregenerated look-up table which, given an
error syndrome, returns the most likely corresponding error
configuration. Since this is not efficient for higher-distance
codes, we only simulate the triangular color codes with dis-
tances d = 3, d = 5, and d = 7, and diamond color codes
with distances d = 3 and d = 5. On a log-log-plot, the logical
error rate is linear for low physical error rates, see Fig. 19. The
slopes and offsets of these linear functions both grow approx-
imately linearly with increasing code distance, allowing for
a rough estimate of the low-error behavior of higher-distance
codes through extrapolation.

The survival time of a logical qubit until the probability of
a logical error perr reaches a target accuracy ptarget is

τsurvival =
ln(1− ptarget)

ln(1− plog)
, (G6)
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survival time for a code cycle duration of 1µs.

where τsurvival is the survival time as a number of code cy-
cles. In Fig. 23, we plot the survival time for ptarget = 10−6

for triangular and diamond color codes obtained from numeri-
cal data and extrapolation thereof. The extrapolation indicates
that for pphys = 10−3 and a code cycle duration τc = 1µs, the
survival time of a d = 19 diamond color code is of the order
of several years.

Appendix H: 4.8.8 vs 6.6.6 color codes

Quantum error-correcting codes are usually classified using
their code distances and error thresholds. For triangular and
diamond color codes, we have seen that two 6.6.6 color codes
with equal code distances can exhibit different logical error
rates. Here, we show that neither the code distance nor the
error threshold are predictive figures of merit for the logical
error rate, which determines the performance of a code.

In this work, we considered color codes that are defined
on lattices with 6.6.6-tiling. A different tiling that allows
for color codes is the 4.8.8-tiling, with two types of eight-
qubit stabilizers and one type of four-qubit stabilizers. These
4.8.8 codes are considered to be more efficient, since trian-
gular 4.8.8 codes require fewer physical qubits per logical
qubit compared to triangular 6.6.6 code with the same code
distance.

Figure 24 shows the logical error rate of 4.8.8 and 6.6.6
codes obtained from the previously described Monte Carlo

simulation. It shows that the lower physical overhead of 4.8.8
codes comes at the price of a higher logical error rate. There-
fore, for a target logical error rate, it is difficult to estimate
which code one should use to minimize the physical over-
head. To our knowledge, even though code distances and error
thresholds of codes are well-studied, logical error rates have
so far attracted less attention, and require further research.
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require fewer physical qubits per logical qubit.
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K. Flensberg, J. Nygård, P. Krogstrup, and C. Marcus, Ma-
jorana bound state in a coupled quantum-dot hybrid-nanowire
system, Science 354, 1557 (2016).

[15] H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani,
C. J. Palmstrøm, C. M. Marcus, and F. Nichele, Scalable Ma-
jorana Devices, arXiv:1703.03699 (2017).

[16] J. Preskill, Reliable quantum computers, Proc. Roy. Soc. Lond.
A 454, 385 (1998).

[17] B. M. Terhal, F. Hassler, and D. P. DiVincenzo, From majorana
fermions to topological order, Phys. Rev. Lett. 108, 260504
(2012).

[18] S. Vijay, T. H. Hsieh, and L. Fu, Majorana Fermion sur-
face code for universal quantum computation, Phys. Rev. X 5,
041038 (2015).

[19] S. Vijay and L. Fu, Physical implementation of a Majorana
fermion surface code for fault-tolerant quantum computation,
Phys. Scr. T168, 014002 (2016).

[20] L. A. Landau, S. Plugge, E. Sela, A. Altland, S. M. Albrecht,
and R. Egger, Towards Realistic Implementations of a Majo-
rana Surface Code, Phys. Rev. Lett. 116, 1 (2016).

[21] S. Plugge, L. A. Landau, E. Sela, A. Altland, K. Flensberg,
and R. Egger, Roadmap to Majorana surface codes, Phys. Rev.
B 94, 1 (2016).

[22] B. Eastin and E. Knill, Restrictions on transversal encoded
quantum gate sets, Phys. Rev. Lett. 102, 110502 (2009).

[23] H. Bombin and M. A. Martin-Delgado, Topological quantum
distillation, Phys. Rev. Lett. 97, 1 (2006).

[24] A. J. Landahl, J. T. Anderson, and P. R. Rice, Fault-tolerant

quantum computing with color codes, arXiv:1108.5738 (2011).
[25] T. Karzig, Y. Oreg, G. Refael, and M. H. Freedman, A geomet-

ric protocol for a robust Majorana magic gate, Phys. Rev. X 6,
031019 (2015).

[26] M. Barkeshli and J. D. Sau, Physical architecture for a univer-
sal topological quantum computer based on a network of majo-
rana nanowires, arXiv:1509.07135 (2015).

[27] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316
(2005).

[28] S. Bravyi, B. M. Terhal, and B. Leemhuis, Majorana fermion
codes, New J. Phys. 12, 083039 (2010).

[29] S. Vijay and L. Fu, Quantum error correction for complex and
majorana fermion qubits, arXiv:1703.00459 (2017).

[30] M. B. Hastings, Small majorana fermion codes,
arXiv:1703.00612 (2017).

[31] A. J. Landahl and C. Ryan-Anderson, Quantum computing by
color-code lattice surgery, arXiv:1407.5103 (2014).

[32] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham,
J. Danon, M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Mar-
cus, K. Flensberg, and J. Alicea, Milestones toward Majorana-
based quantum computing, Phys. Rev. X 6, 1 (2016).

[33] V. Bouchiat, D. Vion, P. Joyez, D. Esteve, and M. H. Devoret,
Quantum coherence with a single Cooper pair, Phys. Scr. T76,
165 (1998).

[34] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster,
J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J.
Schoelkopf, Charge-insensitive qubit design derived from the
Cooper pair box, Phys. Rev. A 76, 1 (2007).

[35] F. Hassler, A. R. Akhmerov, and C. W. J. Beenakker, The top-
transmon: A hybrid superconducting qubit for parity-protected
quantum computation, New J. Phys. 13, 095004 (2011).

[36] B. Van Heck, A. Akhmerov, F. Hassler, M. Burrello,
and C. Beenakker, Coulomb-assisted braiding of majorana
fermions in a josephson junction array, New J. Phys. 14,
035019 (2012).

[37] T. Hyart, B. Van Heck, I. C. Fulga, M. Burrello, A. R.
Akhmerov, and C. W. J. Beenakker, Flux-controlled quan-
tum computation with Majorana fermions, Phys. Rev. B 88, 1
(2013).

[38] D. J. van Woerkom, A. Geresdi, and L. P. Kouwenhoven, One
minute parity lifetime of a NbTiN Cooper-pair transistor, Nat.
Phys. 11, 547 (2015).

[39] A. P. Higginbotham, S. M. Albrecht, G. Kiršanskas, W. Chang,
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