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Proximity-induced gap in nanowires with a thin superconducting shell
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Coupling a normal-metal wire to a superconductor induces an excitation gap �ind in the normal metal. In
the absence of disorder, the induced excitation gap is strongly suppressed by finite-size effects if the thickness
DS of the superconductor is much smaller than the thickness DN of the normal metal and the superconducting
coherence length ξ . We show that the presence of disorder, either in the bulk or at the exposed surface of the
superconductor, significantly enhances the magnitude of �ind, such that �ind approaches the superconducting
gap � in the limit of strong disorder. We also discuss the shift of energy bands inside the normal-metal wire as
a result of the coupling to the superconducting shell.
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I. INTRODUCTION

The creation of heterostructures is a powerful technique to
combine effects that are otherwise hard to find in a single
material. A combination that attracted considerable theoreti-
cal and experimental attention over the past decade is the si-
multaneous occurrence of superconducting pairing, spin-orbit
coupling, and spin polarization in one-dimensional systems.
The broad interest in these systems stems from the possibility
that they may enter a phase of topological superconductiv-
ity. In a wire geometry, exponentially localized zero-energy
Majorana bound states may appear at the boundary between
topologically trivial and nontrivial regions, with potential
applications to topological quantum computation [1,2]. One
setting which has been proposed for observing these effects
relies on heterostructures consisting of a spin-orbit coupled
nanowire and a superconductor [3,4]. Corresponding experi-
ments have been performed in a variety of setups [5–9].

Recent experiments investigate nanowires proximitized by
thin superconducting shells made of Al, with a thickness
of the order of 10 nm [8–12]. Besides reducing the size of
the experimental setup, these thin shells are advantageous as
they reduce the magnetic flux through the superconductor
for fields parallel to the wire, as they allow one to exploit
charging energies for probing Majorana bound states [9], and
as they can be epitaxially grown on top of the nanowire, which
provides very clean interfaces between the two materials [10].
The latter is believed to be responsible for a hard proximity-
induced gap at zero magnetic field, which has been observed
in experiments [11].

In view of the typical length scales of the system, these
results may at first sight be rather surprising. Specifically,
the coherence length of Al is in the micrometer range, much
larger than the thickness of the superconducting coat. Thus
finite-size effects are expected to play a significant role. While
early theoretical studies focused on nanowire-superconductor
heterostructures for which finite-size effects can be neglected
[13–17], more recent studies have considered the impli-
cations of a finite thickness of the superconductor. For a
one-dimensional wire proximitized by thin two- or three-

dimensional superconducting coats, Reeg et al. suggested
that finite-size effects can be detrimental to the induced gap
[18–20]. Other works considered the effects of spatially vary-
ing electrostatic potentials. Under suitable conditions, this
may cause charge accumulation at the wire-superconductor
interface and thus promote the proximity effect by pushing
the wave function inside the nanowire closer to the interface
[21–23].

In experiments, the interface between the epitaxially grown
Al and the nanowire is expected to be relatively clean [10],
but the exposed Al surface might introduce a sizable amount
of disorder or surface roughness. In the literature, disorder has
been studied for wide superconductors coupled to nanowires,
with disorder present in the wire [24–31], the wire surface
[30,32], at the end of the wire [33], and inside the supercon-
ductor [30,34]. The recent study by Reeg et al. investigated
nanowires proximitized by a thin, disordered superconducting
layer, but found only a weak enhancement of the induced gap
in the presence of moderate disorder strengths [20]. In addi-
tion, these authors find a large energy-shift of the nanowire
bands due to coupling to the superconductor.

In this work, we investigate thin two- and three-
dimensional superconducting coats (S) coupled to a single-
mode nanowire (N), with a cross section as shown in Fig. 1.
Here, “thin” means that the thickness DS of the superconduct-
ing coat is small compared to the superconducting coherence
length. Our goal is to understand the consequences of the finite
thickness, the dimensionality, and the disorder (both in the
bulk and at the surface) of the superconductor. We go beyond
previous works in the literature [20] by using a continuum
model for the wire and the superconductor, so that—within the
limits imposed by a continuum description with quadratically
dispersing bands—the role of the device geometry can be
assessed in our calculations.

The remainder of our work is structured as follows. In
Sec. II, we give a qualitative discussion of the magnitude of
the induced gap and the induced band shift of the nanowire
bands. We introduce the continuum model used for the
detailed calculations in Sec. III. Section IV contains the
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FIG. 1. A normal-metal wire (N) of thickness DN coated by a
thin superconductor (S) of thickness DS (top). The sample width
is W . The bottom panel shows a cross section of the divide along
the xz plane, together with the relevant semiclassical scattering pro-
cesses. The left trajectory shows quasiparticles hitting the interface
away from normal incidence. In such a case, there is total internal
reflection because of the large wave-number mismatch between S
and N. Transmission through the NS interface takes place only if the
trajectory is close to normal incidence on the S side (center). Surface
disorder, indicated in the top right, scatters modes that can enter N
into modes that are totally reflected at the interface.

analysis of the continuum model in the absence of disorder.
In Sec. V, we include disorder in our discussion and derive
analytical estimate for the proximity-induced gap �ind by
using a semiclassical ansatz. We compare with a numerical
solution of the continuum model in Sec. V B. Finally, we
conclude in Sec. VI.

II. QUALITATIVE DISCUSSION

We model the semiconductor-superconductor heterostruc-
ture as a bilayer wire consisting of a normal metal (N) of
thickness DN and a superconducting layer of thickness DS.
This setup is shown schematically in Fig. 1 (top). We choose
coordinate axes such that the z axis is perpendicular to the
NS interface and the x axis points along the wire, see Fig. 1.
The Fermi wave number kS in the superconductor is much
larger than the Fermi wave number kN in the semiconductor,
reflecting the vastly different electron densities in the two
layers. At the same time, due to the substantial difference in
effective masses between semiconductor and superconductor,
the Fermi velocities vS and vN are comparable, allowing (in
principle) for the possibility of a strong coupling between the
two layers, since the interface transparency depends on the
ratio vS/vN. The thickness DS of the superconducting layer is
much smaller than the superconducting coherence length

ξ = h̄vS

�
, (1)

with � being the magnitude of the superconducting gap.
We further assume that DS < DN, consistent with the typical
experimental device geometry.

For a sufficiently small pairing potential �, a description
of the transverse modes of the NS bilayer can be obtained
starting from the case of a “metal-metal junction” for which
� = 0 inside S. Within a semiclassical picture and in the
absence of disorder, the wave functions of such a metal-metal
junction correspond to propagating electron or hole states,
with quantized transverse momenta in the y and z directions.
Superconductivity only plays a role at length scales �ξ , at
which electrons propagating in S are retroflected into holes
and vice versa. The time required for this retroreflection
process may be identified with the inverse superconducting
gap h̄/�. In a hybrid normal-metal–superconductor system,
the time required for reflection of electrons into holes and vice
versa is longer than h̄/�, because the time spent in the normal
region has to be added. Consequently, the induced gap �ind is
reduced below �.

We first estimate the magnitude of �ind for the setup of
Fig. 1 in the absence of disorder. In this case, the momenta in
the x and y directions are preserved. For fixed kx and ky and
in the limit of a small interface, transparency modes occur
at discrete energies only, corresponding to states localized
almost entirely within S or N with kz quantized in steps of
π/DS or π/DN, respectively. Generically a mode propagating
in N will couple off-resonantly to S. Hence, these modes have
little overlap into S and the induced gap becomes small, which
is in agreement with the findings of Ref. [19]. In this regime,
the magnitude of the induced gap may fall well below the
induced gap in the limit of a normal-metal wire coupled to
a bulk superconductor (DS → ∞), for which the coupling
between modes in N and S is described by Fermi’s golden
rule.

Next, we consider an interface transparency close to unity,
which requires approximately matching Fermi velocities in S
and N. Because of the large difference in electronic density
the wave numbers kS � kN remain vastly different, however.
As a result, quasiparticles transmitted into S from N will
propagate almost perpendicularly to the interface, as shown
schematically in the bottom panel of Fig. 1. Correspondingly,
quasiparticles in S that approach the NS interface at normal
incidence will be transmitted with large probability, whereas
quasiparticles incident at generic angles are reflected. Hence,
although the superconductor has a much larger density of
states than the normal-metal wire—as follows from the condi-
tion kS � kN—most of these states are effectively decoupled
from N. For a mode in N with a velocity vNz in the z direction,
the fraction of the time spent in S is (DS/vS)/(DS/vS +
DN/vN), which leads to

�ind = �

1 + DNvS/DSvNz
. (2)

Since the velocities are approximately matching and as
DN/DS is typically large, �ind is still small, compared to the
bulk gap �.

The induced gap can be significantly enhanced by the
inclusion of disorder in S. For unit transparency, after an
electron propagating in N enters S, disorder can scatter it out
of the narrow range of angles normal to the NS interface for
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which a strong coupling at the NS interface exists. Once such
scattering has occurred it is unlikely that the quasiparticle is
scattered back into a range of angles for which it can return to
the normal metal, as shown schematically in the bottom panel
of Fig. 1. In such a case, an electronlike quasiparticle will be
retroreflected as a hole after a time h̄/� (and vice versa). In
this strong-disorder limit, the total rate of scattering from an
electron into a hole, and hence the induced gap, becomes

�ind = �

1 + 2DNvS/ξvNz
, (3)

where the factor two appears because the time spent in N
is 2DN/vNz. For current experiments that typically use alu-
minium as a superconductor [8–12], ξ is much larger than DN.
This gives an induced gap of order �, which is in agreement
with experimental observations. Although a similar reasoning
appears in Ref. [20], there the conclusion was that only a small
increase of the induced gap is possible.

It may be useful to place these considerations in the context
of classic semiclassical treatments of the proximity effect
[35–37]. To start with, these works typically consider half-
infinite superconductors instead of the thin superconducting
shells studied here. Moreover, they also consider normal
metals in the limit of many transverse channels. In this limit,
one can use a fully semiclassical approach and the existence
of trajectories which run almost parallel to the normal-metal–
superconductor interface implies the absence of a hard gap
[35,38]. If the normal metal has a finite thickness, one finds
a minigap whose magnitude is given by the Thouless energy
[37]. We note that here, we are considering a single-channel
quantum wire for which a semiclassical calculation is in prin-
ciple not fully justified. Nevertheless, semiquantitatively we
can still interpret this channel as arising from electron trajecto-
ries which move at a fixed angle to the superconductor. As we
will see below, the estimates based on these semiquantitative
considerations provide excellent guidance for understanding
our more accurate analytical and numerical calculations.

Finally, let us discuss the energy shift induced in the
nanowire bands as a result of the coupling to the supercon-
ductor. For an isolated nanowire, the transverse modes are
quantized, in the simplest case with a momentum h̄π/DN

perpendicular to the interface if the coupling to the super-
conductor is weak. The zero-point energy associated with
quantization of kz (as well as quantization of ky—although the
latter is not affected by the coupling to the superconductor)
raises the energies of states in N. Increasing the coupling to
S effectively increases DN and thus leads to a decrease of
the energy offset from transverse confinement. The relative
importance of this “band shift” depends on the interface
transparency, as we discuss in detail in Appendix B. In the
limit of a transparent interface, it is of the order of the initial
finite-size shift ∼h̄vNz/DN associated with the quantization in
the z direction.

Instead of a nanowire, Ref. [20] considers a two-
dimensional electron gas without extension in the z direction
(effectively setting DN = 0). The corresponding energy shift
from size quantization in the z direction is absent in such a
model, which explains why the authors of Ref. [20] could
arrive at the conclusion that the band shift from coupling to
S is of the order of the much larger energy scale h̄vS/DSz. In

recent experiments on nanowires coated by Al, one typically
has DN � DS and hence the induced band shift is expected
to be smaller [8–12] than the estimate of Ref. [20]. However,
we also note that in these systems multiple transverse bands
might cross the Fermi level and the electrostatic potential is
expected to be nontrivial [21–23], which makes a quantitative
comparison with experiments difficult and could eventually
lead to an increase of the band shift if band-bending effects
confine electrons in N to a narrow layer near the NS interface
(thus effectively reducing DN).

III. CONTINUUM MODEL

We now describe our quantitative calculations using a con-
tinuum model for a normal-metal wire with a superconducting
shell. The system under consideration is shown in Fig. 1. As
described in the previous section, we consider a normal-metal
(N) wire of thickness DN coupled to a thin superconducting
layer (S) of thickness DS. We choose coordinate axes such that
the x and z directions are along the wire and perpendicular to
the NS interface, respectively. The interface between the two
materials is located at z = 0 and both materials are restricted
to 0 < y < W . The 2 × 2 Bogoliubov-de Gennes Hamiltonian
reads

Ĥ =
(

Ĥ0 θ (z)�
θ (z)� −Ĥ∗

0

)
, (4)

for a spinor wave function ψ = (u, v)T consisting of particle
and hole wave functions of opposite spin. We choose the
gauge such that the superconducting order parameter � is
real and positive. The Heaviside step function θ (z) = 1 (0)
for z > 0 (z < 0). The normal-state Hamiltonian Ĥ0 reads

Ĥ0 = ξp(z) + Vconf (y, z) + U (r). (5)

We consider the parabolic dispersion

ξp(z) =
∑

α=x,y,z

pα

1

2mα (z)
pα + V0(z), (6)

where we take the mass tensor mα to be isotropic in the
superconductor,

mα (z) = mS, α = x, y, z, for z > 0, (7)

whereas we allow for an anisotropic mass in the normal metal,

mx(z) = mNx, my(z) = mz(z) = mN for z < 0. (8)

The potential V0(z) is a band offset, which we parametrize in
terms of Fermi wave numbers kS and kN for the superconduc-
tor and the normal metal, respectively,

V0(z) = − h̄2k2
S

2mS
for z > 0, (9)

V0(z) = − h̄2k2
N

2mN
for z < 0. (10)

The anisotropic mass for the N region is introduced for tech-
nical reasons in order to simplify our numerical calculations,
see the discussion in Sec. V B. It has no consequences for
the qualitative conclusions. The confining potential Vconf (y, z)
models the sample boundary, Vconf (y, z) = 0 for −DN<z<DS

and 0 < y < W , and Vconf (y, z) = ∞ otherwise. We assume
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disorder to be present at the exposed top boundary of the
superconductor at z = DS, with an extension over a region of
width D� into the superconductor. We model the correspond-
ing potential U (r) as Gaussian white noise with zero mean
and with correlation function

〈U (r)U (r′)〉 = h̄vS

2πν0�
δ(r − r′), (11)

with support for 0 � DS − D� � z � DS only. Here, vS =
h̄kS/mS and the densities of states per spin direction in two and
three dimensions read ν0 = kS/2π h̄vS and ν0 = k2

S/2π2h̄vS,
respectively. The parameter � corresponds to the mean free
path in the disorder region if kS� � π . Strong surface scatter-
ing corresponds to the regime � 
 D�.

IV. INDUCED GAP WITHOUT DISORDER

A. Transverse modes in the absence of superconductivity

As a starting point for our calculations, we first consider
the case � = 0 corresponding to a junction of two normal
metals. We calculate the propagating modes in the absence
of the disorder potential U (r). These will form the basis of
our subsequent analysis.

We write the wave function, normalized to unit flux along
the x direction, as

ψν (r, ε) = eisτkx (τε)x sin πny

W y√
W h̄vx/2

ϕτ,nz (z, ε), (12)

where the multi-index ν = (s, τ, ny, nz ) labels the direction
of propagation s = ±, the electron/hole sector τ , and the
positive integer quantum numbers ny and nz counting the
quantized momenta in the transverse directions. Further kx

is the longitudinal momentum, which is real and positive,
and vx = h̄|dε/dkx|. We write τ = e(h) when it appears as
an index and τ = 1(−1) otherwise. The transverse mode
functions ϕ read

ϕe,nz (z, ε) = ceeikNz (ε)z + c′
ee−ikNz (ε)z√

vNz(ε)Ne,nz

, (13)

ϕh,nz (z, ε) = che−ik∗
Nz (−ε)z + c′

heik∗
Nz (−ε)z√

vNz(−ε)Nh,nz

(14)

for z < 0 and

ψ⊥τ,nz (z) = dτ e−iτkSzz + d ′
τ eiτkSzz√

vSzNτ,nz

(15)

for z > 0. Here, Nτ,nz are normalization constants such that∫
dz|ϕτ,nz (z)|2 = 1 and

kNz(ε) =
√

k2
N − k2

y − mN

mNx
k2

x + 2mNε/h̄, (16)

kSz(ε) =
√

k2
S − k2

y − k2
x + 2mSε/h̄, (17)

vSz = h̄kSz/mS, (18)

vNz = h̄kNz/mN, (19)

where we have dropped the multi-index ν for the wave num-
bers and velocities. We recall that the large electron density in

S implies that kS � kN, so that kSz is real, whereas kNz may be
complex.

Upon requiring continuity of ψ and the normal component
of the probability current at the NS interface at z = 0, one
finds that the coefficients cτ and c′

τ satisfy the conditions [39]⎛
⎜⎜⎜⎝

c′
e

d ′
e

c′
h

d ′
h

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

r t ′ 0 0

t r′ 0 0

0 0 r∗ (t ′)∗

0 0 t∗ (r′)∗

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

ce

de

ch

dh

⎞
⎟⎟⎟⎠ (20)

with the interface transmission and reflection amplitudes

t = 2
√

vSzvNz

vSz + vNz
, (21)

t ′ = 2
√

vNzvSz

vSz + vNz
, (22)

r = −1 + t
√

vNz/vSz, (23)

r′ = −1 + t ′√vSz/vNz. (24)

For our later analysis, it is useful to define the transmission
amplitude at normal incidence

t⊥ = 2
√

vSvN

vS + vN
, (25)

where vS = h̄kS/mS and vN = h̄kN/mN. The boundary condi-
tions at z = −DN and z = DS yield the additional conditions

c′
e = −cee−2ikNz (ε)DN , (26)

c′
h = −che2ik∗

Nz (−ε)DN , (27)

d ′
τ = −dτ e−2iτkSz (τε)DS . (28)

Equations (20) and (26)–(28) fully determine the wave
function, and yield the transcendental equation

0 = vNz cot kNz(τε)DN + vSz cot kSz(τε)DS. (29)

Solution of Eq. (29) yields the quantized values for kSz(τε),
which we label using the integer index nz. We set cτ = 1,
which fixes the remaining c and d coefficients via Eqs. (20)
and (26)–(28) and leads to

Nτ,nz = 2DS

vSz
|dτ |2

(
1 − sin(2kSzDS)

2kSzDS

)
(30)

+ e4DNImkNz − 1

2ImkNz|vNz|

− e2DNImkNz
sin(2DNRekNz )

|vNz|RekNz
.

The dependence on τε was dropped on the right-hand side of
this equation for the sake of compactness.

B. Excitation gap

To calculate the excitation gap, we start start by expressing
the Hamiltonian (4) in the basis of the propagating modes
(12). We assume that � is the smallest energy scale in the
problem. This implies that ξ/DS, ξ/W � 1, such that the
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transverse modes are well described by the transverse compo-
nents for � = 0, see Eq. (12). Moreover, in this limit, we can
safely assume that the transverse modes are nondegenerate, so
that the effect of the superconducting pairing � can be treated
for each transverse subband separately.

Calculating the mode spectrum using degenerate first-order
perturbation theory, we find that the transverse mode with
quantum numbers ny and nz has dispersion

ε = ±
√

εny,nz (kx )2 + ∣∣�ny,nz

∣∣2
, (31)

where

εny,nz (kx ) = k2
Sz + (nyπ/W )2 + k2

x − k2
S

2mS
, (32)

�ny,nz = �

∫ DS

0
dzϕ∗

e,nz
(z, 0)ϕh,nz (z, 0), (33)

where the energy argument of the transverse mode functions
ϕτ,nz (z, ε) has been set to zero. We conclude that the overall
gap of the system is

�ind = min
ny,nz

∣∣�ny,nz

∣∣ (34)

Upon evaluating Eq. (33), we obtain

�ny,nz = 2DS�

vSzNα

∣∣dny,nz

∣∣2
(

1 − sin 2kSzDS

2kSzDS

)
, (35)

where∣∣dny,nz

∣∣2 =
∣∣∣∣vNz cos kNzDN − ivSz sin kNzDN

vSz cos kSzDS − ivNz sin kSzDS

∣∣∣∣e−ImkNzDN , (36)

Due to the exponential factor in Eq. (36), which also appears
in the normalization factor Nτ,nz , modes evanescent in the
normal region will have �ny,nz ≈ �, with corrections that are
exponentially suppressed in ImkNzDN. (Note that we use the
convention ImkNz < 0). In the following discussion of limit-
ing cases, we focus on modes with real kNz. Furthermore, we
consider the regime of a single mode inside the normal region
below the Fermi level, 1 � kNDN/π < 2 and 1 � kNW/π <

2, set mNx = mN, and take the limits kS � kN, mS � mN

and kSDS � 1, which are the relevant parameter regimes
of current experiments on semiconductor-superconductor
hybrids.

First, we discuss the case of unit transparency, which cor-
responds to vNz = vSz. In the limit kS � kN, we have kSz ≈ kS

and since vNz lies between 0 and vN, we require vN > vS for
this to occur. Furthermore, the parameters have to be tuned in
order to fulfill Eq. (29), which yields

kSDS + vSmNDN = nπ, (37)

with n a positive integer. In order to obtain �ind from Eq. (34),
we argue that since we consider the regime of a single mode in
the wire, and since the remaining modes in the superconductor
have an evanescent overlap with the wire, the mode with unit
transparency will have the minimum magnitude of the mode-
specific gap |�ny,nz |. After evaluating Eq. (35), we obtain

�ind = �

[
1 + DN

DS

(
1 − sin 2kNzDN

2kNzDN

)]−1

. (38)

Equation (38) agrees with Eq. (2) for matching velocities,
up to the interference term in parentheses. In the derivation
of Eq. (2), we assumed a classical propagation of electrons
and holes, which explains the absence of this interference
term. Furthermore, we expect kNzDN ∼ π , in which case the
interference term is a numerically small correction.

Next, we consider the induced gap in the small-
transparency limit vS/vN � 1 and for k2

S/k2
N � kSDS. In order

to solve Eq. (29), we expand around the solution for zero
transparency and at the Fermi level,

kSz =
(

nS + 1

2

)
π

DS
+ δq, (39)

kNz = π

DN
+ δk, (40)

with

nS = �kSDS/π�, (41)

δq = kS −
(

nS + 1

2

)
π

DS
, (42)

where �·� denotes the floor function. Here, we neglected
the contribution of δk to kSz, which is justified in the limit
k2

N/k2
S � kSDS. Expanding Eq. (29) to lowest order in δq and

δk yields

π

mND2
Nδk

+ 1

mNDN
= vSδq, (43)

which has the solution

δk = π

mND2
NvSδqDS − DN

. (44)

For 1 � δqDS � vN/vS, both δq and δk are sufficiently small
to justify the lowest order expansion around the zero trans-
parency case. Finally, we argue that for δqDS � vNDS/vSDN

the remaining propagating modes have evanescent overlap
into the wire and can be neglected. Thus the solution (44)
is expected to be the transverse mode with the minimal gap
value and from Eq. (34) we obtain

�ind = �π2

D3
Nv2

Sm2
Nδq2DS

. (45)

Figure 2 shows numerical results obtained by solving
Eqs. (29) and (34). The resulting effective gap as a function of
kSDS is an approximately π -periodic function. The induced
gap is sharply peaked near half-integer values of kSDS/π

if vN 
 vS. In this regime, we find good agreement with
Eq. (45). The peak value at half-integer values of kSDS/π

is well approximated by Eq. (38). Upon increasing vN the
peaks a half-integer kSDS/π become broader and asymmetric.
The peak structure inverts when vN ≈ vS, resulting in a gap
function with maxima close to integer values of kSDS/π when
vN � vS.

V. DISORDERED HYBRID NS WIRES

A. Qualitative considerations

As discussed in the introduction, disorder scatters between
modes with support in the semiconductor wire and modes
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FIG. 2. Induced gap in the absence of disorder. We choose a
velocity mismatch vN/vS = 0.1, 0.33, 1, and 3.3 for the lowest
(red) to the highest lying solid line (blue), respectively. The dashed
lines show the prediction at the peak (38), and the tails (45). The
remaining parameters are kNDN = 1.8π and kS/kN = 100.

predominantly localized in the superconductor. Consequently,
the time spent in N is reduced, which increases the induced
gap �ind.

To estimate the induced gap in the presence of disorder and
for a transparent interface (matching Fermi velocities in N and
S), we consider the case of a single propagating mode in N
and assume that the remaining transverse modes are entirely
localized in S. (These modes decay exponentially on the N
side of the NS interface). The mode relevant for the induced
gap is the one propagating in N, and we estimate the induced
gap as

�ind = 1

�−1 + tN/h̄
, (46)

where tN is the time an electron spends in N between two
Andreev reflections.

In order to estimate tN, we consider a reference point along
an electron trajectory in the normal metal and calculate tN as
sum of the mean times in N until the next Andreev reflection
and the mean time since the previous Andreev reflection.
Without Andreev reflection, such a trajectory alternatingly
makes round trips through the normal metal (from z = 0 to
z = −DN and back) and through the superconductor (from
z = 0 to z = DS and back). The probability that the round trip
through the superconductor results in Andreev reflection is

PA = 1 − e−4DS/ξ−2DS/�eff . (47)

Here, e−4DS/ξ−2DS/�eff is the probability that the electron is
neither retroreflected into a hole during the round trip, nor
disorder-scattered into a different mode. As discussed previ-
ously, if disorder scattering occurs, the electron is scattered
into a state that is not coupled to the normal metal with
probability close to unity, and Andreev reflection takes place
with unit probability. Here, we have defined �eff which is
the mean free path for a uniform disorder potential in the
superconductor that emulates the actual effects of disorder
even when disorder is restricted to a thin layer near the outer
interface of the superconductor. In the case of a uniform
disorder strength throughout the superconductor, we have
�eff = �. For surface disorder (modeled by disorder confined

to a strip of width D�), we set

�eff = DS

D�

max(�, asatπ/kS), (48)

where asat is a numerical constant of order one and is deter-
mined numerically in Appendix A. Equation (48) describes
the saturation of scattering in the limit of strong disorder at
the superconductor’s exposed surface.

Each time the electron is not retroreflected as a hole, an
additional time 2DN/vNz has to be spent inside N. For the time
tN between Andreev reflections, we then find

tN = 2DN

vNz
[1 + 2(1 − PA) + 2(1 − PA)2 + . . .]. (49)

Evaluating Eq. (46), we obtain

�ind = �

(
1 + 2vSDN(2 − PA)

vNzξPA

)−1

. (50)

In the no-disorder limit �eff � ξ � DS, Eq. (50) reduces
to Eqs. (2), and in the limit ξ � DS � �eff , it turns into
Eq. (3). For intermediate disorder strengths, ξ � �eff � DS,
we obtain

�ind = �

(
1 + 2vSDN�eff

vNzDSξ

)−1

, (51)

which grows monotonically upon increasing the disorder
strength �−1

eff .
In our derivation of Eq. (50), we assumed that once an

electron scatters from disorder, it does not enter again into
N. However, an electron might scatter from disorder and
enter N one or multiple times. If nS modes are present in
the superconductor, we expect these processes to become
relevant for ξ � nS�eff only. This is also the scale at which
Anderson localization is expected to occur, and hence we
cannot access this regime with our semiclassical approach. We
note however, that the width W can be increased to increase
the number of modes and push the onset of this regime to
larger coherence lengths.

B. Numerical results

We compare the estimate (50) to a numerical calculation
of the density of states. As before, we consider the geometry
of Fig. 1 and the continuum Hamiltonian (4). We consider
a hybrid NS wire of length L, numerically determine the
scattering matrix S(ε) (see Appendix C or Refs. [40–42] for
details), and calculate the density of states using the relation

ρ(L, ε) = 1

2π i
TrS(L, ε)† dS(L, ε)

dε
. (52)

The calculation of the scattering matrix requires that source
and drain leads are added to the system. The leads are de-
scribed by the same Hamiltonian as the hybrid NS wire, but
without the disorder potential U (r) and the pairing potential
�. We infer the size of the induced gap by noting that if
the system is gapped and ε lies above the gap, ρ(L, ε) is
proportional to L. In contrast, for ε inside the gap, ρ(L, ε)
converges to an L-independent residual density of states for
L → ∞ since the lead modes partially extend into the wire.
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FIG. 3. Density of states as a function of energy and disorder
strength for a single-mode semiconducting wire coupled to a two-
dimensional superconductor. We choose ξ/DS = 40, vN/vS = 1.5
and disorder located over the full width of the superconductor (left,
D� = DS) and the top surface (right, D� = 2π/kS). The white dots
show Eq. (38) and the red line shows Eq. (50) with asat = 5.2. The
remaining parameters are kSDS = 20.4π, mS/mN = 100, L/ξ =
8, and kNDN = 1.2π . The density of states is averaged over five
disorder realizations. Values exceeding the color scale are mapped
to the maximum value of the color bar.

The numerical analysis of the original problem is compli-
cated by the fact that the transverse mode functions ϕτ,nz (z) are
in general nonorthogonal if the masses in the N and S regions
are different. [Note that the full wave functions in (12) still
form an orthonormal set]. In order to circumvent this problem,
we take the mass in the N region to be anisotropic, with
mNx = mS. With this choice, the transverse mode functions
are orthogonal as a function of z, at fixed ny and τ . For the
case of a single mode in N, this change does not qualitatively
alter the results of our analysis: Setting mNx merely gives a
constant energy offset for the single propagating mode in N,
whereas the other modes are evanescent in N and are hardly
affected by this substitution.

For a two-dimensional system, extended in the xz plane,
the density of states obtained from the numerical calculation
is shown in Fig. 3. For all disorder strengths a gap is visible,
indicated by the dark region. For small disorder strengths a
Van Hove singularity clearly indicates the edge of the induced
gap, and at ε ∼ � the high density of states reflects the bulk
gap. Furthermore, for very weak disorder, the induced gap
converges to the value predicted by Eq. (38) (white dots). The
induced gap starts to increase once the effective mean free
path exceeds the coherence length ξ and saturates when � be-
comes comparable to the thickness DS of the superconducting
layer, in good agreement with Eq. (50) (red line).

At the strongest disorder values �ind remains slightly
below the limiting value of Eq. (2). We attribute this smaller
value as well as the decrease of the bulk gap in the same
regime to the onset of Anderson localization in our numerical
simulations. The localization length ξloc is approximately
given by nS�eff , where nS is the number of transverse modes.
For the results shown in Fig. 3, the number of transverse
modes nS ∼ 20, so that we indeed expect localization effects
to play a role at the largest disorder strengths considered in
the figure. We note that Anderson localization is not expected
to play a significant role in numerical simulations of three-
dimensional systems, where the number nS of transverse
modes is typically much larger.
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FIG. 4. Density of states as a function of energy and disor-
der strength for a single-mode semiconductor wire coupled to a
three-dimensional superconductor. We set kSDS/π = 2.4, kSW =
18.7π, kNW = 1.4π , and kNDN = 1.2π such that only a single
mode has a nonevanescent overlap into N. We choose ξ/DS =
40, vN/vS = 1.5, and disorder located over the full width of the
superconductor (D� = DS). The white dots show Eq. (38) and the
red line shows Eq. (50). The remaining parameters are mS/mN = 20
and L/ξ = 22. The density of states is averaged over 10 disorder
realizations. Values exceeding the color scale are mapped to the
maximum value of the color bar.

Next, we consider a three-dimensional superconductor
with a larger number of modes along the y direction in S, of
which only the mode with ny = 1 has nonevanescent overlap
into the normal region. The results are shown in Fig. 4.
Again, the addition of disorder leads to a pronounced increase
of the induced gap �ind. We attribute this enhancement to
the large number of modes along the y direction (ny � 18),
since only a small number of modes is present along the
z direction (kSDS/π = 2.4). Furthermore, the results show
good agreement with Eqs. (38) (red line) and (50) (white
dots).

VI. CONCLUSION

In this work, we have investigated a normal-metal (N) wire
coated by a thin two- or three-dimensional superconductor
(S), with disorder in the bulk or at the bare surface of the
superconductor. Here “thin” means that the thickness DS of
the superconductor is much smaller than the superconductor
coherence length ξ .

The coupling to the superconductor induces a gap �ind

in the excitation spectrum of the normal metal. In the ab-
sence of disorder and for small interface transparencies, we
find that this induced gap is much smaller than the induced
gap for the case of a normal-metal wire coupled to a half-
infinite superconducting shell, up to resonances that occur
periodically when a momentum-preserving coupling between
a level in the superconductor and the wire mode at the Fermi
level is possible. Although the induced gap increases upon
approaching a transparent interface, which requires matching
Fermi-level velocities in N and S and removing the interface
barrier, the induced gap is still smaller than the gap in the case
of a half-infinite superconductor, the suppression factor being
proportional to the ratio DN/DS of the thickness of the N and
S layers, which is typically large in experiments [8–12].

Our results in the absence of disorder are in qualitative
agreement with Ref. [19], which studies a one-dimensional
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wire coupled to a thin superconductor. In Ref. [19], the cou-
pling to the superconductor is described by a tunneling energy
scale γ ; our present approach features a continuum model,
for which the coupling is described by the interface transmis-
sion probability |t⊥|2 at perpendicular incidence. For weak
coupling, the two quantities are related by γ ∼ |t⊥|2vN/DN,
and we find that our prediction for the suppression of the
induced gap in Eq. (45) agree with those of Ref. [19] up to
a prefactor of order unity (see Eq. (17) in Ref. [19]). For
unit transparency, our results predict a suppression of �ind

by a factor DN/DS as compared to the case of a half-infinite
superconducting shell. No such suppression was found in
Ref. [19], in which �ind approaches the bulk gap � in the
limit of strong coupling.

A large band shift induced by the superconductor has
been reported for a closely related tight-binding model in
Ref. [20]. In Appendix B, we relate parameters in our con-
tinuum model to the lattice model of Ref. [20]. While we
quantitatively reproduce the band shift observed in Ref. [20]
if we choose our model parameters appropriately, we also
find that in the parameter regime DN � DS relevant to the
nanowire experiments, the shift is typically of order h̄vN/DN,
which is smaller than the estimate ∼h̄vS/DS reported in
Ref. [20]. The difference arises because the model Ref. [20]
describes a two-dimensional electron gas proximity-coupled
to a superconductor, not a three-dimensional semiconductor
of finite width DN. Other effects, not taken into account in
our simple model analysis, such as interaction-induced band
bending [21–23], might be significant for a realistic modeling
of current experiments [8–12].

In the presence of disorder and for approximately matching
Fermi velocities in N and in S, we find that disorder in the
bulk or at the surface of the superconductor can significantly
enhance the induced gap. We find that this enhancement sets
in, when the effective mean free path �eff in the supercon-
ductor becomes smaller than the coherence length ξ . For the
typical case when ξ is large compared to the thicknesses DN

and DS of N and S, we find an induced gap comparable
to � for �eff/ξ � DS/DN. It is plausible to expect that the
experiments [8,9,11,12] satisfy the even stronger condition
�eff � DS due to diffusive reflections from the exposed surface
of the superconductor. Thus our results indicate that there
is good reason to expect an induced gap of order �, in
spite of DS being much smaller than ξ . This conclusion goes
beyond the findings of Ref. [20], which only finds a weak
enhancement of the induced gap in the presence of moderate
disorder, and is qualitatively consistent with recent numerical
studies [43].

Whereas the quality of the NS interface has proven to be
highly beneficial to inducing a topological superconducting
state in semiconductor/superconductor hybrids, our results
suggest that it is not desirable that the superconducting shells
are ideal throughout. In particular, strong scattering at the
exposed surface of the superconductor is essential to ensure
a large magnitude of the induced superconducting gap.
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APPENDIX A: SATURATION FOR STRONG
SURFACE DISORDER

In this section, we discuss the crossover from weak (kS� 

1) to strong surface disorder (kS� � 1). We expect that scat-
tering from surface disorder saturates when � becomes small
compared to the Fermi wavelength.

We verify this numerically, by considering a two-
dimensional metal slab of thickness DS and length L, that is
connected to two leads. Disorder is present only at one of the
surfaces, for DS − D� < z < DS, extending a distance D� into
the system. The metal is described by the Hamiltonian (4) for
0 < z < DS, with � = 0 and without the normal region N.

We define the effective mean free path �eff by comparing
the dimensionless conductance g of this system with the
conductance of a diffusive metal with uniform disorder of
mean free path �eff ,

gdiffusive = nS

1 + L/�eff
, (A1)

where nS = kSDS/π is the number of propagating modes at
the Fermi level. Equation (A1) is compared to a numerical
calculation of the dimensionless conductance g using the
scattering approach, see Appendix C for details. The result
of this comparison is shown in Fig. 5(a) for a fixed length L,
which is small enough to avoid localization corrections. For
sufficiently weak disorder (i.e., for large �), Eq. (A1) is in
good agreement with the numerically obtained conductance
with �eff = �, while for π/kS� � 1 the conductance saturates.
[We recall that the bulk mean free path is not a fit parameter:
it is determined by the disorder correlation function (11)]. The
horizontal lines show the ensemble average of the asymptotic

FIG. 5. Saturation of effective scattering rate for different thick-
nesses of the disorder region. We choose a normal-metal wire of
width kSDS = 20.4π and L = DS. In (a), kSD�/π = 2 (bottom, blue
markers), 4, and 8 (top, green markers). The horizontal lines show the
average of 1/g − nS for π/kS� � 1, the inclined lines show Eq. (A1).
The conductance is averaged over 40 disorder realizations. In (b), the
coefficient asat is shown, as defined in Eq. (48).
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FIG. 6. Density of states as a function of energy and disorder
strength for a 2d superconductor extended in the x-z plane. We
choose ξ/DS = 10, vN/vS = 1.5, and disorder located over the full
width of the superconductor (left, D� = DS) and the top surface
(right, D� = 2π/kS). The white dots show Eq. (38) and the red
line shows Eq. (50) with asat = 5.2. The remaining parameters are
kSDS = 20.4π, mS/mN = 100, L/ξ = 8, and kNDN = 1.2π . The
density of states is averaged over eight disorder realizations. Values
exceeding the color scale are mapped to the maximum value of the
colorbar.

value of g−1 − nS for π/kS� � 1, from which the coefficient
asat in Eq. (48) can be determined. Figure 5(b) shows that the
values of asat ≈ 6, with only a weak dependence on the ratio
Dell/DS.

The saturation of the effective scattering rate with increas-
ing disorder strength for surface disorder scattering is mir-
rored in the saturation of the induced gap �ind upon increasing
the disorder strength in the surface layer, as could be seen in
the right panel of Fig. 3. Figure 6 shows a similar parameter
configuration as in Fig. 3, but with a smaller coherence length
that significantly weakens the impact of Anderson localization
at small �. In the case of surface disorder (right), Fig. 6 shows
a clear saturation for small � which agrees well with Eq. (50).
In the case of bulk disorder (left), this saturation is absent and
the induced gap reaches higher values.

APPENDIX B: RELATION TO REF. [20] AND BAND SHIFT

Reeg et al. [20] considered a very similar system as the
one we study in this article, but with a lattice model instead of
a continuum description. In this Appendix, we quantitatively
compare our results to the lattice model of Ref. [20] for the
case that disorder is absent.

Instead of a semiconducting nanowire, Ref. [20] considers
a two-dimensional electron gas, modeled as a lattice with
a (z-direction) thickness of one site. The superconductor is
modeled as a lattice with a finite thickness of multiple sites.
As a result, in Ref. [20] the thickness DN of the normal wire
does not enter as a separate parameter. On the other hand, in
Ref. [20] the coupling strength across the NS interface can be
set by adjusting the hopping amplitude between the N and S
regions.

One of the main findings of Ref. [20] is that the coupling
to the superconductor can induce a large energy shift in the
nanowire bands. Below, we establish a quantative comparison
between our continuum model and the lattice model of Reeg
et al. We confirm that the band shift is also present in our
model. However, since the thickness DN of the normal metal

explicitly enters into our model, we can study the DN depen-
dence of the band shift and access the regime DN � DS, which
is relevant for a description of a semiconductor nanowire
with a thin superconducting coating. Perhaps not surprisingly,
we find that the band shift typically does not exceed the
energy scale h̄vNz/DN associated with the quantization in the
direction transverse to the NS interface (the z direction). In
particular, the shift of the lowest band typically does not
exceed the zero-point band shift ε0 = h̄2π2/2mND2

N. The
energy scale h̄vNz/DN does not enter into the considerations
of Ref. [20], because Ref. [20] considers the limiting case
DN → 0.

In order to quantitatively compare our model to Ref. [20],
it is necessary that we extend the model studied in the main
text to include an interface potential barrier and spin-orbit
coupling. To this end, we add the terms

δĤ0 = h̄wδ(z) + σαpxθ (−z) (B1)

to the normal-state Hamiltonian (5). The first term introduces
an interface potential, which allows us to tune the interface
transparency independently of the Fermi velocities vS and
vN. The second term describes spin-orbit coupling restricted
to the normal metal, with a strength α that couples the
electron momentum to the electron spin σ = ±. Following
Ref. [20], we neglect superconductivity in the discussion of
the band shift. Furthermore, we assume an isotropic mass
in the nanowire, mNx = mN. Since for a comparison with
Ref. [20] we are interested in the regime of a single band
inside N that crosses the Fermi level, we may neglect any y
dependence, consider the bands with the lowest wave number
ky only, and absorb any contributions from this lowest value
of ky into the definitions of kS and kN. Upon inclusion of the
additional terms (B1), the quantization condition (29) changes
to

0 = 2w + vSz cot kSzDS + vNz cot kNzDN, (B2)

where vSz = h̄kSz/mS, vNz = h̄kNz/mN, and

kSz =
√

k2
S − k2

x + 2mSε/h̄2, (B3)

kNz =
√

k2
N − k2

x + 2mN(ε − σαh̄kx )/h̄2. (B4)

To fit parameters of our continuum description to the
model parameters of Ref. [20] we match the dispersion of
both models. The dispersion for the superconductor is readily
matched, by equating the mass mS, thickness DS,1 and the
velocity at the Fermi level vS = h̄kS/mS in both models. To
match parameters for the semiconductor wire we note that in
our model, the dispersion of the semiconductor nanowire is
controlled by the five parameters mN, DN , α, w and the band
bottom h̄2k2

N/2mN. We choose the former three by equating α

in both models, by matching the band curvature via tuning

1In our model, we adjust the thickness by one lattice site, DS =
d + a, where d is the thickness of S and a is the lattice spacing in
Ref. [20]. This is motivated by considering the quantization of kSz

in the absence of a normal region. In this case, the wave number is
quantized to multiples of π/(d + a) in the tight-binding model and
to multiples of π/DS in the continuum model.
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FIG. 7. Fit of the dispersion used in this work (orange) to the
dispersion in Ref. [20]. Figure 2(b) (blue). The dispersions of the
two models are shown in alternating intervals for better visibility.
The orange segments show the solutions of Eq. (B2). The parameters
w and kN are tuned such that the bottom of the N band at kxa ≈ 0
(lower panel) and the avoid crossing at kxa ≈ ±0.1 match, where
a is the lattice spacing in the model of Ref. [20]. The parameters
for our model are DN = a, DS/DN = 43, mS/mN = 5, kSDS/π =
4.35, kNDN/π = 0.99201, wmN/kN = 19.88, and αmS/kS = 0.08.
The parameters for the tight-binding model are those of Fig. 2(b) of
Ref. [20]. Figure 2 of Ref. [20] shows ε in units of � with the choice
� = 10−3 h̄2k2

S/2mS. We have chosen to show the dispersions in unit
of the zero-point energy ε0 = h̄2π 2/2mND2

N because � has been set
to zero in our calculation of the dispersion, see the discussion in the
text. We only show solutions with the lowest momentum ky, as S
bands with higher ky do not couple to to the lowest nanowire band.
(Note that our y direction is the x direction in Ref. [20]).

the mass mN, and by setting DN = a, where a is the lattice
spacing in the tight-binding model of Ref. [20]. This leaves
two parameters, w and kN, which we determine by fitting,
making sure that the bottom of the normal-wire band and
the normal-wire band’s first avoided crossing with one of the
bands of the superconductor are the same in both models. The
result of such a fitting procedure is shown in Fig. 7, where
the orange segments show the dispersion obtained from our
continuum model and the blue segments show the model of
Ref. [20]. We conclude that the dispersions fit very well.

The band shift δεN,n is defined by comparing the bottom
εN,n of the nth N band to the bottom of the same band in the
absence of the coupling to the superconductor,

δεN,n = εN,n − εN,n|w=∞. (B5)

Since both models yield the same dispersion for the lowest
transverse band (n = 1) when the parameters are fitted as
described above, they obviously also give the same band shift
δεshift,n for the lowest N band (n = 1), as is visible in the lower
panel of Fig. 7. Higher values of n do not appear in the model
of Ref. [20].

Although Fig. 7 shows that excellent agreement between
the two models can be achieved by a suitable choice of
parameters in our continuum model, these parameter values
are outside the parameter regime for which our model is
intended. (This is no surprise, since Ref. [20] considers a two-
dimensional electron gas in contact to a superconductor, not
a three-dimensional nanowire). Indeed, the parameter values

in Fig. 7 correspond to a system with DN 
 DS and kN �
kS, which is opposite the inequalities DN � DS and kN 
 kS

that we consider here. Fitting the tight-binding spectrum of
Ref. [20] with a larger value of DN and, correspondingly, a
smaller value of kN does not give a satisfactory agreement,
because of the perturbing effect of higher-lying transverse
bands in N.

We now analyze the band shift in our continuum model
for the parameter range DN � DS, kN 
 kS, and vN ∼ vS,
which describes a semiconductor nanowire with a much thin-
ner superconducting coating. The condition of approximately
matched Fermi velocities is necessary in order to allow for
strong coupling, see the discussion in the main text. To bring
out similarities and differences with the model of Ref. [20],
we not only consider the lowest band with respect to the
quantization in the z direction (band index n = 1, as we did in
the main text and in the comparison above), but also consider
bands with higher band index n > 1. We neglect the (small)
effect of spin-orbit coupling.

An intuitive understanding of the band shift can be ob-
tained as follows. For w → ∞, the transverse wave number of
the nth band in N is exactly quantized to kNz = πn/DN. If the
barrier height w is decreased to a finite value, the quantization
of kNz is softened and the confinement to N is gradually lifted.
As a result, the band bottom is shifted downwards in energy
as compared to the case w → ∞ of an intransparent interface.
The band shift of the nth band is bounded from below by
the (unperturbed) position of (n − 1)th band, so that the band
spacing ∼h̄vNz/DN sets a natural upper bound for the band
shift. The band shift of the lowest band n = 1 is bounded (by
order or magnitude) by the zero-point energy ε0, the bound
being attained when the confinement to N is fully lifted.

For weak (but nonzero) coupling between N and S, the shift
δεN,n of the nth transverse band can be calculated perturba-
tively in 1/w if εN,n is not close to the bottom of an S band. We
solve (B2) approximately by expanding kNz = πn/DN + δkn,
since δkn → 0 for large w. Since DS 
 DN and vS ∼ vN

implies that the spacing between bands in S is much larger
than the spacing between bands in N, we may approximate kSz

in (B2) by its value at ε = εN,n|w→∞. We further approximate

vNz cot kNzDN ≈ h̄

mNDN
+ nπ h̄

DNmN
cot DNδkn,

which gives

δkn = − 1

DN

(
π

2
− arctan

θ

nπ

)
, (B6)

with θ = 1 + (DNmN/h̄)(2w + vSz cot kSzDS). From here one
then obtains the band shift

δεN,n = h̄2

2mN

[(
πn

DN
+ δkn

)2

−
(

πn

DN

)2
]
. (B7)

Figure 8 shows the band shift δεN,n for n = 1 and 2, together
with the approximation (B7) for three different values of
the interface transparency. The approximation (B7) correctly
reproduces the oscillatory dependence of δεN,n on DS, con-
sistent with the observations of Ref. [20], and captures the
correct order of magnitude of the band shift. Away from band
degeneracies between N and S, the approximation (B7) is
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FIG. 8. Band shift vs thickness DS of the superconducting layer
(black, solid) and the approximation (B7) (red, dashed). The left
panels are for the lowest transverse band in N (n = 1), the right
panels are for n = 2. The band shift is shown in units of the zero-
point energy ε0 = h̄2π 2/2mND2

N. The height of the potential bar-
rier at the interface is wmN/kN = 0 (top), wmN/kN = 10 (middle),
and wmN/kN = 100 (bottom). The other parameters are vN/vS =
1.5 and mS/mN = 100.

quantitatively accurate if the interface transparency is small
(|wmN/kN| large).

APPENDIX C: NUMERICAL CALCULATION OF THE
SCATTERING MATRIX

Here, we provide details on our numerical calculation of
the scattering matrix S(L, ε) of a disordered superconducting
wire of length L, attached to ideal source and drain leads. The
wire is described by the Hamiltonian (4); the ideal leads are
described by the same Hamiltonian, but without the disorder
potential U (r), the superconducting order parameter �, and
with the energy ε set to zero.

To calculate S(L, ε), we divide the wire for 0 < x < L into
thin slices of length δL. For a sufficiently small δL, each
slice is only a weak scatterer regardless of the magnitude of
the energy ε, the superconducting order parameter �, and the
disorder potential U (r). In this limit, we can calculate the
scattering matrix of a single slice using the Born approxi-
mation. The scattering matrix S(L, ε) of the full system is
then obtained by concatenation of scattering matrices of the
individual slices.

Specifically, the Born approximation for the calcula-
tion of the scattering matrix of a single slice is justi-
fied by the smallness of εδL/h̄vF, δL/ξ , and δL/�. For-
mally, this is achieved by writing the Bogoliubov-de Gennes
Hamiltonian as

Ĥ − ε = Ĥ0 + [Ĥ1 − ε], (C1)

with

Ĥ0 = [ξp + Vconf ]τz (C2)

the Hamiltonian of the ideal lead and

Ĥ1 − ε = �τx + U (r)τz − ε, (C3)

the correction term that accounts for the effects of a finite
energy ε, the superconducting order parameter � and the
disorder potential U (r). Here the τα, α = x, y, z are the Pauli
matrices in particle-hole space, ξp and Vconf are the kinetic
energy and the confinement potential, see Sec. III. Application
of the Born approximation gives

SδL = [1 − iTδL/2][1 + iTδL/2]−1, (C4)

where

(TδL )ν ′ν =
∫

δL
dr 〈ψν ′ (r j, 0)| (Ĥ1 − ε) |ψν (r, 0)〉 , (C5)

the integration taking place over the width of the slice. The
mode functions ψν (r, ε) are evaluated at zero energy, since
the energy ε is accounted for in the T matrix (C5). The
multi-index ν = (s, τ, ny, kSz ), with s = ± and |ψν〉 is defined
in Eq. (12). Equation (C5) implements the first-order Born
approximation, while at the same time preserving unitarity of
the scattering matrix SδL.

We conclude by presenting explicit expressions for the
T matrix of Eq. (C5). We separate the T matrix into three
contributions,

T ( j)
ν ′ν = T ( j)

ε,ν ′ν + T ( j)
�,ν ′ν + T ( j)

γ ,ν ′ν . (C6)

The first two contributions read

T ( j)
ε,ν ′ν = − εδν ′,νχν ′,ν , (C7)

T ( j)
�,ν ′ν =�χν ′,ν�ν ′,ν , (C8)

where

χν ′,ν = − i
eiqν′ ,νx[eiqν′ ,ν δL − 1]

h̄qν ′,ν
√

v′
xvx

, (C9)

qν ′,ν =τ skx − τ ′s′k′
x, (C10)

�ν ′,ν = 2DSτ
′τd∗

τ ′dτ ei(τ ′k′
Sz−τkSz )DS√

Nν ′Nνv
′
SzvSz

(C11)

× [sinc D�(k′
Sz − kSz ) − sinc D�(k′

Sz + kSz )],

with kx = kx(0). The third contribution, which describes scat-
tering from the disorder potential U (r), takes the form

T ( j)
γ ,ν ′ν = 4τ

√
γ δτ ′,τ eiqν′ ,νxi

(
X (i)

ν ′,ν + iY (i)
ν ′,ν

)
(C12)

× d∗
τ ′dτ e−iτ (kSz−k′

Sz )DS√
Nν ′NνvSzv

′
Szvxv′

x

. (C13)

Here, γ = h̄vS/2πν0�, and X (i)
ν ′,ν and Y (i)

ν ′,ν are correlated Gaus-
sian random variables with zero mean. The covariance matrix
of (Xν ′,ν ,Yν ′,ν )T reads

C =
(

C(x)
XX C(x)

XY(
C(x)

XY

)T
C(x)

YY

)
C(y)C(z), (C14)

where we dropped the indices (ν ′
1, ν1), (ν ′

2, ν2) that are at-
tached to each C, using the convention that the different Cs
are multiplied element wise. For three dimensions, the explicit
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forms of the coefficients in the covariance matrix is

C(x)
XX,(ν ′

1,ν1 ),(ν ′
2,ν2 ) = δL

2
[sinc δL(q1 − q2) + sinc δL(q1 + q2)], (C15)

C(x)
XY,(ν ′

1,ν1 ),(ν ′
2,ν2 ) = q2 − q1

4
δL2[sinc δL(q1 − q2)/2]2 + q2 + q1

4
δL2[sinc δL(q1 + q2)/2

]2
, (C16)

C(x)
YY,(ν ′

1,ν1 ),(ν ′
2,ν2 ) = δL

2
[sinc δL(q1 − q2) − sinc δL(q1 + q2)], (C17)

C(y)
(ν ′

1,ν1 ),(ν ′
2,ν2 ) = 1

2DN

[
δ0,n′

y,1+ny,1−n′
y,2−ny,2 + δ0,n′

y,1−ny,1−n′
y,2+ny,2 + δ0,n′

y,1−ny,1+n′
y,2−ny,2

− δ0,n′
y,1−ny,1−n′

y,2−ny,2 − δ0,n′
y,1−ny,1+n′

y,2+ny,2 − δ0,n′
y,1+ny,1−n′

y,2+ny,2 − δ0,n′
y,1+ny,1+n′

y,2−ny,2

]
, (C18)

C(z)
(ν ′

1,ν1 ),(ν ′
2,ν2 ) = DS

8
[sinc D�(k′

Sz1 + kSz1 + k′
Sz2 + kSz2)

+ sinc D�(k′
Sz1 + kSz1 − k′

Sz2 − kSz2) + sinc D�(k′
Sz1 − kSz1 − k′

Sz2 + kSz2) + sinc D�(k′
Sz1 − kSz1 + k′

Sz2 − kSz2)

− sinc D�(k′
Sz1 − kSz1 − k′

Sz2 − kSz2) − sinc D�(k′
Sz1 − kSz1 + k′

Sz2 + kSz2)

− sinc D�(k′
Sz1 + kSz1 − k′

Sz2 + kSz2) − sinc D�(k′
Sz1 + kSz1 + k′

Sz2 − kSz2)], (C19)

where qi = qν ′
i ,νi , δn,m is the Kronecker delta and sinc x = (sin x)/x. For two dimensions, the C(x) and C(y) are the same as in

three dimension. For the y direction, we restrict the mode indices to ny = 1 and we set C(y) equal to the identity matrix.
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