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Abstract. The dynamics of the surface plasmon in laser-driven metallic nanoparticles is described by means
of a master-equation formalism. Within the Markov approximation, the dynamics is studied for different
regimes ranging from weak excitation in photoabsorption experiments to strong excitation in pump-probe
spectroscopy. It is shown that two collective levels are sufficient to describe the dynamics of the surface
plasmon. On this basis, we predict the appearance of sidebands in the absorption spectrum of the probe
laser field in pump-probe experiments.

PACS. 78.67.Bf Nanocrystals and nanoparticles – 73.20.Mf Collective excitations – 71.45.Gm Exchange,
correlation, dielectric and magnetic response functions, plasmons

1 Introduction

A surface plasmon excited by a pump laser in a metal-
lic nanoparticle decays on the scale of tens of femtosec-
onds by heating the electron system [1,2]. The equili-
bration with the ionic lattice occurs on the much longer
timescale of a few picoseconds. This electronic relaxation
has been thoroughly studied by means of pump-probe ex-
periments [3–6]. Present femtosecond resolution experi-
ments allow to concentrate on the initial dynamics of the
electronic degrees of freedom [7–9]. While the dynamics
on the picosecond scale has been analysed with quasi-
equilibrium theories assuming the thermalisation of the
electron gas as a whole [10], much less is known for the
initial dynamics. It is precisely this initial regime on which
we focus in this work.

For the description of the initial dynamics of the elec-
tron gas, before it has thermalised after an excitation by
a laser pulse, it is appropriate to decompose the electron
system into two parts [11–13]. The main degree of freedom
describes the surface plasmon and refers to the centre of
mass of the electron gas. The remaining degrees of free-
dom consist of the relative coordinates. If their number
is sufficiently large, this electronic subsystem behaves to
a good approximation as a heat bath to which one can
attribute an effective temperature.

The surface plasmon coupled to the relative coordi-
nates and driven by an external field is reminiscent of the
situation encountered in quantum optics, where a laser-
driven atom is coupled to an environment consisting of
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the electromagnetic field modes [14]. This analogy leads
us to predict the appearance of sidebands in the light ab-
sorption of a weak probe beam while the nanoparticle is
illuminated by a strong pump laser. This effect should be
experimentally observable and offers a possibility to study
the surface plasmon dressed by photons of the pump laser
field.

We start in the next section by introducing the model
of a laser-driven nanoparticle. In Section 3, a master-
equation description for the dynamics of the electronic
centre of mass coupled to the relative-coordinate system
is developed. We will argue that the Markov approxima-
tion applies in our situation. In order to make progress,
we restrict in Section 4 our description of the surface plas-
mon to its two lowest eigenstates and discuss the resulting
dynamics. The regime of validity of the two-level approxi-
mation will be discussed in the appendix. In Section 5, the
model parameters for typical experimental situations are
estimated. Finally, we present in Section 6 our prediction
of sidebands in the absorption spectrum of a weak probe
beam impinging on a nanoparticle subject to a pump laser.

2 Model of a laser-driven nanoparticle

The electron gas formed by the N valence electrons of the
metallic nanoparticle is described by the Hamiltonian

H =
N∑

i=1

[
p2

i

2me
+ U(|ri|)

]
+

e2

2

N∑

i,j=1
(i�=j)

1
|ri − rj | , (1)
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where ri is the position of the ith electron. The single-
particle confining potential U represents the interaction
of the electrons with the ionic background which within
the jellium model is approximated by a uniformly charged
sphere of radius a [2]. As a function of the radial coordi-
nate, this central potential is harmonic for |r| < a and
Coulomb-like for |r| > a.

For our purposes it is useful to express the Hamilto-
nian (1) in terms of the centre-of-mass and relative coor-
dinates as [11,13]

H = Hcm + Hrel + Hc . (2)

For small centre-of-mass displacements, Hcm is well
described in terms of the usual ladder operators b† and
b by the harmonic oscillator Hamiltonian

Hcm = �ω̃Mb†b (3)

with a frequency

ω̃M = ωM

√
1 − Nout

N
. (4)

Here, ωM = (4πnee
2/3me)1/2 is the classical Mie frequen-

cy which depends on the charge e, the mass me and the
bulk density ne of the electrons. The spill-out effect [2],
which accounts for the fact that a fraction Nout/N is found
outside the nanoparticle, reduces the electron density and
thus leads to a redshift of the plasmon frequency from the
Mie frequency to ω̃M. Except for extremely small clusters,
anharmonicities yield negligible corrections to (3) and are
thus disregarded here [15].

Within the mean-field approximation, the Hamiltonian
for the relative coordinates reads

Hrel =
∑

α

εαc†αcα , (5)

where εα are the eigenenergies in the effective mean-field
potential V and c†α (cα) are the creation (annihilation) op-
erators associated with the corresponding one-body eigen-
states |α〉. Numerical calculations within the local density
approximation show that, for the purpose of analytical cal-
culations, V can in general be approximated by a step-like
potential at the surface of the nanoparticle [12,13].

The linearised coupling Hamiltonian between the cen-
tre-of-mass and relative-coordinate systems can be writ-
ten as

Hc = Λ
(
b† + b

)∑

αβ

dαβc†αcβ , (6)

where the coupling strength Λ = (�meω
3
M/2N)1/2. The

matrix element dαβ between two eigenstates of the un-
perturbed mean-field problem appearing in (6) is for a
spherical hard-wall potential simply given by the dipole
matrix element 〈α|z|β〉 [12]. Here, we have assumed that
the surface plasmon oscillates in the z direction. The sum
of (6) has to be understood with a low-energy cutoff since
the electron-hole excitations of low energy do not couple
to the surface plasmon [13,16]. This cutoff energy has been

estimated in [17] to be of the order of 3/5 of the Fermi
energy for the case of Na nanoparticles.

The decomposition (2) is reminiscent of the well-stu-
died case where the degree of freedom of interest (the sur-
face plasmon in our case) is weakly coupled to a reservoir
with many degrees of freedom (the relative coordinates).
Interestingly, it can be shown that it is sufficient to have
about N = 20 conduction electrons to define a proper
environment for the surface plasmon [17]. Since the elec-
tronic system is coupled to phonons, a time dependence
of the electronic temperature T may have to be taken
into account. However, the physical parameters describ-
ing the dynamics of the surface plasmon are only weakly
temperature dependent [13], and thus we can neglect the
implicit time dependence of those parameters when T is
much smaller than the Fermi temperature of the system.

If the nanoparticle is subject to a laser excitation, we
have to add the coupling HF(t) between the electrons and
the laser field to the Hamiltonian (2). Excitation frequen-
cies ωL close to the plasmon resonance are located in the
visible range, and therefore the electromagnetic field has
a wavelength much larger than the size of the nanopar-
ticle. This external electrical field can be considered as
spatially homogeneous, E(t) = E0 cos (ωLt)ez, and thus it
only couples to the electronic centre of mass. In the dipolar
approximation, the interaction between the driving field
and the centre-of-mass system reads

HF(t) = (b† + b)�ΩR cos (ωLt) . (7)

The Rabi frequency ΩR is given by

�ΩR = eE0N� , (8)

where

� =
√

�

2Nmeω̃M
(9)

is the characteristic length associated with the harmonic
oscillator (3).

Different physical regimes can be attained according to
the relative values of the typical energies �ωM, aΛ, �ΩR,
and the Fermi energy of the metal.

3 Centre-of-mass density matrix

In the first part of this section we consider the free evo-
lution of the centre of mass without the external driving
field. The driving term (7) will be added in the second
part.

3.1 Free evolution of the centre of mass

The evolution of the whole system in the absence of the
electromagnetic field (HF = 0) can be expressed in terms
of the total density matrix W (t). Assuming that the cou-
pling (6) is a small perturbation, we write the time evolu-
tion of the density matrix as

˙̃W (t) = − i

�

[
H̃c(t), W̃ (t)

]
, (10)
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where the tilde denotes operators in the interaction picture
with respect to the uncoupled Hamiltonian Hcm + Hrel.

As we are only interested in the dynamics of the centre
of mass, we trace out the relative coordinates to obtain
the reduced density matrix ρ = TrrelW which obeys the
equation of motion

˙̃ρ(t) = − i

�
Trrel

[
H̃c(t), W (0)

]

− 1
�2

∫ t

0

ds Trrel
[
H̃c(t),

[
H̃c(s), W̃ (s)

]]
. (11)

In dissipative quantum dynamics the environment is
thought of as being infinite and remaining in thermal equi-
librium at all times, i.e., its intrinsic properties like the
temperature do not change as a consequence of its cou-
pling to the system [18]. In order to satisfy this condition,
we have to assume that the internal equilibration of the
relative degrees of freedom after an excitation occurs suf-
ficiently fast. This last assumption is not equivalent to
the thermalisation of the whole electron gas, which can
only occur when the plasmon has decayed. The internal
thermalisation hypothesis can be justified a posteriori by
checking that the timescale of the temperature change of
the relative degrees of freedom is larger than all the other
relevant timescales.

Restricting ourselves to the lowest order in the corre-
lations between system and environment in (11), the weak
coupling limit that we assume to be valid allows to write
(for details, see Chap. 4 in [14])

W (t) ≈ ρ(t) ⊗ ρrel (12)

at any time t � 0. Here,

ρrel =
e−β(Hrel−µN)

Ξ
(13)

represents the density matrix of the environment in the
grand-canonical ensemble, i.e., we ignore for this purpose
the finite nature of the electron gas. Ξ is the grand-ca-
nonical partition function at the inverse temperature β =
(kBT )−1 and µ is the chemical potential.

As a consequence of the structure of the coupling Hc,
the fact that dαα = 0 due to the dipole selection rules [12],
and the assumption of a factorising initial condition, the
first term on the right-hand side of (11) vanishes. With
the weak-coupling limit, (11) then reads

˙̃ρ(t) � − 1
�2

∫ t

0

ds Trrel
[
H̃c(t),

[
H̃c(s), ρ̃(s) ⊗ ρrel

]]
.

(14)
The trace over the electronic environment (5) yields

˙̃ρ(t) =
1
�2

∫ t

0

dτ C(τ)

×
[
b̃†(t) + b̃(t), ρ̃(t − τ)

(
b̃†(t − τ) + b̃(t − τ)

)]
+ h.c.

(15)

The correlation function of the environment C(τ) is
defined as

C(τ) = Λ2
∑

αβ

[1 − f(εα)] f(εβ) |dαβ |2 eiωαβτ , (16)

and contains the relevant information on the time evolu-
tion of the relative-coordinate degrees of freedom. In (16),
f(ε) = [eβ(ε−µ) + 1]−1 is the Fermi function and ωαβ =
(εα − εβ)/�.

For not too small nanoparticles, the electronic environ-
ment described by the Hamiltonian (5) contains a large
number of degrees of freedom, and its spectrum is there-
fore quasi-continuous. Thus, the exponentials contributing
to the correlation function (16) very efficiently suppress
the sum for not too small τ . Indeed, for zero temperature
it is shown in [17] that the typical correlation time 〈τcor〉
of the environment in terms of the surface plasmon re-
laxation time τpl is given by 〈τcor〉/τpl ≈ (kFa)−1, where
kF is the Fermi wavevector. For nanoparticles with a ra-
dius larger than approximately 1 nm, one typically finds
τpl to be of the order of or larger than 10〈τcor〉. The effect
of finite temperatures on this estimate is expected to be
weak [13].

For sufficiently large nanoparticles, we can therefore
work within the Markov approximation [14], where the
density matrix ρ in (15) can be assumed to vary on much
longer timescales than the decay time of the correlation
function C(t). The integral in (15) can then be carried out.
After returning to the Schrödinger picture, and within the
secular approximation [14], where highly oscillating terms
are neglected, we finally obtain the master equation for
the reduced density matrix of the centre-of-mass degree
of freedom in the absence of the external driving field

ρ̇(t) = − iωsp

[
b†b, ρ(t)

]

− γ−
2

[
b†bρ(t) + ρ(t)b†b − 2bρ(t)b†

]

− γ+

2
[
bb†ρ(t) + ρ(t)bb† − 2b†ρ(t)b

]
. (17)

Here, we have defined

γ± =
2π

�2
Λ2

∑

αβ

[1 − f(εα)] f(εβ) |dαβ |2 δ (ω̃M ± ωαβ) ,

(18)
while the renormalised surface plasmon frequency reads

ωsp = ω̃M − δ (19)

with

δ =
2
�2

Λ2P
∑

αβ

[1 − f(εα)] f(εβ) |dαβ |2 ωαβ

ω2
αβ − ω̃2

M

, (20)

where P denotes the Cauchy principal value.
The expressions for γ± and δ entering (17) have sim-

ple physical interpretations [13]: using Fermi’s golden rule,
γ+ and γ− are related to the lifetime τn = γ−1

n of the
nth excited state of the harmonic oscillator describing the
centre-of-mass system by

γn = nγ− + (n + 1)γ+ , (21)
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while δ is the frequency shift due to the interaction of the
system with the electronic environment. As the surface
plasmon corresponds to the first excited state of the har-
monic oscillator, its lifetime is given by τpl = γ−1

1 . We have
evaluated these important and experimentally relevant
quantities in references [12,13] as a function of the size
and temperature of the nanoparticle. The shift δ is posi-
tive, and thus we have a redshift of the surface plasmon
frequency in addition to the redshift induced by the spill-
out effect described by (4). This redshift of the surface
plasmon frequency is due to the coupling of the centre-of-
mass system to the electronic environment. It is analogous
to the Lamb shift known in atomic physics [14,19].

3.2 Effect of the laser

We now consider the role of an external driving field whose
interaction with the centre-of-mass coordinate is described
by the time-dependent Hamiltonian HF(t) defined by (7).
In a first step, we neglect the coupling Hamiltonian Hc

between the centre of mass and the electronic environ-
ment during the excitation process. Thus, we do not have
any relaxation mechanism for the surface plasmon excita-
tion, and its frequency (19) remains unrenormalised. As a
consequence, we have

ρ̇(t) = −iω̃M

[
b†b, ρ(t)

]− iΩR cos (ωLt)
[
b† + b, ρ(t)

]
(22)

which describes the standard time evolution of a harmonic
oscillator driven by an external monochromatic field.

Assuming that the driving does not influence the dis-
sipation of the surface plasmon excitation, we can add
the contributions from Hc, i.e., the dissipative part of
the reduced density matrix described by the master equa-
tion (17), and from HF(t) (see Eq. (22)) independently.
This is justified provided that the memory time of the en-
vironment 〈τcor〉 is much smaller than Ω−1

R which is deter-
mined by the coupling to the driving field [14]. The matrix
representation of the master equation in the harmonic os-
cillator basis is then that of a driven damped harmonic
oscillator,

ρ̇nm = − iωsp(n − m)ρnm

− γ

(
n + m

2
ρnm −

√
(n + 1)(m + 1)ρn+1,m+1

)

− iΩR cos (ωLt)
(√

nρn−1,m +
√

n + 1ρn+1,m

− √
mρn,m−1 −

√
m + 1ρn,m+1

)
. (23)

In this equation, we have neglected γ+ as compared to γ−
and set γ = γ− which corresponds to the Landau damping
linewidth. Indeed, it is easy to show from (18) that the rate
γ+ is related to γ− through the detailed-balance relation
γ+ = e−β�ω̃Mγ−. We have γ+ � γ− for temperatures up
to a few thousand degrees since �ω̃M is of the order of
several eV.

4 Two-level system approach

In order to obtain from (23) the time evolution of the
centre-of-mass degree of freedom under the influence of
the external driving field and the coupling to the relative-
coordinate system, it is useful to introduce an appropri-
ate simplification. The centre-of-mass system, which has
been modelled as a harmonic oscillator described by the
Hamiltonian (3), can be truncated to a two-level system.
The applicability of such an approximation is discussed
in the appendix but can be motivated as follows: Except
for a very strong driving field, the harmonic oscillator
states above the first excited state are not significantly
populated. Furthermore, the detuning between the fre-
quency of the laser and the resonance frequency of the
system plays in favour of the two-level description. More-
over, there exist additional damping mechanisms which
are not included in our model which tend to depopulate
the higher states, like the ionisation of an electron via the
double-plasmon state [12] or the radiation damping [2].
In the case of pump-probe experiments on noble-metal
nanoparticles embedded in a dielectric medium, interac-
tions with the surrounding matrix provide further decay
channels, e.g. via coupling to phonons, localised states,
surface states, etc. As the second collective level, the so-
called double plasmon, has a width which is significantly
larger than the one of the simple surface plasmon, it is
justified to neglect all excited levels but the first one. In
addition, the double-plasmon state has not been clearly
identified experimentally, even though indirect observa-
tions of such a state have been reported in experiments
on charged sodium clusters in vacuum [20].

Writing the master equation (23) for the two collective
states |0〉 and |1〉, introducing the new variables

ρ̂nm = ρnmeiωL(n−m)t (24)

and keeping only the terms which significantly contribute
close to the resonance ωL ≈ ωsp (rotating wave approxi-
mation [14]), one obtains

˙̂ρ11 = i
ΩR

2
(ρ̂10 − ρ̂01) − γρ̂11 , (25a)

˙̂ρ01 = −iδLρ̂01 − i
ΩR

2
(ρ̂11 − ρ̂00) − γ

2
ρ̂01 . (25b)

Here, δL = ωL − ωsp is the detuning between the laser
and the resonance frequency, and we have the conditions
ρ̂00 + ρ̂11 = 1 and ρ̂∗10 = ρ̂01. It is often useful to define a
scaled detuning ∆ = δL/γ and the saturation parameter

s = 2
(

ΩR

γ

)2

(26)

which is a measure of the ratio between the field intensity
and the damping strength. As a function of these param-
eters, whose experimentally relevant values are discussed
in the next section, the stationary solutions of the Bloch
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equations (25) are [14]

ρst
11 =

s

2(1 + s + 4∆2)
, (27)

ρst
01(t) = eiωLt 2∆ + i

1 + s + 4∆2

(s

2

)1/2

. (28)

The occupation probability ρst
11 of the first excited state of

the centre-of-mass system increases with increasing satu-
ration parameter s and decreases with increasing detun-
ing ∆ between the frequency of the laser field ωL and
the resonance frequency ωsp. The coherence ρ01 deter-
mines the mean centre-of-mass coordinate according to
〈Z〉 = 2�Re(ρ01) where � has been defined in (9). The am-
plitude of the oscillation of 〈Z〉 increases with increasing
s up to s = 1 + 4∆2, while it decreases for larger s and
approaches zero in the limit of infinite s.

For zero detuning, δL = 0, (25) can be solved analyti-
cally. Assuming that the system is initially in its ground
state, ρ(0) = |0〉〈0|, the full time dependence of the den-
sity matrix is determined by [21]

ρ11(t) =
s

2(1 + s)

{
1 − e−3γt/4

[
cosh

(
γt

4
√

1 − 8s

)

+
3√

1 − 8s
sinh

(
γt

4
√

1 − 8s

)]}
(29)

for the population of the excited state, and

ρ01(t) =
ieiωspt

1 + s

(s

2

)1/2
{

1 − e−3γt/4

[
cosh

(
γt

4
√

1 − 8s

)

+
1 − 2s√
1 − 8s

sinh
(

γt

4
√

1 − 8s

)]}
(30)

for the coherence.
Figure 1a shows the population (29) of the excited

state ρ11 as a function of time for various values of the
saturation parameter and without detuning (δL = 0). For
s � 1/8, ρ11 monotonically increases as a function of time
to reach the stationary value given in (27). For s > 1/8,
the centre-of-mass system exhibits damped Rabi oscilla-
tions and reaches the steady state on the timescale ∼γ−1.
If the laser field is turned off after a certain time τ , the
population of the excited state relaxes to zero according to

ρ11(t) = ρ11(τ)e−γ(t−τ) , (31)

while the coherence of the system decays as

ρ01(t) = ρ01(τ)e−(γ/2−iωsp)(t−τ) . (32)

One can see in Figure 1 that even for a strong saturation
parameter, the steady state regime is reached for times
t � 8γ−1.

In Figure 1b, we show the mean centre-of-mass posi-
tion 〈Z〉 as a function of time. For s � 1, 〈Z〉 oscillates
regularly, while its amplitude increases monotonically as
a function of time. In the case of strong saturation param-
eter s 	 1, it is clear from (30) that the dynamics of the
centre of mass is determined by the beating between the
two oscillating contributions at the frequencies ωsp and
ΩR for times shorter than a few γ−1 (see the solid line in
Fig. 1b).

Fig. 1. (a) Population of the excited state ρ11 (29) as a func-
tion of γt for different values of the saturation parameter s and
for δL = 0. (b) Mean centre-of-mass coordinate 〈Z〉 for s = 0.1
and 100. In the figure, ωsp/γ = 30 and δL = 0.

5 Saturation parameter

The results in the previous section show that the satu-
ration parameter (26) is decisive for the dynamics of the
surface plasmon excitation in the presence of an external
driving field. In typical photoabsorption experiments [1],
a weak laser field excites an ensemble of nanoparticles. For
a laser power of a few mW, the resulting electric field is of
the order of 103 Vm−1, and thus the Rabi frequency (8)
is no more than several µeV. The order of magnitude of
the surface plasmon linewidth in metallic nanoparticles is
100meV, so that one finds s � 1. In that case we are in
the linear-response regime, i.e., the power absorbed by the
nanoparticle is proportional to the intensity of the laser.

On the contrary, in pump-probe experiments, the na-
noparticles are excited by an ultrashort pump laser pulse
of high intensity. As a typical example, we consider the
experiments of [7] on silver nanoparticles with an average
radius a = 3.25 nm embedded in a glass matrix. These
nanoparticles present a broad absorption spectrum around
the resonance frequency ωsp = 2.85 eV. According to time-
dependent local density approximation calculations [12],
the width of this resonance is approximately γ = 50 meV.
The estimation of the Rabi frequency (8) requires the
knowledge of the electrical field E0 of the laser. This quan-
tity can be inferred from the energy ū = ε0εrE

2
0cτ/2 of a

laser pulse divided by its cross section [7], where c is the
speed of light, ε0 the vacuum permittivity, εr � 6 for glass,
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and τ the duration of the pulse (typically 100 fs). With
ū = 1 Jm−2, one finds E0 = 3.6 × 107 V m−1. The Rabi
frequency is therefore ΩR � 0.38 eV, which results in a
very large saturation parameter s � 100. Thus we are far
beyond the linear-response regime. Notice that the dura-
tion of the pump-laser pulse considered here corresponds
to γτ � 8. Thus, according to Figure 1, even for ultrashort
laser pulses the centre of mass can reach its steady state
before the end of the pulse.

6 Absorption spectrum of a weak probe beam

As it is shown in the appendix, the dynamics of the sur-
face plasmon is well described by a two-level system driven
by an external field and damped by its coupling to the
electronic environment. This is reminiscent of the well-
known situation in quantum optics, where a transition
between two levels of an atom is excited by a strong laser.
The concept of dressed levels [14,22], arising as coher-
ent superpositions of atom-photon states has proven to
be very useful to describe the coupled system, in particu-
lar when the driving is strong as compared to the damp-
ing. In the presence of a small detuning δL between the
pump laser field and the transition frequency of the two-
level system, the absorption spectrum of a second laser
acting as a weak probe contains sidebands. Interestingly,
in one of the sidebands the probe beam is damped by
absorption processes, while stimulated emission processes
amplify the probe beam in the other sideband. This phe-
nomenon has been observed experimentally for different
driven systems. Examples include the case of an optical
transition in sodium atoms [23] and a nuclear magnetic
hyperfine transition of a nitrogen-vacancy centre in dia-
mond [24].

In the present paper we focus on a surface plasmon ex-
citation driven by a strong laser field. This is a completely
analogous situation since the dynamics of the surface plas-
mon can be described by an effective two-level system
with a transition energy �ωsp, coupled to a pump laser
with frequency ωL. Without coupling (ΩR = 0), the basis
states are |0, Np + 1〉 and |1, Np〉 representing the plas-
mon in its ground and excited state with Np + 1 and Np

photons in the pump laser field, respectively. The energy
difference between those states is given by the detuning
�δL = �(ωL − ωsp) of the pump laser with respect to the
plasmon transition. The coupling by HF (Eq. (7)) leads
to a mixing of the basis states, giving rise to the dressed
plasmon levels with an energy splitting �Ω = �

√
Ω2

R + δ2
L,

where ΩR is the Rabi frequency (8). The dressed plasmon
levels |A(Np)〉 and |B(Np)〉 arise as superpositions of the
uncoupled basis states |0, Np + 1〉 and |1, Np〉 referring to
different photon numbers. In this doublet, we denote the
upper and lower dressed level by |A(Np)〉 and |B(Np)〉,
respectively.

Four optical transitions (see thick arrows in Fig. 2) are
allowed between dressed states corresponding to neigh-
bouring photon numbers because of the mixture of those
states with the ones of the uncoupled basis. Since the sta-
tionary populations of |A(Np)〉 and |B(Np)〉 are to a very

|0,N p

|1,N p − 1

|0,N p + 1

|1, N p

|B (N p − 1)

|A (N p − 1)

|B (N p )

|A (N p )

h̄δL

h̄δL

h̄Ω

h̄Ω

h̄ωL

ΩR = 0 ΩR = 0

Fig. 2. Scheme of the uncoupled (ΩR = 0) and dressed states
(ΩR �= 0). The four allowed optical transitions are indicated
by vertical thick arrows. See the text for details.

good approximation independent of Np, there is no peak
in the absorption spectrum of the weak probe beam at the
frequency ωL (see the two thick dashed arrows in Fig. 2).

For δL > 0, the upper dressed levels |A(Np)〉 have a
higher stationary population than the lower ones |B(Np)〉.
Therefore, a population inversion appears in the transition
|A(Np)〉 ↔ |B(Np−1)〉. This leads to a sideband at the fre-
quency ωL+Ω where the probe beam is amplified by stim-
ulated emission. For the transition |B(Np)〉 ↔ |A(Np−1)〉
the lower state has the higher population such that the
sideband at frequency ωL−Ω is of absorbing character. For
negative detuning δL < 0, when the pump laser frequency
is below the bare transition energy, the populations of the
dressed states are inverted. Now, the populations of the
upper dressed levels |A(Np)〉 are lower than the popula-
tions of the lower levels. In this case, the sideband at the
frequency ωL + Ω is absorbing while the probe beam is
expected to be amplified around the frequency ωL − Ω.

The width of the sidebands is of the order of γ. In the
so-called secular limit Ω 	 γ, the sidebands are there-
fore well resolved and should be observable experimen-
tally. Within this limit, it is straightforward to calculate
the stationary populations of the dressed states [22]. For
the case of a resonant pump laser δL = 0, all the dressed
states have the same populations. Therefore, to zero order
in γ/Ω, the transitions do not influence the probe beam.
A more detailed discussion beyond the parameter regimes
considered here is given e.g. in references [23,25].

An experimental observation of the sidebands should
be feasible using an intense pump laser with s � 100 and
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a pulse duration longer than 100 fs. Then, the frequency
width of the pump pulse is below 0.01 eV, which allows to
adjust the detuning δL with high precision. With the Rabi
frequency ΩR � 0.38 eV and the linewidth γ = 50 meV
estimated in Section 5 for the experiments of reference [7],
one should be able to observe well resolved sidebands.

7 Conclusion

Using standard methods of quantum optics, we have stud-
ied the dynamics of the surface plasmon in metallic nano-
particles driven by an electrical field. Decoherence and
dissipation occur due to the coupling of the collective
excitation to the electronic environment constituted by
particle-hole pairs. Exploiting the Markovian character of
the environment [17], we have established the master equa-
tion for the surface plasmon density matrix.

We have shown that for realistic experimental situ-
ations, a model taking into account only the two lowest
levels is sufficient to describe the dynamics of the collective
degree of freedom. This allows to consider a large variety
of experimentally relevant situations, from photoabsorp-
tion to pump-probe setups.

Motivated by the analogy to quantum optics, we have
introduced collective states that are dressed by the pho-
tons of the pump laser. We predict that for strong driv-
ing, the dressed states will manifest themselves through
the appearance of sidebands in the absorption spectrum
of a weak probe laser. Depending on the detuning of the
pump laser, these spectral features have absorbing or am-
plifying character and their position relative to the pump
frequency is determined by the pump intensity. Although
these sidebands have so far not been observed in metal-
lic nanoparticles, their detection should be feasible with
modern experimental techniques, thereby offering access
to dressed surface plasmon states.
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cope program, from the BFHZ-CCUFB and from the Euro-
pean Union within the MCRTN program. G.W. thanks the
Deutsche Forschungsgemeinschaft for financial support during
the final phase of this work.

Appendix A: Three-level system

In this appendix we discuss the validity of a two-level ap-
proach for the description of the centre-of-mass system,
whose Hamiltonian is given in (3). For this purpose, we
consider a three-level system and study the conditions un-
der which its description can be safely reduced to that of
a two-level system. A phenomenological master equation
description of the plasmon in terms of three levels has been
discussed by Liau et al. [26]. In that case, however, three
levels where required to describe two-photon processes in
two-pulse second-order interferometry.

According to (21), the Landau damping linewidth for
the second level of the harmonic oscillator at zero tem-
perature is 2γ, where γ is the width of the first ex-
cited state [12,27]. In addition, two more mechanisms con-
tribute to the damping of the second level: (i) first order
processes which lead to the decay into the first level (like
the radiation damping [1,2] or the coupling to the sur-
rounding matrix [27]); (ii) second-order processes which
result in the direct decay into the ground state (like the
ionisation [12]). We denote the damping rates associated
with these two additional channels by γ1 and γ2, respec-
tively.

Within the Lindblad theory [28], these channels are
accounted for by adding

〈n|
∑

a=1,2

γa

2
(
2LaρL†

a − L†
aLaρ − ρL†

aLa

) |m〉 (33)

to the right-hand side of the master equation (23). We
choose the Lindblad operators as L1 = |1〉〈2| and L2 =
|0〉〈2|, which lead to transitions between the centre-of-
mass states |2〉 and |1〉, and |2〉 and |0〉, respectively. The
rotating-wave approximation then yields the following set
of coupled differential equations

˙̂ρ00 = − i
ΩR

2
(ρ̂10 − ρ̂01) + γρ̂11 + γ2ρ̂22 ,

˙̂ρ22 = − i
ΩR

2

√
2 (ρ̂12 − ρ̂21) −

(
2γ +

∑

a=1,2

γa

)
ρ̂22 ,

˙̂ρ01 = − iδLρ̂01 − i
ΩR

2

(
ρ̂11 − ρ̂00 −

√
2ρ̂02

)

− γ

2
ρ̂01 +

√
2γρ̂12 ,

˙̂ρ12 = − iδLρ̂12 − i
ΩR

2

[
ρ̂02 +

√
2 (ρ̂22 − ρ̂11)

]

− 1
2

(
3γ +

∑

a=1,2

γa

)
ρ̂12 ,

˙̂ρ02 = − 2iδLρ̂02 − i
ΩR

2

(
ρ̂12 −

√
2ρ̂01

)

− 1
2

(
2γ +

∑

a=1,2

γa

)
ρ̂02 . (34)

In order to obtain quantitative results, the two additional
damping constants in the following are assumed to be
equal, i.e., γ1 = γ2 = γadd. Figure 3 presents the sta-
tionary solution of (34) for the population of the second
excited state ρst

22 as a function of γadd for different values of
the detuning ∆ = δL/γ and a large saturation parameter
s = 100. It can be seen that for ∆ � 5, which corresponds
to the typical detuning in the pump-probe experiments of
reference [7], the probability to find the second collective
state occupied is less than 10% and is almost constant as
a function γadd. In the case ∆ < 5, ρst

22 decreases with
γadd but may be non-negligible. In this case, the assump-
tion of a two-level system to describe the surface plasmon
dynamics might be questionable.
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Fig. 3. Stationary solution of (34) for the population of the
second excited state as a function of the additional damping
constant γadd and for various values of the detuning ∆. In the
figure, the saturation parameter is s = 100.

For a rather small saturation parameter, i.e., for a weak
external laser field, the second collective state can be ne-
glected for the description of the surface plasmon dynam-
ics. In the case of a large saturation parameter, as it is for
example the case in pump-probe experiments, this sec-
ond collective state can be neglected for not too small
detuning between the frequency of the pump laser and
the resonance frequency.
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