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Abstract
We provide a theory of the electronic transport properties of a graphene layer functionalized
with molecular switches. Our considerations are motivated by the spiropyran–merocyanine
system which is non-polar in its ring-closed spiropyran form and zwitterionic in its ring-open
merocyanine form. The reversible switching between these two isomers affects the carriers in
graphene through the associated change in the molecular dipole moment, turning the graphene
layer into a sensor of the molecular switching state. We present results for both the
quasiclassical (Boltzmann) and the quantum coherent regimes of transport. Quite generally,
we find a linear sensitivity of the conductance on the molecular dipole moment whenever
quantum interference effects play an essential role which contrasts with a quadratic (and
typically weaker) dependence when quantum interference is absent.

(Some figures may appear in colour only in the online journal)

1. Introduction

In recent years molecular switches on surfaces have attracted
much interest due to both intrinsic scientific motivations and
possible future applications in nanoelectronics. An interesting
example for photochromic molecular switches are spiropyrans
which allow for the reversible switching between two
conformational states, a ring-closed and an open form. The
chemical transformation between these two conformations
can be driven thermally or by irradiation with light. In the
ring-opening reaction a C–O bond breaks, cf figure 1, and
the two isomers differ significantly in their geometry and
electronic configurations. In particular, due to its zwitterionic
form the resulting merocyanine has a large dipole moment [1]
which may open new design possibilities for technological
applications.

In order to incorporate these switches into nanoscale
devices it is of major importance to study how the molecular
switches interact with a substrate. Central issues are both
how the substrate affects the molecular switch and how the
switch functionalizes the substrate. For instance, the substrate
can modify the switching process, e.g. by steric hindrance
or by quenching of excitations [2, 3]. Conversely, the switch
may cause a reversible modification of the substrate. As

Figure 1. Switching between the ring-closed (three-dimensional)
spiropyran and the ring-open (planar), zwitterionic merocyanine.

an example, the optical absorption of carbon nanotubes
functionalized with spiropyrans has recently been observed to
depend on the switching state [4].

In this paper, we consider the electronic transport
properties of graphene layers functionalized by spiropyran.
Specifically, we consider how the conductance of the
graphene layer differs between the switching states which
are characterized by very different electric dipole moments.
For isolated molecules, it is estimated [4] that the dipole
moment is of the order of 6.2 D in the ring-closed spiropyran
form, while it is 13.9 D in the zwitterionic merocyanine.
Graphene [5] provides a particularly attractive substrate
for decoration with molecular switches due to its unique
conduction properties, such as the absence of backscattering
and an easily tunable carrier concentration [7, 8], as well
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as its strictly two-dimensional nature. In particular, this last
fact suggests that the conduction properties of graphene could
serve as a sensitive detector for the conformational state of the
molecular switches.

Our calculations of the conductance of the graphene
layer consider both the Boltzmann regime and the mesoscopic
regime of coherent quantum transport. When the electronic
mean free path is much larger than the Fermi wavelength
and the system is sufficiently large compared to the phase
coherence length, electronic transport is characterized by
the quasiclassical Boltzmann conductivity. In contrast, in
the mesoscopic regime, the sample size is no longer large
compared to the phase coherence length, so that quantum
interference effects become important and the conductance
becomes sensitive to the particular impurity configuration.
The average magnitude of these fluctuations about their
mean value is universal and of the order of the conductance
quantum e2/h [9–12], and rather small changes in the
precise configuration of the impurities cause significant
changes in the conductance due to interference of multiple
scattering trajectories [13, 14]. Besides the dependence on
the conformational state of the decorating molecules, we also
consider the influence of the densities of charge carriers and
impurities, as well as the density and orientation of the dipolar
switches.

This paper is organized as follows. We give a brief
introduction to the transport properties of graphene in
section 2. The influence of the dipoles on the conductivity
is studied in section 3. Coherent processes are considered
in section 4. Some technical details of the calculations are
relegated to an appendix.

2. Model

2.1. Electronic properties of graphene

The honeycomb lattice of graphene is formed by two
inequivalent sublattices between which electrons hop as
described in a tight-binding approximation. The relevant
low-energy band structure is captured by a Dirac Hamiltonian,
describing the two inequivalent Dirac cones inside the first
Brillouin zone. The Hamiltonian for a single Dirac cone is
given by [5]

H0 = h̄vσ · k, (1)

where k is the momentum, v denotes the Fermi velocity and
σα (α = x, y) are Pauli matrices acting in the space of the two
sublattices. The corresponding eigenfunctions are

ψs,k(r) = 〈r|k〉 =
1
√

2�
exp(ik · r)

(
s

eiϕ(k)

)
, (2)

with the linear dispersion εs,k = sh̄vk (k = |k|), where s =
±1 labels the conduction and valence bands, respectively,
cosϕ(k) = kx/k and � is the sample area. While in principle
the relevant low-energy band structure of graphene consists of
two Dirac cones (valleys), we consider them to be completely
decoupled as is the case in the absence of short-range

scatterers. Consequently, we account for the two valleys
simply through the appropriate degeneracy factor.

The concentration of charge carriers in graphene can be
tuned via external gate voltages which allows one to vary the
Fermi wavenumber kF. The density n of conduction electrons
is related to kF through

n = g
∫ εF

0
dε ν(ε) =

k2
F

π
, (3)

where ν(ε) = ε/2π(h̄v)2 is the density of states per spin and
valley, εF is the Fermi energy and g = 4 accounts for the spin
and valley degeneracy. We refer to [5, 6] for a detailed review
of the electronic properties of graphene.

2.2. Green’s functions

Our discussion of the transport properties is based on a
Green’s function approach. The free retarded (advanced)
Green’s function for electrons (focusing on one Dirac cone)
is

GR(A)
0 (ε, k) =

1
2

∑
s=±1

1+ s σ · k/k
ε − εs,k ± iη

. (4)

The numerators in these expressions act as projectors onto
states in the conduction (s = +1) and valence (s = −1) band,
respectively. In the following we consider only electron-doped
systems with a sufficiently high Fermi energy, such that all
relevant processes occur in the conduction band. This allows
us to restrict attention to s = +1 only. In fact, both our
quasiclassical and our diagrammatic approaches are valid
only when the system is sufficiently far from the Dirac
point (characterized by electron and hole puddles in real
samples [6]).

Scattering on impurities broadens the electronic spectral
function, so that the impurity averaged matrix elements of the
retarded (advanced) electronic Green’s function become

〈k′|GR(A)
ε |k〉 =

δk,k′

ε − εk ± ih̄/2τ(εk)
≡ δk,k′G

R/A
ε (k). (5)

Here, the elastic scattering time, evaluated in the Born
approximation, is

1
τ(εk)

=
2π
h̄

∑
k′
|〈k|Vi|k′〉|2 δ(εk − εk′), (6)

in accordance with Fermi’s golden rule. The electronic mean
free path is related to the scattering time through l = vτ . The
impurity potential Vi(r) =

∑Ni
j=1 V(r − rj) is a sum over the

individual potentials V of the Ni (non-magnetic) impurities
which we take to be randomly distributed. Averaging over the
impurity configurations (indicated by the overbar) yields

|〈k|Vi|k′〉|2 =
ni

�
|Vk−k′ |

2(1+ cosϑ)/2, (7)

with ϑ the angle between k and k′, Vk−k′ the Fourier transform
of V(r) and ni = Ni/� the impurity density. The factor
(1+cosϑ) reflects the absence of backscattering in graphene,
even for isotropic scattering potentials.
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Figure 2. Diagram for the conductivity. The conductivity loop
consists of a retarded (blue) and an advanced (red) impurity
averaged Green’s function meeting at two current vertices. The bare
current vertices are denotes by wiggly lines and the dressed vertex is
defined in figure 3.

2.3. Quasiclassical transport properties

Before discussing the influence of molecular switches on the
conductivity, we briefly review the conductivity of doped
graphene within a Boltzmann approach [7, 8, 15–19].

For zero temperature, the longitudinal conductivity is
given by the Kubo formula

σ = g
h̄

π�
Tr[ĵx ImGR

εF
ĵx ImGR

εF
], (8)

where the Green’s functions are evaluated at the Fermi energy.
The current operator is ĵx = (−e) i

h̄ [H0, x] = (−e)vσx, with
matrix elements

(jx)k,k′ = (−e)v〈k′|σx|k〉 = (−e)v cosϑ. (9)

To lowest order, the diagram for the impurity averaged
conductivity is depicted in figure 2, and following standard
procedures [20] we obtain

σ = ge2 ν0 D, (10)

with D = v2τtr/2 the diffusion constant. The transport
scattering rate:

1
τtr(εk)

=
2π
h̄

∑
k′
|〈k|Vi|k′〉|2(1− cosϑ)δ(εk − εk′)

=
π

h̄
niν(εk) 〈V

2
k−k′sin2ϑ〉ϑ , (11)

is the rate at which the memory of the k direction of the
incoming electron is lost. Here, 〈· · ·〉ϑ =

∫ 2π
0 dϑ (· · ·)/(2π)

denotes an angular average over the Fermi circle. From now
on, τ and τtr without explicit momentum labels are calculated
at the Fermi energy. We also use the notation ν0 ≡ ν(εF).
We close this section with a brief discussion of the transport
scattering time for two common sources of scattering, namely
short-range and Coulomb scatterers.

2.3.1. Short-range scatterers. Scatterers with a short-range
potential, e.g. point defects or neutral impurities, have a
Fourier transform which is (approximately) independent of
momentum, Vk−k′ = V . Thus, due to the density-of-states
factor, equation (11) yields a transport scattering rate which is
proportional to k and the conductivity becomes independent
of the electron density. (We assume that the potential still
varies smoothly enough that the two Dirac cones remain
uncoupled.)

Figure 3. Vertex corrections. The star denotes impurity scattering.
Note that one only has to include diagrams with a retarded and an
advanced Green’s function meeting at a current vertex, see [12, 21,
22].

2.3.2. Coulomb scatterers. Another frequent source of
scattering in graphene samples are charged impurities, located
at a distance z above the graphene sheet. The Fourier
transform of the corresponding single-impurity potential is

Vc
q =

2παh̄v

q
e−zq, (12)

where q = |k − k′| = 2k sin(ϑ/2) for elastic scattering
processes. Here, α = e2/(h̄vκ) denotes the effective fine
structure constant which involves the average dielectric
constants of the neighboring media, κ = (κ1 + κ2)/2 [6, 18].
Charged impurities are screened by the conduction electrons,
resulting in the effective potential Ṽc

q = Vc
q/ε(q), where the

dielectric function, in the limit of zero temperature, can be
approximated by

ε(q) ' 1+ qTF/q. (13)

This Thomas–Fermi approximation involves the characteristic
wavevector qTF = 2παh̄vgν0 [15, 16].

The average conductivity is found to be

σ̄ c
=

ge2

h

1

πα2I0

n

nc
i
, (14)

which is valid at zero temperature, showing that the
conductivity increases linearly with the density of charge
carriers n participating in the transport. This result follows
from inserting the transport scattering time τ c

tr into
equation (10). The scattering rates evaluated at the Fermi
level, see equations (11) and (6), are

1/τ c
tr

1/τ c

}
=

nc
iπ

2α2v

2kF

{
I0

J0
, (15)

with nc
i the density of charged impurities and the abbreviations

Im

Jm

}
=

∫ 2π

0

dϑ
2π

sinm(ϑ/2)e−4zkF sin(ϑ/2)

[sin(ϑ/2)+ gα/2]2

{
sin2ϑ

1+ cosϑ
. (16)

For qTF/(2kF) = gα/2 ≈ 2 (corresponding to graphene on
a SiO2 substrate [18]) and 4zkF � 1 we have I0 ≈ 0.071,
I1 ≈ 0.046, I2 ≈ 0.033, J0 ≈ 0.18, J1 ≈ 0.065 and J2 ≈ 0.035.

In summary, the conductivity of graphene is independent
of the electron density n for short-range scatterers and linear
in the density for Coulomb scatterers [15, 16, 18]. Combining
both contributions, one obtains a linear rise of the conductivity
which saturates at higher n. At low temperatures this behavior
is in agreement with many experiments [7, 8, 23].
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3. Effect of switches on the
conductivity—Boltzmann theory

We now consider graphene samples with a dilute and random
covering by molecular switches whose switching states are
characterized by different electric dipole moments.3 In this
section, we will assume that the electronic scattering is
adequately described within a Boltzmann approach which
treats consecutive scattering events as independent. We will
also assume that the switching is only effected externally,
e.g. by irradiation of the sample, and that all molecules are
switched so that we need only discuss the conductivity for
the static dipole moments associated with the two different
conformations.

Consider a molecule with a nonzero electric dipole
moment d attached to graphene. We assume that the electric
dipole is located at a distance z above the graphene sheet with
the dipolar potential

Vd(r, z) = (−e)
d‖ · r+ d⊥z

(r2 + z2)3/2
. (17)

Here, d‖ and d⊥ are the components of the dipole moment
parallel and perpendicular to the substrate, respectively,
and r is a two-dimensional vector in the surface. The
two-dimensional Fourier transform of the dipolar potential
follows readily from Gauss’s law ∇2Vd

= 4πeρ, where ρ is
the charge density of the dipoles. (Note that Vd is defined as
the potential energy of an electron in the field of the dipole.)
Fourier-transforming Gauss’s law and integrating over the
out-of-plane component of the wavevector, one obtains

Vd
q = 4π ie

∫
dq⊥
2π

d‖ · q+ d⊥q⊥
q2 + q2

⊥

eiq⊥z, (18)

and therefore

Vd
q = V

d‖
q + Vd⊥

q , (19)

V
d‖
q = 2π iαh̄v(d‖/e) cosφ e−qz, (20)

Vd⊥
q = −2παh̄v(d⊥/e)e−qz, (21)

where φ denotes the angle between q and d‖. Note that Vd⊥
q

is real, while V
d‖
q is imaginary, reflecting their symmetry

properties. The resulting screened potential is given by Ṽd
q =

Vd
q/ε(q), with the dielectric function in equation (13).

We first consider a clean graphene sample where the
scattering is entirely due to the decorating molecular switches
with dipolar impurity potential. In such a system, the electrons
are scattered at impurities with a dipole moment (but without
monopole potential), and the averaged matrix elements of the
impurity potential are

|〈k|Vd
i |k
′〉|2 =

nd
i

�

(αh̄vd̃/e)2

1+ qTF/q

1+ cosϑ
2

, (22)

3 In the spiropyran–merocyanine system, the switching states differ most
significantly in their corresponding dipole moments and thus higher-order
terms in a multipole expansion of the charge distribution can presumably be
neglected.

with nd
i the density of dipoles. We use d̃2

= d2(1+ cos2ξ)/2,
where the angle ξ measures the orientation of the dipole
moment with respect to the plane such that d⊥ = d cos ξ . To
be specific, we assume that d‖ is oriented along an arbitrary
direction within the graphene layer while the perpendicular
component is (approximately) the same for all dipolar
switches. Inserting equation (22) into (11) and (6) yields the
scattering rates

1/τ d
tr

1/τ d

}
= 2(πα)2nd

i vkF (d̃/e)
2

{
I2

J2
, (23)

where I2 and J2 are given by equation (16). In the absence of
other types of scatterers, equation (10) yields the conductivity

σ̄ d
=

ge2

h

1

(2πα)2I2

1

nd
i (d̃/e)

2
. (24)

Note that this result for the conductivity is independent of the
electron concentration.

If the graphene sample is disordered even in the absence
of the molecular switches, it is natural to consider a situation
in which the dominant source of scattering is due to Nc

i
charged impurities, supplemented by Nd

i additional dipolar
scatterers. For the moment, we assume that these latter
scatterers are not associated with a monopolar potential. If
the distributions of these two different types of scatterers
are statistically independent, the total transport scattering rate
is obtained by Matthiessen’s rule through adding the two
individual scattering rates, 1/τ c,d

tr = 1/τ c
tr + 1/τ d

tr . Hence,
switching the dipole moments causes a relative change of the
conductivity:

δσ

σ̄ c ' −2(πα)2
J0I2

I0
δni kFlc (d̃/e)

2, (25)

reflecting the fact that the conductivity decreases when
scatterers are added to the system. We have used σ̄ d

� σ̄ c

which holds for kFd/e � 1. This limit is relevant for typical
electron densities in graphene, n≈ 1012 cm−2, and even rather
large dipole moments d ≈ 10 D (yielding kFd/e ≈ 0.03).
The prefactor in equation (25) is given by 2(πα)2J0I2/I0 ≈

1.7 for impurities close to the graphene sheet, zkF � 1,
see equation (16). Note that the mean free path lc = vτc is
proportional to kF, see equation (15). Thus, the influence of
the dipoles on the conductivity is quadratic in (kFd/e), which
increases linearly with the electron density n.

Frequently, an attached molecular switch will affect
electronic transport not only through its dipole moment, but
may also be associated with a monopolar scattering potential,
e.g. due to some degree of charge transfer between graphene
and the molecular switch. For this reason, we generalize our
results to situations with Ni charged impurities (with screened
potential Ṽc

q) and δNi impurities with an additional dipole
moment, where the latter also transfer an amount δe = ζe
of charge to the graphene. Then, the scattering potential for
the latter takes the form Ṽc+d

q = Ṽc
q + Ṽd

q . The corresponding
transport scattering rate, equation (11), is

1

τ c+d
tr

=
1
τ c

tr
+

1

τ d
tr
+

1

τ
c,d⊥
tr

, (26)

4
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Figure 4. Diagrams involved in the UCF. The building blocks of these diagrams are shown in figures 5 and 6.

where τ c
tr and τ d

tr are given by equations (15) and (23), and we
introduce the shorthand

1/τ c,d⊥
tr

1/τ c,d⊥

}
= −2δniπ

2ζαv
d⊥
e

{
I1

J1
, (27)

with δni the density of switched molecules. This latter
contribution involves interference between monopole and
dipole scattering. Interestingly, d⊥ enters linearly into this
contribution while the in-plane component of the individual
dipoles cancels out. This cancellation follows from the fact

that V
d‖
q in equation (20) is purely imaginary, while the

Coulomb potential is real. I1 and J1 follow from equation (16)
and we have used the (impurity averaged) matrix element of
the total impurity potential:

|〈k|Vc+d
i |k′〉|2 =

1+ cosϑ
2�

[(ni + δniζ
2)|Ṽc

q|
2

+ 2δniζ Ṽc
qṼd⊥

q + δni|Ṽ
d⊥
q |

2
+

1
2δni|Ṽ

d‖
q |

2
]. (28)

The relative change of the conductivity due to switching of the
dipole moments is then

δσ

σ̄ c ' δni
2J0(πα)

2

I0
[I1ζ lcd⊥/e− I2 kFlc (d̃/e)

2
], (29)

with δσ = (σ̄ c+d
− σ̄ c) and again assuming that the

switching-induced change in the conductivity is small. The
prefactors can be approximated by 2(πα)2J0I1/I0 ≈ 2.3 and
2(πα)2J0I2/I0 ≈ 1.7 for qTF/(2kF) = gα/2 ≈ 2 and 4zkF �

1, see equation (16).
In the Boltzmann limit scattering events are independent

and thus interference can only appear for scattering channels
(such as monopole and dipole contributions) associated with
the same scatterer. Nevertheless, our result (29) indicates that
such interference contributions can significantly increase the
sensitivity of the conductivity to changes of the molecular
switching state. Indeed, while the change in conductivity due
to switching is quadratic in the molecular dipole moment
in the absence of interference, see equations (24) and (25),
interference gives rise to a contribution which is linear in d⊥
and thus dominant in the relevant limit kFd/e� 1.

4. Effect of switches on the conductance—quantum
coherent transport

4.1. Mesoscopic fluctuations

In section 3 we have seen that interference between charge
and dipole scattering originating from the same scatterer

can be favorable for the readout of the switching state.
Now we consider quantum coherent transport, implying
that interference between partial waves scattered at different
impurities becomes relevant such that one might again expect
an enhanced sensitivity to the switching state of the molecules.

Because a macroscopic sample can be viewed as built
of a number of mesoscopic phase coherent subsystems,
which are quantum mechanically independent of each
other, the macroscopic measurement effectively averages
over these subsystems. The system becomes self-averaging
and is characterized by intensive quantities, such as the
impurity averaged electric conductivity σ̄ . At this level, the
conductivity can be obtained from the Boltzmann equation, as
we did in section 3.

In contrast, in the mesoscopic regime (i.e. at sufficiently
low temperatures and small system sizes where the phase
coherence length becomes larger than the sample dimen-
sions), interference between multiple scattering trajectories
is important and a change in the microscopic impurity
configuration or a continuous system parameter, such as the
Fermi energy or an applied magnetic field, yields reproducible
variations of the conductance. It is well known that the typical
magnitude of these fluctuations about the mean value of the
conductance is universal in the sense that it depends only on
the sample geometry but is independent of the microscopic
details of disorder [9–12]. Importantly, such changes in the
conductance are already effected by rather small changes in
the impurity potential [13, 14]. This suggests that indeed,
interference terms involving different scatterers may make a
graphene sheet, in the regime of quantum coherent transport,
a particularly accurate sensor of the switching state of the
attached molecules. The general concepts of mesoscopic
fluctuations have been introduced in [9–12] (see [20] for
a pedagogical account). For the peculiarities of universal
conductance fluctuations in graphene, we refer to [24–28].

4.2. Diagrammatic calculation

We consider charged impurities as the dominant source of
scattering and an impurity potential Vi, which is formed
by Ni of these Coulomb scatterers. We are interested in
the change of the conductance when the impurity potential
changes, Vi → V ′i . To be specific, we assume that δNi
charged impurities acquire an additional dipole moment,
causing the change in the impurity potential. (We note that
the derivation would follow the same lines, and leave our
results unaffected, when dipolar impurities were added to
a background of charged impurities.) For generality, we

5
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Figure 5. Ladder series for the diffuson. The retarded (advanced)
Green’s function, shown in blue (red), is given by ḠR

εF
(k)

(ḠA
εF−ω

(k− q)).

consider the correlation function of the conductance evaluated
not only for different impurity potentials, but also at different
Fermi energies εF and ε′F.

A measure for the effect of the microscopic modifications
is the conductivity–conductivity correlation function:

1σ(ξ)1σ(ξ ′) = [σ(ξ)− σ̄ (ξ)][σ(ξ ′)− σ̄ (ξ ′)], (30)

where ξ is the quantity which is modified (e.g. ξ = {εF,Vi})
and the conductivity σ is given by equation (8). The diagrams
representing 1σ1σ consist of two conductivity loops (one
evaluated for Fermi energy εF and impurity potential Vi,
the other for ε′F = εF + ω and impurity potential V ′i ) which
are connected by impurity lines. There are two distinct

possibilities to connect the two loops, 1σ1σ = 1σ1σ
(a)
+

1σ1σ
(b)

, as shown in figures 4(a) and (b), respectively. Note
that unconnected loops correspond to σ̄ 2 and hence do not
enter into the variance.

Based on the standard Feynman rules for disordered
systems [20], figures 4(a) and (b) translate into the analytical
expressions

1σ(ξ)1σ(ξ ′)
(a)
=

( gh̄

4π�

)2
4β
∑

q
(H1)

2
|D̃ω(q)|2, (31)

and

1σ(ξ)1σ(ξ ′)
(b)
=

( gh̄

4π�

)2
8β
∑

q
(H2)

2 Re[(D̃ω(q))2],

(32)

which are valid in the diffusive limit, kFl � 1 and ωτ � 1.
The building blocks of the diagrams, the short-ranged Hikami
boxes H1(2) and the long-ranged diffuson D̃ω(q), are depicted
in figures 5 and 6. The corresponding analytical expressions
are given below in equations (36) and (39). The expressions

for 1σ1σ
(a)

and 1σ1σ
(b)

also involve a combinatorial
factor of 4, which reflects that the diagrams in figures 4(a) and
(b) are invariant under interchange of retarded and advanced
Green’s functions as well as of momentum labels. In a time
reversal invariant system, additional contributions stem from
replacing the diffusons by Cooperons [20]. This is taken
care of by the symmetry factor β = 2 (1) for a system with
(without) time reversal invariance.

We now turn to a brief discussion of the constituents of
these fluctuation diagrams, namely the diffusons D̃ω and the
Hikami boxes H1(2). The diffusons D̃ω describe the diffusive
motion of electrons across the sample. As depicted in figure 5,
they are represented diagrammatically by ladder diagrams in

Figure 6. Hikami boxes H1 (top) and H2 (bottom).

which the two Green’s functions are connected by any number
of parallel impurity lines. Analytically, this series of ladder
diagrams satisfies the integral equation

D̃ω(k̂, k̂′, q) = U2(k̂− k̂′)+
1
�

∑
k̂′′

D̃ω(k̂, k̂′′, q)G
R
εF
(k)

× G
A
εF−ω

(k− q)U2(k̂′′ − k̂′), (33)

where we leave implicit that the two Green’s functions are
evaluated for the impurity potentials Vi and V ′i , respectively,
while impurity lines connecting them represent the correlators
ViV ′i . For convenience, we use the shorthand notation

U1(k̂− k̂′) =
�

2

(
|〈k|Vi|k′〉|2 + |〈k|V ′i |k

′〉|2
)
, (34)

U2(k̂− k̂′) = �〈k|Vi|k′〉〈k′|V ′i |k〉. (35)

Solving the integral equation equation (33), as described in
appendix A.1, results in

D̃ω(q) '
h̄/(2πν0τ

2)

Dq2 − iω + (〈U1〉/〈U2〉 − 1)/τ
, (36)

which is valid for small changes 〈U1〉 − 〈U2〉 in the impurity
configuration. Here, we have used the notation 〈Ui〉 ≡ 〈Ui(k̂−
k̂′)〉k̂′ for the angular average, evaluated at k = kF. Explicitly
evaluating these averages for our model, we obtain

〈U1〉 =
h̄

2πν0

(
1
τ c +

1

2τ d +
1

2τ c,d⊥

)
(37)

and

〈U2〉 =
h̄

2πν0

(
1
τ c +

1

2τ c,d⊥

)
. (38)

In equation (36), we also introduced the scattering rate 1/τ =
(2π/h̄)ν0〈U1〉.

In the fluctuation diagrams, see figure 4, the diffusons
are connected by Hikami boxes, shown in figure 6, which
contain the current vertices. Evaluating them in the standard
manner [20], one obtains

H1 = 2H2 =
4π

h̄3 Dν0τ
2. (39)

For the benefit of the reader, we sketch their calculation in
appendix A.2.
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We can now combine these building blocks and obtain the
correlation function of the conductance. Relating conductivity
and conductance through Ohm’s law, G = (Ly/Lx)σ , we
obtain from equations (31), (32), (36) and (39)

1G(ξ)1G(ξ ′) =
2βg2

π4

(e2

h

)2

×

∑
m

{
Re
(

1
λm +1λ

)2

+ 2

∣∣∣∣ 1
λm +1λ

∣∣∣∣2
}
. (40)

Here, we use the abbreviations m = {mx,my} and

λm = (mx)
2
+ (my Lx/Ly)

2, (41)

1λ = −
L2

x

Dπ2

[
iω +

1
τ
(1− 〈U1〉/〈U2〉)

]
. (42)

The boundary conditions of the system, namely perfect
leads and hard walls at the transverse boundaries, imply
the quantization qα = mαπ/Lα (α = x, y) with mx =

{1, . . . ,∞} and my = {0, 1, . . . ,∞}. We note that both the
Hikami boxes and the diffusons depend separately on the
microscopic details of the sample, as encapsulated in the
scattering rates and the density of states. Nevertheless, in the
conductance–conductance correlation function, equation (40),
these quantities cancel against each other such that all
microscopic details enter only through 1λ.

4.3. Results

In order to see the influence of the quantum coherent
processes, we first review [20, 24–28] the variance of the

conductance, (1G)2 = [G− Ḡ]2, describing the average
magnitude of the universal conductance fluctuations. From
equation (40) (with 1λ = 0) we obtain

(1G)2 =
6β

π4

(
ge2

h

)2∑
m

1

(λm)2
= βη

(
ge2

h

)2

, (43)

where η ' 1/15 for Lx � Ly, and η ≈ 0.1 for a square device.
Hence the amplitude of the fluctuations depends on the sample
geometry but is universal in the sense that it is independent
of the electron concentration and the microscopic type or
configuration of disorder. Comparing the amplitude of the
fluctuations with the average conductance yields√

(1G)2

Ḡ
=

2I0
√
βη

J0

Lx

Ly

1
kFlc

, (44)

again assuming that charged scatterers, cf equation (14),
predominantly limit the conductance. For a square device

this yields
√
(1G)2/Ḡ ≈ 0.35/(kFlc). This indicates that,

for charged impurities, the quantum coherent processes are
more important at large Fermi wavelengths and high impurity
concentrations (albeit such that our underlying assumption of
kFlc � 1 still holds).

Switching the decorating molecules affects the correla-
tion function 1G(Vi)1G(V ′i ), see equation (40), via a change

Figure 7. The normalized correlation function

C(Vi,V ′i ) = 1G(Vi)1G(V ′i )/(1G)2, plotted as a function of 1λ.

of the diffuson pole:

1λ =
L2

x

Dπ2

〈U1〉 − 〈U2〉

〈U2〉

1
τ
'

L2
x

Dπ2

1

2τ d

' (2α2I0J2/J0) (Lx/Ly)δNi (kF/lc) (d̃/e)
2, (45)

see equation (42). Note that this depends linearly on
the number of switches δNi and is independent of the
electron concentration. Again, we assume that the monopole
contribution of the charged impurities predominantly limits
the conductivity, and thus (〈U1〉 − 〈U2〉)/〈U2〉 is a
small quantity. The prefactor can be approximated by
(2α2I0J2/J0) ≈ 0.028, see equation (16). The dependence of
1G(Vi)1G(V ′i ) on 1λ can be easily evaluated numerically
and is depicted in figure 7. One finds that the correlation
function varies linearly with 1λ for small modifications of
the microscopic impurity configuration. We thus conclude that
the typical variation of the conductance with switching state
is given by√[

G(Vi)− G(V ′i )
]2√

(1G)2
' χ

√
δNi
√

kFlc
(kFd̃/e), (46)

where we lumped the numerical prefactors into χ =

2α
√
(I0J2/J0)Lx/Ly which is χ ≈ 0.23 for a square device.

Note that equation (46) depends linearly on the dipole moment
d. In contrast to the Boltzmann interference result, this also
holds for dipoles which are oriented parallel to the graphene
sheet, d = d‖, as well as for molecular switches which are
pure dipole scatterers. We also note that, in the Boltzmann
limit, the changes of the conductance scale with δni and
are larger for clean devices and large electron densities, see
equation (29). In contrast, in the mesoscopic regime larger
impurity concentrations ni and small Fermi wavelengths are
favorable for the effect of interference, and the changes are
proportional to

√
δNi, cf equation (46).

5. Summary and conclusions

Due to its two-dimensional nature, graphene layers are
attractive substrates for functionalization by molecular
switches. In this paper, we considered how the conductance

7
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of a graphene layer depends on the switching state of
the decorating molecules. Specifically, we considered the
spiropyran–merocyanine system where the two switching
states affect the charge carriers via large changes in the
electric dipole moment. We find that the sensitivity of the
electronic properties of the graphene layer to the switching
state is particularly strong when quantum interference is
relevant in the transport process. This strong sensitivity is
expressed as a linear dependence on the change in dipole
moment, which contrasts with a quadratic dependence when
quantum interference is ineffective.

Within a quasiclassical Boltzmann approach, quantum
interference has to emerge from scattering on a single
impurity. In this case, we find a strong sensitivity to the
switching state when the molecular switches cause scattering
of carriers both through a monopolar contribution (e.g.
due to charge transfer between graphene and the molecular
switches) as well as a dipolar contribution. Specifically,
the interference contribution involving the corresponding
scattering amplitudes is nonzero whenever the molecular
dipole moment has a component perpendicular to the
graphene layer.

In mesoscopic samples, interference contributions to the
conductance (universal conductance fluctuations) are well
known to be sensitive to small changes in the impurity
potential. This provides an alternative mechanism for how the
conductance is affected by the molecular switching state. We
find that again these quantum interference contributions result
in a switching-induced change of the conductance which is
linear in the change of the molecular dipole moment, albeit
with a random sign.

The quasiclassical and the mesoscopic regimes differ
in the dependence of the sensitivity on other parameters
such as the doping level of graphene or the coverage with
molecular switches. In the Boltzmann limit high densities
of electrons and switches, but otherwise clean samples, are
favorable for the readout of the switching state. Assuming
a perpendicular dipole moment and charge transfer to the
graphene, we estimate that a density of switches δni ≈ 5 ×
1010 cm−2 is required for changing the conductivity by 1%,
see equation (29). (Here we assume n ≈ 1012 cm−2, l ≈
50 nm and d ≈ 10 D.) The mesoscopic contribution becomes
particularly important in samples with low carrier density. In
this regime, the conductance of mesoscopic samples (here
assuming Lx = Ly ≈ 5 µm) would be modified by 10% of
the UCF even for moderately low densities of switches δni ≈

109 cm−2, as indicated by equation (46).

Acknowledgments

We acknowledge discussions with J P Rabe which
triggered our interest in dipolar switches on graphene
and are grateful for financial support by the Deutsche
Forschungsgemeinschaft through SFB 658.

Appendix A. Details of the calculation

In this appendix we sketch the derivations of the diffuson and
the Hikami boxes, which are used in section 4. We follow

standard procedures [20], which have also been applied to the
study of graphene [24–28].

A.1. Diffuson

The ladder series for the diffuson, equation (33), is depicted
in figure 5. For low temperatures we consider only processes
at the Fermi energy, yielding∫

dεk ν(εk)Ḡ
R
εF
(k)ḠA

εF−ω
(k− q) '

fω(k̂, q)
〈U1〉

. (A.1)

Here we use the abbreviation

fω(k̂, q) = 1+ iωτ − (vτ)2(q · k̂)2 − ivτq · k̂, (A.2)

where the approximation holds in the limit of small ω and
q. Hence, the ladder series for the diffuson, equation (33),
becomes

D̃ω(k̂, k̂′, q) = U2(k̂− k̂′)

+
1
〈U1〉
〈D̃ω(k̂, k̂′′, q)fω(k̂′′, q)U2(k̂′′ − k̂′)〉k̂′′ , (A.3)

cf, for example, the derivation in [20]. First we average over k̂
in order to obtain D̃ω(k̂′, q) ≡ 〈D̃ω(k̂, k̂′, q)〉k̂ which satisfies
the integral equation

D̃ω(k̂′, q) = 〈U2〉

+
1
〈U1〉
〈D̃ω(k̂′′, q)fω(k̂′′, q)U2(k̂′′ − k̂′)〉k̂′′ . (A.4)

We approximate

D̃ω(k̂′, q) ' D̃ω(q)+ 2k̂′ · 〈k̂′D̃ω(k̂′, q)〉k̂′ , (A.5)

and introduce the shorthand D̃ω(q) ≡ 〈D̃ω(k̂′, q)〉k̂′ . Then,

averaging over k̂′ results in

D̃ω(q) = 〈U2〉 + D̃ω(q)
〈U2〉

〈U1〉

(
1+ iωτ −

(vτq)2

2

)
− ivτq · 〈k̂′D̃ω(k̂′, q)〉k̂′ . (A.6)

Multiplying equation (A.5) with k̂′ and then averaging over k̂′

yields

〈k̂′D̃ω(k̂′, q)〉k̂′ = γ (〈k̂
′D̃ω(k̂′, q)〉k̂′ − iq(vτ/2)D̃ω(q)), (A.7)

with γ = 〈k̂ · k̂′U2(k̂− k̂′)〉k̂′/〈U1〉. Multiplication of the last
line by q yields

q · 〈k̂′D̃ω(k̂′, q)〉k̂′ = −i
vτq2

2
γ

1− γ
D̃ω(q). (A.8)

Plugging this result into equation (A.6) brings after
straightforward algebra equation (36) for the diffuson D̃ω(q),
as stated in the main text.
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A.2. Hikami boxes

We evaluate the Hikami boxes, labeled H1 and H2,
respectively, which are depicted in figure 6. Approximating
kFl � 1 and ωτ � 1, three diagrams contribute to leading
order to the Hikami boxes Hi = H(a)

i + H(b)
i + H(c)

i , with
i = 1, 2.

The diagram H(a)
2 consists of two retarded and two

advanced Green’s functions with momentum k. In contrast to
the evaluation of the diffuson, the Hikami boxes are rather
short-ranged and we can neglect the q dependences. Because
of the vertex corrections a factor τtr/τ comes with each of the
current vertices so that we obtain

H(a)
2 =

(
ev
τtr

τ

)2∑
k

cos2ϑ(ḠR
εF
(k)ḠA

εF
(k))2

= 2π
(

ev
τtr

τ

)2
ν0τ

3, (A.9)

assuming (U1 − U2) to be small.
The diagram H(b)

2 consists of twice two retarded and
one advanced Green’s function with the same wavevector,
respectively, and an additional impurity cross, so that

H(b)
2 =

(
ev
τtr

τ

)2∑
k

cos2ϑ(ḠR
εF
(k))2ḠA

εF
(k)

×

∑
k′

ni|Vq|
2 1+ cosϑ ′

2

(
ḠR
εF
(k′)

)2
ḠA
εF
(k′)

= −
1
2 H(a)

2 . (A.10)

Here we have replaced the sum by an integral and used that
the integration over two retarded and one advanced Green’s
function yields a factor −i(τ )2 while the extra factor |Vq|

2

contributes a factor 1/τ .
The calculation of H(c)

2 follows similar lines, but here
the two current vertices are evaluated at different wavevectors
with the consequence that the extra |Vq|

2 yields a factor
(1/τ − 1/τtr), resulting in

H(c)
2 =

(τtr

τ
− 1

)
H(a)

2 . (A.11)

In a similar manner the other type of Hikami boxes, H1,
is evaluated. One finds H(a)

1 = H(a)
2 and H(b)

1 = H(c)
1 = H(c)

2 .
Combining these contributions yields equation (39) of the
main text for the Hikami boxes.
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