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Theoretically, a pair of Majorana bound states in a topological superconductor forms a single fermionic level
even at large separations, implying that the parity information is stored nonlocally. The nonlocality leads to
a long-distance coherence for electrons tunneling through a Coulomb-blockaded Majorana wire [L. Fu, Phys.
Rev. Lett. 104, 056402 (2010)], an effect that can be observed, e.g., in an interferometer. Here, we examine
theoretically the coherent electron transfer, taking into account that tunneling implies the long-distance transfer
of charge, which is carried by one-dimensional plasmons. We show that the charge dynamics does not affect
the coherence of the electron tunneling process in a topological superconductor consisting of a semiconductor
wire proximitized by a single bulk superconductor. The coherence may be strongly suppressed, however, if the
topological superconductivity derives from a semiconductor wire proximitized by a granular superconductor.

DOI: 10.1103/PhysRevB.101.241414

Introduction. One-dimensional topological superconduc-
tors have Majorana bound states (MBSs) localized at their
boundaries. The MBSs at both ends together form a single,
highly nonlocal fermionic level, carrying information about
the total fermion parity of the macroscopic superconductor.
This property is part of the basis for the ideas to use MBSs for
topologically protected quantum computation [1–9].

The nonlocality leads to a striking long-distance coherence
when Coulomb interactions are included. This was pointed
out by Fu [10], who argued that, at energies smaller than the
superconducting gap and the charging energy, a Coulomb-
blockaded topological superconductor wire is equivalent to a
fermionic level with support at the two ends of the wire. Con-
sequently, single electron coherence should be observable at
distances far beyond the coherence length of the superconduc-
tor, for instance, in an Aharonov-Bohm interferometer [10].
This long-distance coherence has been suggested as a way
to test whether experimentally observed zero-bias peaks [11]
originate from isolated MBSs or localized Andreev bound
states [12–14]. The first experiments in this direction have
already been done, and seem consistent with the long-distance
coherence picture [15].

In Fu’s original derivation [10], it is assumed that the
electron and its charge is instantaneously distributed in the
wire. This is usually justified by noting that the charge re-
arrangement in metals happens on the short timescale of the
inverse plasma frequency. However, this need not a priori
apply to a wire geometry, where the charge modes are one-
dimensional (surface) plasmons with a linear dispersion.

In this Rapid Communication, we present a theory of
the long-distance coherent transport through a topological
superconductor that includes charge redistribution effects.
Specifically, we consider a system consisting of two Majorana
wires in an interference loop setup. The wires are assumed to
have a bulk excitation gap and to be much longer than the

superconducting coherence length, so that no subgap Andreev
states extend from one end to the other. Hence, the only
mechanism for (subgap) coherent transfer of single electrons
is via the end MBSs. Our theoretical description of this
effect takes into account the fractionalization of the electron
into fermionic (Majorana) and charge components [16]. The
electron charge is transported through the interferometer via
virtual excitations of the charge degrees of freedom.

For topological superconductors that consist of a semicon-
ductor nanowire proximitized by a bulk superconductor, the
time of flight of charge excitations (plasmons) is typically
much shorter than the inverse charging energy, and we find
that neglecting the effect of charge dynamics on electron
tunneling is a good approximation. On the other hand, if
the propagation of charge is slowed down, e.g., when the
superconductor proximitizing the nanowire is (effectively)
granular [17–20], the typical plasmon energy may be less
than the charging energy and the coherent electron transfer
processes are strongly suppressed. We refer to the super-
conductor as granular regardless of whether the granularity
is intrinsic or the result of intentional engineering. We note
that similar tunneling physics is discussed in Refs. [21,22];
there, the topological superconductivity stems from explicitly
number-conserving interactions in the quasi-one-dimensional
system. By contrast, in our theory we consider topological su-
perconductivity induced by proximity to a three-dimensional
superconductor.

The specific system we consider is an interferometer con-
sisting of source and drain reservoirs connected via two inter-
ferometer arms, which are modeled as an array of Josephson
junctions connecting islands with topological superconduc-
tivity. This is a natural description if the interferometer arm
consists of a semiconductor nanowire covered by a granular
superconductor. The case of a nanowire with a continuous
superconducting cover can be easily obtained as a limiting
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FIG. 1. Interferometer setup used to measure the coherent tun-
neling through a Coulomb-blockaded topological superconductor.
Each interferometer arm j = 1, 2 is modeled as an array of topo-
logical superconductor islands, connected via Josephson junctions.
Majorana bound states exist at the ends of every island, but only the
Majorana bound states γ j,1 and γ j,2N at the far left and right of the
array enter into the low-energy theory. The figure also schematically
shows the capacitive coupling between islands and between each
island and ground, as well as the flux � through the interference
loop.

case of this model. The fermionic low-energy degrees of
freedom of each island are Majorana bound states at the
two ends of the island (see Fig. 1). Majorana bound states
on the two sides of a Josephson junction acquire a finite
energy. We assume that the temperature and the applied bias
are low enough, that only the Majorana bound states at the
far ends of each array of superconducting islands need to be
accounted for. Hence, for each interferometer arm j = 1, 2,
the relevant degrees of freedom are Majorana operators γ j,1

and γ j,2N at the left and right ends of the interferometer arm
(see Fig. 1), as well as the charge n j,α of a superconducting
island (measured in units of the electron charge e) and the
conjugate phase variable ξ j,α , [n jα, ξ j′α′ ] = δ j j′δαα′ , where the
index α = 1, . . . , N labels the superconducting island.

Tunneling between the leads and the interferometer arms is
described by the Hamiltonian

Ht =
2∑

j=1

∑
q

(t j,Lcq,Lγ j,1eiξ j,1 + t j,Rcq,Rγ j,2N eiξ j,N + H.c.),

(1)

where the operator eiξ j,α increases n j,α by one and cq,R and cq,L

are the annihilation operators for an electron in the right and
left reservoirs at energy εq, respectively. To leading order in
the tunneling amplitudes, the interference contribution δG to
the conductance of the interferometer is [23]

δG = 4πe2

h̄
p1 p2νLνR Re t∗

1,LG
(N )
1 t1,R t2,LG (N )∗

2 t∗
2,R eiϕ, (2)

where p j = iγ j,1γ j,2N is the ground-state fermion parity of the
jth interferometer arm, νL and νR are the densities of states in
the left and right reservoirs, ϕ/2π measures the flux through
the interferometer in units of h/e, and

G (N )
j = −i

∫ ∞

0
dt〈[e−iξ j,1(t ), eiξ j,N (0)]〉 (3)

is the zero-frequency retarded propagator for charge ex-
citations in an array of N superconducting islands. This

correlation function also arises in the number-conserving
approach of Ref. [22].

In the case N = 1 where each arm is modeled as a single
island with instantaneous charge redistribution, one has

G (1)
j = −

(
1

E+
j

+ 1

E−
j

)
, (4)

where E±
j is the energy cost for adding or removing a charge

e to the jth interferometer arm. In this limit, Eqs. (2) and (3)
reproduce the result of Ref. [10].

For arbitrary N , the charge degrees of freedom of the array
are described by the Hamiltonian

Hc, j = 1

2
e2

N∑
α,α′=1

n j,αC−1
α,α′n j,α′ − eVg, j

Nj∑
α=1

n j,α

− E (2π )
J

N−1∑
α=1

cos[2(ξ j,α − ξ j,α+1)]

− E (4π )
J

N−1∑
α=1

cos(ξ j,α − ξ j,α+1), (5)

where, as before, the index j = 1, 2 labels the interferometer
arm. Further, E (2π )

J and E (4π )
J are 2π - and 4π -periodic Joseph-

son couplings between adjacent islands, Vg, j is a gate voltage,
and Cα,α′ the capacitance matrix,

Cαα′ = Cgδα,α′ + C(2δα,α′ − δα,α′+1 − δα,α′−1), (6)

where Cg is the capacitance between each island and the
ground and C is the capacitance between adjacent islands.
Note that this model assumes that charge distribution is in-
stantaneous within each island, and that the MBSs within each
island do not couple directly. The full phase diagram of this
Josephson junction array model in the C = 0 case is studied
in Ref. [24]. For simplicity, the number of superconducting
islands, the capacitances, and the Josephson energies are taken
to be identical in the two interferometer arms. Generically, one
has Cg � C. We consider arrays in the “transmon regime,”
for which the effective Josephson coupling EJ = E (2π )

J +
(1/4)E (4π )

J is much larger than the charging energy e2/2C
associated with the mutual capacitance of neighboring islands.
The phase differences ξ j,α − ξ j,α+1 are then pinned to the
bottom of the cosine potentials, which allows one to disregard
the phase slips [25] and replace the cosine potentials in Eq. (5)
by a quadratic one. Bringing the Hamiltonian to diagonal form
then gives

Hc, j ≈ E (Nj ) +
N−1∑
k=1

ωk

(
b†

j,kb j,k + 1

2

)
, (7)

where Nj = ∑N
α=1 n j,α is the total charge, E (Nj ) =

(Nje)2/2NCg − eNjVg, j is the charging energy for a uniformly
charged array,

ωk = 2e

√
4EJ sin2(kπ/2N )

4C sin2(kπ/2N ) + Cg
(8)

are the plasmon frequencies [25], and b j,k are plasmon cre-
ation and annihilation operators, which are related to the phase
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variables as

ξ j,α = � j − i
N−1∑
k=1

ϕα,k

√
1

2ωkCk
(b j,k − b†

j,k ), (9)

where � j is the phase variable conjugate to Nj , Ck = Cg +
4C sin2(kπ/2N ), and

ϕα,k =
√

2

N
cos

kπ (α − 1/2)

N
. (10)

Having brought the Hamiltonian Hj to diagonal form,
the calculation of the factor G j of Eq. (3) is in principle
straightforward. In the cotunneling regime and for tempera-
ture kBT � min(E±

j ), one finds

G (N )
j = −

∫ ∞

0
dτ [e−E+

j τ−δ j (τ ) + e−E−
j τ−δ∗

j (τ )], (11)

with

δ j (τ ) =
N−1∑
k=1

e2(|ϕ1,k|2 + |ϕN,k|2 − 2ϕ1,kϕ
∗
N,ke−ωkτ )

4ωkCk
. (12)

Equations (2), (11), and (12) contain the central results of this
work. To evaluate the interference contribution δG explicitly
for the Hamiltonian (5), we substitute the explicit expressions
for Ck and ϕ j,α and find

δ j (τ ) =
N−1∑
k=1

ωk

16NEJ
[1 − (−1)ke−ωkτ ] cot2 kπ

2N
. (13)

Typically the mutual capacitance C is much larger than the
capacitance Cg to the ground plane [17]. The plasmon dis-
persion Eq. (8) then interpolates between an acoustic regime
ωk ≈ vkπ/N for k � kc, with

v = 2e

√
EJ

Cg
, kc = 2N

π

√
Cg

4C + Cg
, (14)

and the constant value ωk ≈ ωN = 2e
√

4EJ/(4C + Cg) when
k � kc (see Fig. 2). For short arrays N � √

C/Cg, there are no
acoustic plasmons and the plasmon frequencies ωk are well
approximated by ωN for all k (see Fig. 2, inset). This gives

δ j (τ ) = ωN

16EJ

[
N

3
(2 + e−ωN τ ) + 1 − 4

π2

]
, (15)

where in addition to taking the limit N � √
C/Cg we ex-

panded in 1/N , omitting contributions of order 1/N and
smaller. If both charging energies E±

j 	 ωN , one may approx-
imate δ j (τ ) by δ j (0) and one finds an exponential suppression
of the interference term in the cotunneling current with N ,

G (N )
j ≈ G (1,eff )

j e−(ωN /16EJ )(N+1−4/π2 ), (16)

where the factor G (1,eff )
j = −(1/E+

j + 1/E−
j ) describes an

interferometer arm with a single superconducting island and
capacitance Ceff

g = NCg to the ground plane [10] [see Eq. (4)].
(If the condition E±

j 	 ωN is not met, there is still an expo-
nential suppression with N , but with a numerically different
exponent.) To understand the exponential dependence on N ,
notice that the phase differences between adjacent islands

FIG. 2. Plasmon spectrum of a long (N = 104) Josephson junc-
tion array in the harmonic approximation, overlaid with the linear
(acoustic) approximation at small momenta (solid blue line) and
the plasmon energy at k = N (dashed blue line). The parameters
chosen are EJC/e2 = 10 and Cg/C = 10−4. Inset: Plasmon spectrum
of a much shorter (N = 100) Josephson junction array for the same
values of EJ, C, and Cg. The acoustic plasmon branch at small k has
almost disappeared.

ξ j,α − ξ j,α+1 (α = 1, . . . , N − 1) are independent variables in
the limit Cg → 0, as follows from Eq. (9); G (N )

j thus factor-
izes into identical contributions from individual Josephson
junctions.

For long arrays, N 	 √
C/Cg, the summation (13) is dom-

inated by the acoustic branch ωk ≈ vkπ/N for k � kc [see
Eq. (14)]. In this regime, it is instructive to express δ j (τ ) in
terms of the parameters v and kc,

δ j (τ ) = v

4πEJ
{ln[2kc(1 + e−πvτ/N )] − f (Cg/4C)}, (17)

where f (x) = √
x arccot

√
x − cγ and cγ ≈ 0.577 is the Euler-

Mascheroni constant. As before, we may approximate δ j (τ )
by δ j (0) if both charging energies E±

j 	 πv/N . This gives a
power-law suppression with N (recall kc ∝ N),

G (N )
j ≈ G (1,eff )

j (4kc)−βeβ f (Cg/4C), β = v

4πEJ
. (18)

Note that the exponent β is independent of the capacitance
C between adjacent islands, because C does not enter into
the low-energy degrees of freedom. (Again, if the condition
E±

j 	 πv/N is not met, there is still a power-law suppression
with N but with a different numerical prefactor.) In Fig. 3 we
show G j as a function of N for both sides of the crossover at
N ∼ √

C/Cg and compare with the predictions of the asymp-
totic expressions (15) and (17).

The power law of Eq. (18) can also be obtained from a
continuum model in which the charge degrees of freedom
are described as a transmission line with capacitance c and
inductance � per unit length [26]. This requires one to identify
v = 1/

√
�c and EJ = 1/4e2� [25], so that the exponent β =

e2/π
√

�/c. In this continuum description, kc is the ultraviolet
cutoff of the theory, which signals the breakdown of the one-
dimensional linear plasmon dispersion.

If the topological superconductor consists of a semicon-
ducting nanowire covered by well-separated superconducting
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FIG. 3. Normalized coherent amplitude G (N )
j /G (1,eff )

j as a func-
tion of the number of superconducting islands N . The insets focus
on the exponential N dependence in short systems. The data points
show the amplitude ratio G (N )

j /G (1,eff )
j for EJC/e2 = 5, 10, and 15

and Cg/C = 10−4 (bottom to top data sets, left), for EJC/e2 = 5,
10, and 15 and EJCg/e2 = 1 × 10−3 (bottom to top, center), and
C/Cg = 5 × 103, 104, 1.5 × 104 and EJC/e2 = 10 (top to bottom,
right). The dotted curves follow from the asymptotic expressions (15)
and (17).

grains, the Josephson coupling EJ ∼ gc�, where � is the
magnitude of the superconducting gap and gc � 1 is the
dimensionless conductance of a wire segment connecting two
superconducting islands. Taking a typical charging energy
e2/2C ∼ EJ/10 [25], we find that the suppression of the in-
terference contribution to the conductance can be appreciable
even for moderate values of N , as shown in Fig. 3. On the
other hand, if the topological superconductor consists of a
semiconductor nanowire covered by a single superconductor,
a continuum description in terms of a capacitance c and
inductance � per unit length is more applicable. Typically,
e−2√�/c is between 50 and 300 Ohms, which places the
exponent β between 10−3 and 10−2. Hence, for a covering
with a continuous superconductor the suppression of the
interference term is usually weak, independent of the value
of the ultraviolet cutoff kc, and to a very good approximation,
the coherent cotunneling process is given by the result Eq. (4)
for a single superconducting island. A posteriori, this justifies
the assumption of instantaneous charge redistribution within
each island which is implicit in the model of Eq. (5).

The physics of the absence of suppression for the contin-
uum description is analogous to that of the environmental

Coulomb blockade [27–29]: the Coulomb blockade is sup-
pressed by the discharging of the tunnel junction when the
RC time for charge displacements is much smaller than the
Heisenberg uncertainty time h̄C/e2. Similarly, for a system of
length L, the typical timescale for charge redistribution L/v

is much shorter than h̄C/e2, or in other words, the plasmon
quantization energy is much larger than the charging energy.
Up to a factor, the resulting exponent β is the same as the ex-
ponent found for the power-law suppression of the differential
conductance in the environmental Coulomb blockade.

We close by remarking that our results can be easily
generalized to the case where one or more tunnel junctions
(weak links) exist in the arms, as occurs in various Majorana
network models and stabilizer measurements in correspond-
ing implementations of topological quantum error correction
codes [3,4,8]. To calculate the lowest-order interference con-
tribution to the cotunneling current, one takes all weakly
coupled segments in the interference loop, and multiplies
their tunneling amplitudes, fermion parities, and suppression
factors G j .

In summary, we have studied the coherence of cotunneling
of single electrons through Majorana wires. In contrast to
previous studies we have included the charge degrees of free-
dom in addition to the fermion component. For semiconductor
nanowires proximitized by bulk superconductors, the typical
plasmon energy is large compared to the charging energy, and
we show the cotunneling transmission amplitude is to a very
good approximation given by the fermion-only expression
in Ref. [10]. On the other hand, for nanowires proximitized
by superconducting islands which form Josephson junction
arrays operating in the transmon regime, the typical plasmon
energy is usually much smaller than the charging energy, and
as a result we find the coherent cotunneling to be significantly
suppressed by charge dynamics.
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