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Geometric properties of adiabatic quantum thermal machines
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We present a general unified approach for the study of quantum thermal machines, including both heat engines
and refrigerators, operating under periodic adiabatic driving and in contact with thermal reservoirs kept at
different temperatures. We show that many observables characterizing this operating mode and the performance
of the machine are of geometric nature. Heat-work conversion mechanisms and dissipation of energy can be
described, respectively, by the antisymmetric and symmetric components of a thermal geometric tensor defined
in the space of time-dependent parameters generalized to include the temperature bias. The antisymmetric
component can be identified as a Berry curvature, while the symmetric component defines the metric of the
manifold. We show that the operation of adiabatic thermal machines, and consequently also their efficiency, are
intimately related to these geometric aspects. We illustrate these ideas by discussing two specific cases: a slowly
driven qubit asymmetrically coupled to two bosonic reservoirs kept at different temperatures, and a quantum dot
driven by a rotating magnetic field and strongly coupled to electron reservoirs with different polarizations. Both
examples are already amenable for experimental verification.
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I. INTRODUCTION

Thermodynamics in quantum nanoscale systems [1–8]
has been a rapidly growing research topic for some years
now, emerging at the intersection of statistical mechanics,
nanoscience, quantum information, as well as atomic and
molecular physics. A paradigmatic goal in this field is to
conceive of and realize thermal machines in the quantum
realm, which, like the classical thermodynamic cycles, trans-
form heat to useful work or use work to refrigerate [9–21].
The development of efficient thermal machines operating
in the quantum realm is, in fact, of paramount importance
also for quantum technologies. Numerous theoretical pro-
posals [22–32] stimulated experimental efforts on several
platforms [33–35], including solid-state electronics [36–39]
and nanomechanical systems [40–44], as well as cold atoms
and trapped ions [45–49].

In its most simplified version, a quantum thermal machine
is composed of a working substance (typically a few-level
quantum system) coupled to two or more thermal baths kept
at different temperatures (and possibly at different chemi-
cal potentials). Engines and refrigerators can operate under
steady-state conditions, as thermoelectric engines, or be con-
trolled by time-periodic perturbations which define a cycle, as
in conventional macroscopic thermal machines. An example
of the latter is the quantum Otto engine, which has been
investigated theoretically [10,15,46,50–67] and realized ex-
perimentally [33,46,49]. Understanding how to discriminate
and characterize useful work, heat, and dissipated energy in

these systems is a fundamental step towards the realization
of nanomachines. In fact, unlike the ideal classical thermo-
dynamic cycles, quantum thermal machines typically operate
out of equilibrium [68,69], which necessarily implies en-
tropy production and dissipation. In addition to its impact
on emerging technologies, the study of quantum heat engines
and refrigerators is also of fundamental importance to deepen
our understanding of how energy flows and transforms at the
nanoscale [30,54,70–74].

In the present work, we will consider adiabatically driven
thermal machines. Their cycle is controlled by time-periodic
changes of a set of parameters which are slow compared to
the typical time scales associated with the (quantum) working
substance (see for example Refs. [75,76]). The modulation
can be associated with parameters of the baths (temperature,
chemical potential, . . . ) or the working medium (external
fields, coupling constants, . . . ), see Fig. 1. We will refer to
these quantum machines as geometric thermal machines. In
this regime and for small amplitude of the thermal bias, the
operation has a purely geometric description. At the heart of
this description is the thermal geometric tensor introduced
in Sec. III. Within the adiabatic linear response regime, the
process of heat-work conversion is related to the antisymmetric
component of the thermal geometric tensor, while the dissi-
pation and entropy production are related to the symmetric
component of the same tensor. Importantly, the antisymmet-
ric component has the structure of a Berry curvature, which
depends only on the geometry of the cycle in parameter
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FIG. 1. Geometrical thermal machine setup. A central, paramet-
rically driven quantum system described by the Hamiltonian HS

is coupled to macroscopic reservoirs. A cycle of the machine is
completely characterized by a closed path in the parameter space
X. After a complete cycle the averaged power P is dissipated as
heat in the reservoirs. The net transported energy JQ

tr flows from one
reservoir to the other.

space, and can be straightforwardly expressed in terms of a
line integral in this space. This representation is very useful
for identifying optimal protocols of heat-work conversion.
Furthermore, the symmetric component has a geometric in-
terpretation in terms of thermodynamic length and can also
be represented as a line integral for cyclic protocols, which is
useful in the design of efficient protocols.

Our approach does not only allow one to describe a whole
class of quantum machines in a unifying picture. It also has
practical implications such as improved ways to optimize their
performance, as we illustrate by two paradigmatic systems: a
qubit and a quantum dot.

Starting from the seminal works of Aharonov and Bohm
[77] as well as Berry [78], geometric effects have pervaded
many areas of physics. In quantum transport, distinct contri-
butions of geometric origin affect charge and energy currents.
In the absence of an additional dc bias, the pumped charge
in a periodically driven system was shown to be of geometric
origin, and can thus be expressed in terms of a closed-path
integral in parameter space [79–84], akin to the Berry phase
[78]. A similar approach was adopted to analyze heat trans-
port in a driven two-level system weakly coupled to bosonic
baths [85]. Closely related to these ideas is the geometric
description of driving-induced forces [86–94], including ge-
ometric magnetism [95,96], with the extension of geometric
response functions to open systems also being discussed in
relation to Cooper pair pumping [97]. Geometric concepts
like a thermodynamic metric and a thermodynamic length
were recently introduced as promising tools to characterize
the dissipated energy and to design optimal driving proto-
cols [98–103]. Similar ideas are behind the description of
the adiabatic time-evolution of many-body ground states of
closed systems in terms of a geometric tensor [104–106]. The
topological characterization of mixed thermal states is also
close to these concepts [107,108].

This large body of work linking geometry to transport nat-
urally hints at similar connections for thermal machines. First,
thermal machines involve periodic variations of parameters
and one may naturally expect geometric effects in the sense

of Berry to play an important role. Second, the efficiency with
which thermal machines operate is reduced by dissipation,
and thus geometry enters the physics of thermal machines
also in a second rather distinct way through the concept of
thermodynamic length. In the present paper, under quite gen-
eral assumptions, we will show that the operation of quantum
thermal machines and the underlying heat-work conversion is
fundamentally tied to such geometric effects. We formulate
a unified description in terms of a geometric tensor for all the
relevant energy fluxes, which we refer to as thermal geometric
tensor. Within this description, pumping and dissipation are,
respectively, associated with the antisymmetric and symmet-
ric components of this tensor. We also show that not only
heat pumping but also the dissipated heat can be character-
ized in terms of an integral over a closed path in parameter
space. These results apply universally to any periodically and
adiabatically driven quantum system in contact with various
reservoirs, irrespective of the statistics obeyed by the parti-
cles, the strength of the coupling between the system and the
reservoir, or the presence of many-body interactions.

The article is organized as follows. In Sec. II, we introduce
the model of an adiabatic thermal machine. We also introduce
the linear-response formalism to treat ac adiabatic and thermal
driving. Section III is devoted to the analysis of the thermo-
dynamic behavior of the heat engine. This section contains
the principal results of the present work and shows how the
performance characteristics of the engine (efficiency, output
power, etc.) are of geometric origin. The central results of
this approach are captured by Eqs. (17), (18), (26), and (28)
which show that the pumped heat, the concomitant heat-work
conversion and the dissipated power have a geometric inter-
pretation. In the same section we will also analyze several
classes of adiabatic machines depending on the various adi-
abatic drivings. Following this general formulation, Sec. IV
focuses on two specific examples of thermal machines, which
are particularly relevant for experimental implementations.
We first consider a driven qubit which is asymmetrically and
weakly coupled to two bosonic thermal baths. We then discuss
a driven quantum dot coupled to two electron reservoirs. Con-
clusions and some additional perspectives related to our work
are presented in Sec. V. The appendices contain further details
on the derivation of the main results of the paper and explicit
calculations for the examples presented in the main text.

II. MODEL OF A GEOMETRIC THERMAL MACHINE

A sketch of the geometric thermal machine that we analyze
throughout this paper is shown in Fig. 1. It consists of a
central region containing the working substance, constituted
by a few-level quantum system, coupled to two thermal baths.
The quantum system is periodically driven by a set of N
slowly-varying parameters �X (t ). The baths are macroscopic
reservoirs of bosonic excitations or fermionic particles. The
macroscopic variables characterizing the thermal environment
such as the bath temperatures can also slowly vary in time.
We parametrize the bath temperatures as Tα (t ) = T + δTα (t )
(with α = L, R referring to the left and right reservoirs) and
define �T (t ) = δTL(t ) − δTR(t ). A (possible) time depen-
dence in the bath temperatures is only included in δTα (t ). We
assume that the right reservoir R is the colder one.
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TABLE I. Notation used in the text.

N Number of slowly varying coupling parameters
N + 1 Number of slowly varying coupling parameters

including thermal bias
�v Arrows denote N-dimensional vectors
v Bold fonts denote (N + 1)-dimensional vectors
� , �′ Labels of elements of N-dimensional vectors

or matrices
μ , ν Labels of elements of (N + 1)-dimensional

vectors or matrices←→
M N × N matrix

M (N + 1) × (N + 1) matrix

Let us start with the simple observation that the thermal
bias, without the action of the ac driving, induces a net heat
flow from the hot to the cold reservoir. On the other hand, it is
useful to consider an analogy with the operation of classical
machines and notice that the modulation of the parameters
�X (t ) is introduced by some mechanism, which is akin to a
weight moving a wheel in the classical case. By the combined
effects of thermal bias and ac driving forces, it is possible to
realize heat-work conversion, which constitutes the key for
the operation of the device as a thermal machine. Two main
operational modes are possible. (i) In the heat engine mode,
part of the heat flowing in the direction of the thermal bias
is transformed into work performed against the mechanisms
ruling the dynamics of �X (t ). (ii) In the refrigerator mode, part
of the work induced by the action of the ac parameters can
be used to extract heat from the cold reservoir, against the
action of the thermal bias. In the latter case, the thermal bias
plays the role of the weight. In the operation of the thermal
machines, these processes come along with dissipation of
energy leading to entropy production. The efficiency of the
thermal machine relies on the appropriate balance between the
heat-work conversion mechanism and dissipation.

A. Heat, work, and operational modes

As we are interested in the dynamics for slow driving and
small temperature biases, it is convenient to define the N + 1-
dimensional vector of “velocities,”

Ẋ(t ) = { �̇X (t ),�T (t )/T }. (1)

These two types of vector notation (arrow and bold character)
appear in several places throughout the paper. For later refer-
ence, the Table I summarizes the different symbols used in the
text.

A temperature bias as well as time-dependent system and
bath parameters generally induce net heat transport between
the reservoirs. At the same time, any driving mechanism gen-
erates heat that is dissipated into the reservoirs. Hence, the
total heat current entering a given reservoir has a component
resulting from the net transport between the two reservoirs
and a component originated in the dissipation because of the
action of the driving forces. The net heat current JQ

α , averaged
over one cycle of period 2π/�, satisfies [109],

JQ
L + JQ

R = P, (2)

where P is the total dissipative power generated by the driving
forces, also averaged over one period. Identifying the compo-
nent due to transport and that due to dissipation in JQ

α is a non
trivial task in general. The transport component satisfies

JQ
tr,R = −JQ

tr,L ≡ JQ
tr , (3)

and we notice that only the total dissipative heat contributes to
Eq. (2). In the next section, we exactly calculate JQ

α to linear
order in Ẋ(t ) and we show that it satisfies Eq. (3). Hence, we
identify it with the leading term of the transport current.

The net heat transported per cycle between the two reser-
voirs is

Qtr = �

2π
JQ

tr . (4)

This component is defined such that Qtr > 0 when heat flows
in the direction of the thermal bias (hot to cold). We also
define the net work W performed on the system by the ac
forces during one cycle. We take W > 0 when the ac forces
exert work on the system. The balance between Qtr and W
is the key to the performance of the thermal machine, which
may operate as a heat engine by transforming heat into work
against the time-dependent driving or as a refrigerator, by
using the work performed by the ac driving to pump heat
from the cold to the hot reservoir. In the absence of heat-
work conversion, one finds that both Qtr � 0 and W � 0. In
the heat-engine mode, the heat–work conversion mechanism
operates against the ac forces and consequently W < 0. In
the refrigerator mode, the heat–work conversion mechanism
operates by using part of the work done by the ac forces to
pump heat against the thermal bias, so that Qtr < 0.

It is straightforward to generalize our considerations to
multi-terminal devices or to include additional macroscopic
variables beyond temperature such as an electrochemical po-
tential difference between reservoirs.

B. Adiabatic linear response

To analyze the performance of the adiabatic thermal ma-
chines, we need to compute the currents. This can be done
by conventional many-body techniques, such as the nonequi-
librium Green’s function formalism, scattering matrix theory
(for systems without many-body interactions), or master equa-
tions (for weak coupling between system and reservoirs).
Although we use these techniques to solve specific examples,
we employ a Hamiltonian representation for the temperature
difference and a Kubo linear response framework for small
�T to derive general results. This enables us to analyze the
energy dynamics induced by the thermal driving on the same
footing with that induced by the time-dependent driving. Here
we follow Luttinger’s approach [110] to thermal transport
which introduces a “gravitational” potential whose gradients
induce energy flows akin to the electrical currents induced
by gradients of the electrochemical potential. Details of this
approach are given in Appendix A.

We then introduce the Hamiltonian H governing the sys-
tem of Fig. 1, which can be expressed as

H(t ) = HS (t ) + Hbaths + Hc + Hth(t ). (5)

The first term HS (t ) is the Hamiltonian of the quantum sys-
tem. It depends on time through the N slowly and periodically
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varying parameters (driving potentials) �X (t ) = {X�(t )} with
� = 1, . . . , N , so that HS (t ) ≡ HS[ �X (t )]. The second term
describes the two reservoirs Hbaths = HR + HL, which are
macroscopic systems of bosonic excitations or fermionic par-
ticles. In the latter case, they are held at the same chemical
potential μL = μR = μ and should be described by the grand-
canonical Hamiltonian, Hα → Hα − μNα , where Nα denotes
the number of particles in reservoir α. The coupling between
system and reservoirs, such as tunneling of particles and/or
the exchange of energy between system and reservoirs, is
captured by Hc. Its form depends on the specific implementa-
tion, and some examples will be described later in the paper.
The last term in Eq. (5) accounts for the fact that the two
reservoirs are held at different temperatures and derives from
the Luttinger formulation of thermal transport. Adapting the
definition of Eq. (A3) to the present case, we define

Hth(t ) = −
∑

α=L,R

J E
α (t )ξα (t ), (6)

where ξα (t ) plays the same role as the thermal vector potential
and the operator representing the energy flux entering reser-
voir α is given by

J E
α = Ḣα = −i[Hα,H]/h̄. (7)

Here, Hα is the Hamiltonian of reservoir α. When the chem-
ical potential is the same for all reservoirs, time averaging
the mean value of this operator over one period τ = 2π/�

directly gives the heat current,

JQ
α = �

2π

∫ 2π/�

0
dt

〈
J E

α (t )
〉
. (8)

The relation between the Luttinger field and the temperature
bias, the counterpart of Eq. (A4), reads

ξ̇α (t ) = δTα (t )/T . (9)

Our quantum machine operates in a regime in which both
the driving parameters �X (t ) and the temperature bias δTα

[with the associated parameter ξα (t )] vary in time. Adiabatic
driving implies that the driving frequency � is small com-
pared to any characteristic frequency of the system’s degrees
of freedom as well as the relevant relaxation times associ-
ated with the coupling to the reservoirs. We can then regard
the velocities at which the parameters are changed and the
temperature bias as sufficiently small so that the currents can
be computed in linear response in Ẋ. This procedure was
previously introduced in Ref. [111] and it is similar to the one
of Ref. [104] for closed driven systems. The adiabatic time
evolution of any observable O is described by the Kubo-like
formula

〈O〉(t ) = 〈O〉t +
N∑

�=1

χ ad
t [O,F�]Ẋ�(t )

+
∑

α=L,R

χ ad
t

[
O,J E

α

]
ξ̇α (t ). (10)

Here, the left-hand side denotes an average with re-
spect to the nonequilibrium density matrix, while 〈O〉t is
an average with respect to the equilibrium density ma-
trix of the frozen Hamiltonian Ht = HS (t ) + Hbaths + Hc,

ρt = ∑
m pm|m〉〈m|, where pm = e−βεm/Zt , β = 1/kBT , and

Ht |m〉 = εm|m〉. Notice that the instantaneous eigenvectors
|m〉 and eigenenergies εm depend on the time t . Here we have
introduced the operator

F� = − ∂H
∂X�

, with � = 1, . . . , N, (11)

which has the interpretation of a force induced by the driving.
The adiabatic response functions appearing in Eq. (10) take
the form

χ ad
t [O1,O2] = − i

h̄

∫ t

−∞
dt ′(t − t ′)〈[O1(t ),O2(t ′)]〉t . (12)

We have also assumed that the perturbations are switched on
at t0 = −∞.

Within this framework, we can evaluate the adiabatic evo-
lution of any observable. We are particularly interested in
the energy current flowing into the coldest reservoir and the
induced forces. Similar to the definition in Eq. (1), we find it
convenient to define the N + 1-dimensional force vector

F = ( �F,J E
R

)
. (13)

Using this notation, the adiabatic dynamics for the forces and
the energy current into the coldest reservoir can be written as

〈F〉(t ) = 〈F〉t + �( �X ) · Ẋ. (14)

As expected, the physical response depends on the two Lut-
tinger parameters ξL(t ) and ξR(t ) only through the temperature
bias ẊN+1(t ) = �T (t )/T , as can be seen using Eqs. (B7) and
(B8). In Eq. (14), we introduce the response matrix �(X) with
elements defined as

�μ,ν ( �X ) =
{
χ ad

t [Fμ,Fν] μ � N∑
α=L,R χ ad

t

[
J E

α ,Fν

]
μ = N + 1

. (15)

Note that in deriving the linear response expression for the
current, one should neglect the term Hth

t , which would lead to
a “diamagnetic” component of the heat current [112]. The no-
tation in Eq. (15) highlights the fact that the �μ,ν ( �X ) depend
on time only through the parameters �X .

As the coefficients of Eq. (15) are evaluated with respect to
the frozen equilibrium density matrix, they obey the Onsager
relations [111,113]

�μ,ν ( �X , �B) = sμsν�ν,μ( �X ,−�B), (16)

where sν = ± for operators Fν which are even/odd under time
reversal. In view of its relevance for time-reversal symmetry,
we made a possible dependence on an applied magnetic field
�B explicit here, but will suppress it in the following unless
necessary.

C. Adiabatic forces, currents, and entropy
production over a cycle

In the geometric description of the adiabatic thermal ma-
chines, the central role is played by integrals of the forces
in Eq. (14) over a period, rather than by the instantaneous
quantities. First consider the energy current 〈J E

R 〉(t ) which
leads to a description of the heat fluxes introduced in Eq. (3)
within the adiabatic linear response formalism. The average
of the instantaneous heat current over one period, 〈J E

R 〉(t ),
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defines the transported heat flux within the adiabatic linear
response formalism. In fact, evaluating this current with the
adiabatic expansion of Eq. (10) and using the identities of
Eqs. (B7) and (B8), we can see that the average over one
period is identical in magnitude and opposite in signs at the
two reservoirs. Hence, we eliminate the label α and write

JQ
tr = �

2π

∫ 2π/�

0
dt

N+1∑
ν=1

�N+1,ν ( �X )Ẋν (t ). (17)

The term corresponding to the sum ν = 1, . . . , N is the pump-
ing contribution to the heat current. The literature on pumping
of charge and heat, starting with the seminal paper by Thou-
less [114], is so vast that it would be impossible to give a
proper account of it. A brief overview can be found in the
reviews [115,116]. One of the key results of the present paper
is to show how pumping affects the operation of a quantum
thermal machine, thus paving the way to observe geometric
effects in the operating mode of these systems. The last term
of Eq. (17), corresponding to ν = N + 1, is the heat current
flowing in response to a finite temperature bias across the
device.

For a single driving parameter and �T = 0, it is straight-
forward to show that the pumped heat current vanishes. At
least two parameters are necessary for pumping. This was
originally noticed in the framework of scattering matrix theory
for driven electron systems [79,81]. Moreover, a spatially
symmetric system has χ ad

t [J E
L ,F�] = −χ ad

t [J E
R ,F�], so that

these quantities should be zero in view of Eq. (B8). Hence,
breaking of spatial symmetry is another necessary condition
for a nonvanishing pumping contribution to the heat current
[109,117].

The net generated power has components associated to the
time-dependent driving forces as well as to the thermal bias,

P = �

2π

∫ 2π/�

0
dt

(
N∑

�=1

〈F�〉Ẋ�(t ) +
∑

α,β=L,R

〈J E
α 〉(t )ξ̇α (t )

)

= �

2π

∫ 2π/�

0
dt Ẋ · �( �X ) · Ẋ. (18)

The response matrix on the right-hand side of Eq. (18) was
introduced through the definition of forces and the energy
current in Eq. (14). While Eqs. (17) for the fluxes are linear
in Ẋ, Eq. (18) is bilinear in these parameters. This reflects
the fact that the dissipated heat, defined in Eq. (3) is at least
second order in these quantities–equivalent to being O(�2)
[109,117]. The cross terms proportional to the thermal bias
and ac driving usually have opposite signs and cancel one
another when evaluating the total power. This happens, in
particular, in the absence of a magnetic field with driving
forces symmetric under time reversal, as a consequence of the
Onsager relations (16).

From Eq. (2) for the total dissipated heat flux, we have the
following expression for the entropy production rate:

T Ṡ = JQ
L + JQ

R = P. (19)

Substituting Eq. (18), we get

Ṡ = �

2πT

∫ 2π/�

0
dt Ẋ(t ) · �( �X ) · Ẋ(t ). (20)

We present an alternative derivation for the above expression
in Appendix C.

The forces 〈F�〉(t ) enter the work performed by the thermal
machine, as will be discussed in more detail in Sec. III B
below. We also find it useful to introduce average of the force
over one period,

F� = �

2π

∫ 2π/�

0
dt〈F�〉(t ) = F�,BO + F�,ar, �,= 1, . . . , N.

(21)

The first term of Eq. (21) corresponds to the instantaneous
equilibrium (Born-Oppenheimer) description given by the
first term of Eq. (14), while the second term is the first order
adiabatic reaction force defined in Ref. [86].

III. GEOMETRIC CHARACTERIZATION

A. Thermal geometric tensor

It is instructive to decompose the tensor �μ,ν ( �X ) into its
symmetric and antisymmetric parts,

�S,A
μ,ν = 1

2 (�μ,ν ± �ν,μ). (22)

Equation (20) for the entropy production implies that the sym-
metric component �S

μ,ν controls dissipation. Since the rate of
entropy production Ṡ is non-negative, the symmetric part �S

μ,ν

can be viewed as a metric tensor on the space of thermody-
namic states [98,99,101]. Then, geodesics with respect to this
metric correspond to adiabatic trajectories which minimize
dissipation [98,99,101]. This contribution to �μ,ν ( �X ) has also
been referred to as geometric friction [95,96,99].

We can obtain an explicit expression for �μ,ν from the
Lehmann representation (see details in Appendix D). The
result for the symmetric component is

�S
μ,ν ( �X ) = h̄π lim

ω→0

∑
n,m

pm
(εn − εm)2

ω
Re[〈∂μm|n〉〈n|∂νm〉]

× [δ(ω − (εm − εn)) − δ(ω − (εn − εm))]. (23)

Here, |m〉 and εm denote the instantaneous eigenstates and
eigenenergies of Ht and pm is the corresponding thermal
weight, with the same definitions as in Eq. (10). Similarly,
the antisymmetric component can be expressed as

�A
μ,ν ( �X ) = 2h̄

∑
m

pm Im[〈∂μm|∂νm〉]. (24)

In the limit of zero temperature, the sum over m is domi-
nated by the ground state and �A

μ,ν ( �X ) reduces to its Berry
curvature. For �T = 0, this component can be viewed as a
velocity-dependent force, akin to a Lorentz force, which does
not contribute to the net entropy production. This contribution
has been referred to as geometric magnetism [85,88–90,95].

It is interesting to compare �μ,ν to the quantum geometric
tensor for the instantaneous ground state |ψ〉 of a closed
system as a function of parameters X� [105,106],

g�,�′ = 〈∂�ψ |∂�′ψ 〉 − 〈∂�ψ |ψ〉〈ψ |∂�′ψ 〉. (25)

Analogous to �μ,ν , the symmetric part of g�,�′ defines a metric
on the manifold of ground states and the antisymmetric part
equals the Berry curvature. The crucial difference between the
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two tensors is that the quantum geometric tensor is defined
for a discrete spectrum, while �μ,ν assumes a continuous
spectrum. This does not lead to essential differences for the
antisymmetric components of the tensors which are nondis-
sipative. In contrast, the symmetric part of �μ,ν controls
dissipation and therefore vanishes for a discrete (or gapped)
spectrum. We can therefore view �μ,ν as the analog of the
quantum geometric tensor for systems with continuous spec-
tra. In view of this analogy, we refer to �μ,ν as the thermal
geometric tensor.

In time-reversal symmetric systems subject to driving
parameters �X which also respect time-reversal symmetry, dif-
ferent parts of the thermal geometric tensor are either purely
symmetric or antisymmetric. The Onsager relations (16) im-
ply that ��,�′ = ��′,� (�, �′ = 1, . . . , N) is purely symmetric
(corresponding to geometric friction without geometric mag-
netism). In contrast, �N+1,� = −��,N+1 (corresponding to
geometric magnetism without geometric friction). In systems
which break time-reversal symmetry, both the symmetric and
the antisymmetric components of the thermal geometric ten-
sor are generally nonzero.

B. Thermal machines and geometry

The above analysis implies that there are several purely ge-
ometric quantities which enter into the operation of adiabatic
quantum thermal machines. We will show in the following
that in a very concrete sense, it is the geometric aspects (in the
sense of Berry) which are responsible for the heat-work con-
version underlying thermal machines. The Carnot limit of the
efficiency is reached in a purely geometric thermal machine,
and deviations from the Carnot limit are due to nongeometric
contributions.

An essential quantity is the total heat transported between
the leads per cycle, Qtr defined in Eq. (4). In a heat engine,
this heat is in part converted into useful work while in a
refrigerator, this heat is extracted from the colder reservoir.
The transported heat takes the form

Qtr =
∮ N∑

�=1

�N+1,�dX� +
∮

dt�N+1,N+1
�T

T
. (26)

The first term on the right-hand side is geometric, depending
only on the path, and has a simple physical interpretation. It
is just the heat which is pumped between the reservoirs due to
the periodic variation of the parameters �X ,

Qtr,ac =
∮ N∑

�=1

�N+1,�dX�. (27)

The second term describes the heat current driven by the
applied temperature bias as a result of the heat conductance
�N+1,N+1 of the system. Notice that the two terms typically
have a different dependence on the period 2π/�. Due to its
geometric nature, the first term is independent of the period.
In contrast, the second term is in general proportional to the
period.

The pumped heat per cycle is essential for the operation of
adiabatic quantum thermal machines. To see this, we com-
pute the work W = ∮

d �X · �F per period performed on the
system during one cycle of the ac sources. The forces, as

described by Eq. (14), have an instantaneous and a linear-
response component. The instantaneous contribution depends
only on the parameters �X and is evaluated in the absence of the
temperature bias. This equilibrium contribution to the force is
necessarily conservative (in the mechanical sense) and thus
gives a vanishing contribution to the work performed over a
cycle. Thus only the linear-response component contributes
to the work per cycle,

W =
∮

dt
N∑

�,�′=1

Ẋ���,�′ Ẋ�′ +
∮ N∑

�=1

dX���,N+1
�T

T
. (28)

First consider the second term on the right-hand side. For
constant �T/T , this term is again a purely geometric line
integral over a closed contour. Unlike the contribution of the
instantaneous component, this term is in general nonconser-
vative and gives a finite contribution when integrated over
a closed cycle. The reason is that this term originates from
the nonequilibrium contribution to the force which is gen-
erated by the temperature bias. Along with Eq. (27) for the
pumped heat, this geometric term is the essence of heat-work
conversion and hence crucial for the operation of the thermal
machine. In contrast, the first term in Eq. (28) describes fric-
tional losses. Unlike the second term, which can take either
sign, this term is always positive. It then becomes evident
that heat-work conversion is rooted in the geometric terms in
Eqs. (26) and (28), and it is the nongeometric terms (in the
sense of Berry) that are responsible for losses. We will see
this again below when we discuss the efficiencies of quantum
thermal machines.

As a result of the Onsager relations (16), the geomet-
ric contributions to the transported heat and the work are
very closely related. If the system is time-reversal invariant
(which also requires that the parameters �X couple to time-
reversal-even operators), the Onsager relations imply that
�N+1,� = −��,N+1 and the prefactor of �T/T in Eq. (28)
just equals minus the pumped heat between the reservoirs.
We can then understand the operation of a heat engine as
follows. During one cycle of the machine, the cyclic variation
of the parameters pumps heat from the high-temperature to
the low-temperature reservoir. The corresponding change in
free energy is converted into work W performed on a load
(i.e., W < 0). Here, the load corresponds to an external agent
which couples to the dynamics of the parameters �X . This
is analogous to the operation principle of inverted quantum
pumps as adiabatic quantum motors [118–122]. Similarly, in
a refrigerator work W = −Qtr,ac�T/T > 0 must be supplied
by the ac sources to overcome the thermal bias and to pump
heat Qtr,ac from the low-temperature to the high-temperature
reservoir.

It is also interesting to discuss this heat-work conversion in
the context of the entropy production rate defined in Eq. (19).
With the definitions of this section, we can write

T Ṡ = �

2π

(
W + Qtr

�T

T

)
. (29)

The first term corresponds to the total power generated by the
ac sources, while the second term corresponds to the power
invested to transport the heat Qtr per cycle in the presence of
the thermal bias �T . Due to the heat-work conversion, the
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geometric component of W exactly cancels the component
Qtr,ac of Qtr in the dissipated power (still assuming time-
reversal invariance). Entropy production is then associated
with the nongeometric contributions to heat and work. In a
heat engine, a negative balance of the two terms contributing
to Eq. (28), W < 0, can be used to work against the load.
In a refrigerator, both terms are positive since one has to
overcome the frictional losses in addition to pumping heat
from the cold to the hot reservoir. It is important to notice that
the two terms in Eq. (28) are typically of different orders in
the period 2π/�. While the first, nongeometric contribution
is inversely proportional to the period, the second, geometric
contribution is independent of it. Thus one can often neglect
the nongeometric term when considering the limit of small
frequency �. As we will show below, we note that under cer-
tain circumstances the first term in Eq. (28) can also be viewed
as a geometric quantity even though it cannot be immediately
rewritten as a line integral.

We close this section by a few additional remarks. The
operation of a heat engine or refrigerator requires that a net
amount of heat Qtr,ac is pumped between the reservoirs during
a cycle, requiring that the force is nonconservative. Above,
we have focused on the case that �T/T is constant over
the cycle. In principle, the conditions for the operation of
adiabatic quantum thermal machines can be less stringent if
one allows �T/T to vary along the cycle, for instance by
coupling the system to different reservoirs at different stages.

In the absence of time-reversal symmetry, the Onsager
relations connect the response functions �μ,ν at different
magnetic fields. In this case, there is no general relation
between �N+1,� and ��,N+1 for a fixed magnetic field,
and in addition to the antisymmetric contribution �A

N+1,� =
−�A

�,N+1, there could also be a symmetric contribution,
�S

N+1,� = �S
�,N+1. Unlike �A

μ,ν , the symmetric �S
μ,ν is asso-

ciated with entropy production and dissipation according to
Eq. (18). Even if both the dissipative and the nondissipative
contributions to the pumped heat flow from the hot to the
cold reservoir, the work performed on a load would involve
the difference between the antisymmetric and the symmetric
contribution.

The time average of the forces �F as defined in Eq. (21) also
has contributions which are purely geometric. From Eq. (14),
the first-order adiabatic reaction component can be readily
rewritten as

F�,ar = �

2π

{∮ N∑
�′=1

��,�′dX�′ +
∮

dt��,N+1
�T

T

}
. (30)

Here, the first term on the right-hand side is a line integral
which is purely geometric in that it depends only on the path.

Finally, we remark that under certain conditions, the dis-
sipated component of W , corresponding to the first term of
Eq. (28), can also be formally represented in terms of a line
integral over a closed path in parameter space. This is not
as straightforward as for Eqs. (30), (26), and (28) since the
power is bilinear in Ẋ. It is, however, possible when there
exists a well-defined mapping between Ẋ and X as the latter
varies along the closed path γ . In particular, such a map-
ping exists for the case of periodic driving. For a smooth
path γ , one can write the relations Ẋμ = �gμ( �X )|γ for all

μ, where the functions gμ( �X )|γ are defined by eliminating
the parametrization in t between Xμ(t ) and Ẋμ(t ). Then, we
can write the dissipated power as a line integral by using
this relation to eliminate one of the factors of Ẋμ in Eq. (18)
via these relations. Note that the resulting line integral has a
prefactor of �, making it explicit that the dissipated power is
inversely proportional to the period of the driving, as already
mentioned above.

The line integrals controlling the operation of adiabatic
thermal quantum machines are reminiscent of line integrals
over Berry connections. This motivates us to introduce the
vector fields

�AA/S
μ = (

�
A/S
μ,1 ( �X ), . . . , �A/S

μ,N ( �X )
)

(31)

with μ = 1, . . . , N + 1 for the rows of the thermal geometric
tensor. Similarly, we introduce

�̃A =
∑

�

(
�̃S

�,1( �X ), . . . , �̃S
�,N ( �X )

)
, (32)

where �̃S
μ,ν ( �X ) = gμ(Xμ)�S

μ,ν ( �X ). These vector fields control
the pumped heat and the work performed on the system as
well as the dissipated power. Thus they are useful to illustrate
the operation of the specific thermal machines which we dis-
cuss in Sec. IV. In terms of these vector potentials Eqs. (27)
and (28) read, respectively,

Qtr,ac =
∮

�AN+1( �X ) · d �X , (33)

with �Aμ( �X ) = �AA
μ( �X ) + �AS

μ( �X ) and

W =
∮ [

�̃A( �X ) − �T

T

( �AA
N+1( �X ) − �AS

N+1( �X )
)] · d �X . (34)

In the latter equation, the last term does not contribute for
many systems. In particular, this is the case in the presence
of time-reversal symmetry (including driving parameters �X
coupling to time-reversal-even operators). In such cases, we

can write W = ∮ �̃A( �X ) − (�T/T )Qtr,ac.

C. Efficiencies

1. Heat engine

In a heat engine, heat transported from the high- to the low-
temperature reservoir is partially converted into useful work.
We can then define an efficiency for the heat engine as

η(he) = −W

Qtr
. (35)

This expression can be readily analyzed for a time-reversal-
invariant system with constant �T/T . In the limit of adiabatic
operation of the heat engine, � → 0, we can neglect the
frictional losses to leading order and only the second term
on the right-hand side of Eq. (28) contributes to the work
performed against the load, W 
 −Qtr,ac�T/T . If the heat
transfer across the system is dominated by the geometric
contribution, one finds Qtr 
 Qtr,ac, and hence that the ef-
ficiency approaches η(he) 
 �T/T . Remarkably, this is just
the Carnot efficiency. We thus find that a purely geometric
quantum thermal machine reaches the optimal efficiency, and
it is the nongeometric contributions to W and Qtr (in the sense
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of Berry) which are responsible for deviations from the Carnot
efficiency. Indeed, a finite heat conductance diminishes the
efficiency of the heat engine, as do frictional losses described
by the first term on the right-hand side of Eq. (28). Note that
the contribution of the heat conductance to the transferred heat
is proportional to the period of the cycle. This implies that this
term is less detrimental to the efficiency as the frequency at
which the machine operates increases. Conversely, by increas-
ing the frequency, the effect of the frictional losses becomes
larger.

While the overall efficiency is fundamentally limited to
the Carnot limit, there is no fundamental limit to reducing
the detrimental effects of the nongeometric contributions.
While the frictional forces become arbitrarily small as one ap-
proaches the truly adiabatic limit, the limit of a negligible heat
conductance �N+1,N+1 
 0 can be realized in a topological
quantum pump. In such pumps, the ground state is separated
from the excited states by a gap. Consequently, the symmet-
ric contributions to �μ,ν–including the heat conductance–are
strongly suppressed.

2. Refrigerator

A refrigerator uses work W performed on the system to re-
move heat from a cold to a hot reservoir. Thus we can define a
corresponding efficiency or coefficient of performance (COP)
as

η(fr) = −Qtr

W
. (36)

Again focusing on a time-reversal invariant system with con-
stant �T/T , this efficiency approaches the Carnot limit ηfr =
T/�T for zero heat conductance. The efficiency is reduced
by a finite heat conductance since, for a refrigerator, its con-
tribution to the numerator has the opposite sign compared to
the pumped heat.

3. Heat pump

Of course, the device can also be used as an adiabatic
heat pump in the absence of a thermal bias �T/T . Heat is
transported from left to right or vice versa due to the variation
of �X . According to Eq. (28), we need to exert work W associ-
ated with dissipation, even if there is no temperature bias. We
can then define a corresponding efficiency of heat pumping
through

η(pump) = |Qtr,ac|
W

. (37)

The denominator in this expression is proportional to �, so
that the efficiency of the heat pump grows as it becomes more
adiabatic.

IV. EXAMPLES

We now illustrate the general formalism introduced in the
previous sections by two driven systems coupled to thermals
baths. One example is referred to as a driven qubit and consists
of a generic two-level system with time-dependent energies
and inter-level transition matrix elements, coupled to baths of
bosonic excitations. This problem will be solved in the limit
of weak coupling to the reservoirs. The second example is a

driven quantum dot, which consists of a confined structure
with two single-electron levels—one per spin orientation—
driven by a rotating magnetic field. This problem is solved for
weak as well as for strong coupling to spin-polarized electron
reservoirs.

A. Driven qubit

We consider a generalization of the celebrated spin-boson
model, which was introduced in Refs. [123,124]. As in
those works, we express the Hamiltonian in terms of the
Pauli matrices �̂σ = (σ̂x, σ̂y, σ̂z ) and a magnetic field �B(t ) =
(Bx(t ), By(t ), Bz(t )). In our case, the latter varies periodically
in time. The ensuing Hamiltonian reads

HS (t ) = �B(t ) · �̂σ. (38)

The reservoirs are represented by the Hamiltonians

Hα =
∑

k

εkαb†
kα

bkα, α = L, R, (39)

with bkα and b†
kα

being the annihilation and creation operators
of a bosonic excitation.

The coupling is described by the Hamiltonian Hc =
Hc,L + Hc,R. Our generalization with respect to previous
works is to consider different types of couplings to the L and R
reservoirs. This is motivated by the fact that spatial inversion
symmetry has to be broken in order to obtain pumping, as
mentioned in Sec. II C. Concretely, the Hamiltonians read

Hc,α =
∑

k

Vkατ̂α (bkα + b†
kα

), (40)

with τ̂L = σ̂x and τ̂R = σ̂z. Hence, the q-bit couples to the L or
R reservoir if it is in a state with a nonvanishing projection on
the eigenstates |x,±〉 of σ̂x or |z,±〉 of σ̂z, respectively. Any
other combination of two Pauli matrices with τ̂L �= τ̂R would
also be appropriate, as we will discuss in Sec. IV A 3. Previous
works related to heat engines based on q-bits considered the
same type of coupling to the two reservoirs and nonadiabatic
driving [62,85,125–135].

The Hamiltonian for the system of Eq. (38) can be
transformed to the basis of instantaneous eigenstates | j〉,
such that HS (t )| j〉 = Ej (t )| j〉, j = 1, 2, with E1,2(t ) =
∓| �B|. The resulting transformed Hamiltonian reads H̃S (t ) =
Û −1(t )HS (t )Û (t ) with Û (t ) being a unitary transformation
and

H̃S (t ) = E1(t )|1〉〈1| + E2(t )|2〉〈2|. (41)

Accordingly, the contact Hamiltonian can be also expressed
in this basis as

H̃c,α (t ) =
∑

k

∑
i j

Vkαvα,i j (t )ρ̂i j (t )(bkα + b†
kα

), (42)

with vα,i j (t ) = [Û −1(t )τ̂αÛ (t )]i j , Û (t ) being the unitary
transformation which diagonalizes the Hamiltonian (38), and
ρ̂i j = |i〉〈 j|.

Before proceeding to explicit calculations, we can gather
some intuition on how the driven q-bit may work as a thermal
machine by using the sketch of Fig. 2. As a consequence of the
driving, the energy of the two levels as well as the coupling to
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FIG. 2. Illustration of the q-bit coupled to two bosonic reservoirs
by the Hamiltonian of Eq. (40) with τ̂L = σ̂x and τ̂R = σ̂z, operating
as a heat engine. (a) The q-bit is in one of the states |x, ±〉 and
couples to the reservoir L. (b) The q-bit is in one of the states |z,±〉
and couples only to the reservoir R. The driving changes the energy
difference between the two levels.

the L and R reservoirs change in time according to Eqs. (41)
and (42), respectively. Panel (a) represents a situation where
the q-bit at a given time t1 is in one of the eigenstates of
σ̂x, hence, it couples to the L reservoir and it is completely
decoupled from R. Panel (b) illustrates the situation where the
q-bit is in an eigenstate of σ̂z at a different time t2, therefore
it is coupled to R and decoupled from L. In an evolution from
t1 to t2 the energy difference δE (t ) = E2(t ) − E1(t ) changes.
A cycle can be realized when the protocol returns the q-bit
to the state of the step (a). The paradigmatic Otto cycle cor-
responds to the extreme situation, where the q-bit is allowed
to thermalize with L at the step (a) and with R at the step
(b), while it evolves decoupled from the two reservoirs at
intermediate times [62,66]. For the case of adiabatic driving,
the changes take place smoothly and the q-bit is coupled to the
two reservoirs at all times. For suitable protocols, the setup
may anyway operate as a heat engine or refrigerator, as well
as a heat pump.

We will analyze in detail protocols with two time-
dependent parameters of the form �B(t ) = (Bx(t ), 0, Bz(t )),
with

Bx(t ) = Bx,0 + Bx,1 cos(�t + φ),

Bz(t ) = Bz,0 + Bz,1 cos(�t ). (43)

These two components of �B(t ) are identified with the time-
dependent parameters of Eq. (5) as follows:

�X (t ) = (X1(t ), X2(t )) ≡ (Bz(t ), Bx (t )). (44)

In addition, we will consider a constant difference of tem-
perature �T , which defines Ẋ3 = �T/T . We will solve the
problem in the limit of very weak coupling between the qubit
and the reservoirs (small Vkα).

1. Master equation approach

We follow the procedure of Refs. [25,82,136], which
consists in solving the time-dependent master equation by
performing an adiabatic expansion along the lines of the gen-
eral formalism of Sec. II B. The basic idea is to describe the
evolution of the population probabilities of the eigenstates
of H̃S (t ), represented by the vector p(t ) = (p1(t ), p2(t )), in
terms of a master equation where the effect of the coupling
to the reservoirs is treated at the lowest order of perturbation
theory (first order in |Vkα|2). The master equation reads

d

dt
p(t ) =

∑
α

Mα ( �B) · p(t ), (45)

where Mα ( �B) is a 2 × 2 matrix representing the instantaneous
transition rates corresponding to the reservoir α, which is
given by

Mα ( �B) =
[
−�α

1→2( �B) �α
2→1( �B)

�α
1→2( �B) −�α

2→1( �B)

]
. (46)

Here we stress that the instantaneous rates depend on time
through the parameters �B, as indicated in Eq. (44). We have
introduced the following definitions:

�α
1→2( �B) = λα ( �B)[γα (δE ( �B)) + γ̃α (−δE ( �B))],

(47)
�α

2→1( �B) = λα ( �B)[γ̃α (δE ( �B)) + γα (−δE ( �B))],

with

γα (ε) = nα (ε)�α (ε)/h̄,
(48)

γ̃α (ε) = [1 + nα (ε)]�α (ε)/h̄,

while δE ( �B) = E2( �B) − E1( �B) and λα ( �B) = vα,12( �B)vα,21( �B).
For τ̂L = σ̂x and τ̂R = σ̂z, we have

λL( �B) = B2
x (t )

B2
z (t ) + B2

x (t )
, λR( �B) = B2

z (t )

B2
z (t ) + B2

x (t )
. (49)

nα (ε) is the Bose-Einstein distribution for bath α and �α (ε)
is the corresponding spectral density, which we assume to be
Ohmic

�α (ε) = �α ε e−ε/εC , with ε > 0, (50)

εC being the cutoff frequency. Since, according to Eq. (50),
there are no negative-energy states in the bath, we set
γα[−δE ( �B)] = γ̃α[−δE ( �B)] = 0 (notice that δE ( �B) is posi-
tive by definition).

Following Refs. [25,136], the population can be expanded
in different orders of the driving frequency �. Here we keep
only the zeroth-order (instantaneous) term p(i), and first-order
(adiabatic) term p(a) such that

p(t ) = p(i)(t ) + p(a)(t ). (51)

The solution of the master equation (45) order by order in �,
leads to ∑

α

Mα ( �B) · p(i)(t ) = 0 (52)
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and
d

dt
p(i)(t ) =

∑
α

Mα ( �B) · p(a)(t ). (53)

The adiabatic correction can be written in terms of instanta-
neous contributions as

p(a)(t ) =
∑

α

[M̄α ( �B)]−1 · d

dt
p(i)(t ), (54)

where the matrix [M̄α ( �B)]
−1

includes the normalization con-
dition for the adiabatic probabilities [82]. We obtain two
additional equations from the conservation of the probability,
namely

∑
j p(i)

j (t ) = 1 and
∑

j p(a)
j (t ) = 0.

The instantaneous (i), adiabatic (a) and thermal (th) contri-
butions to the heat current flowing in reservoir α as functions
of time are given by

J (i/a)
α (t ) = δE ( �B)[Mα ( �B) · p(i/a)(t )]11,

(55)
J (th)
α (t ) = δE ( �B)[Mα ( �B) · p(i)

�T (t )]11,

where p(i)
�T is the instantaneous probability vector in the pres-

ence of the thermal bias �T . We can now calculate the
different linear-response components of the heat current de-
fined in Eq. (17) as follows:

JQ
tr,ac/�T = �

2π

∫ 2π/�

0
dt J (a/th)

R (t ), (56)

while the instantaneous component vanishes when averaged
over the period.

On the other hand, the net work developed by the ac forces,
corresponding to Eq. (28) can also be calculated in the master
equation approach. To this end, we write the total energy of
the qubit at a particular time t as

Etot (t ) = E1(t )p1(t ) + E2(t )p2(t ), (57)

where the probabilities are given by the sum of the instanta-
neous p(i)

j , the adiabatic p(a)
j , and thermal p(th)

j components.
The time derivative of the total energy contains two contribu-
tions,

dEtot

dt
=

2∑
j=1

(
dEj (t )

dt
p j (t ) + Ej (t )

d p j (t )

dt

)
. (58)

These are the power delivered by the ac sources

P(t ) = dE1(t )

dt
p1(t ) + dE2(t )

dt
p2(t ), (59)

and the heat temporarily stored in the q-bit. Thus the total
work over a cycle reads

W =
∫ 2π/�

0
dt

(
dE1

dt
p1(t ) + dE2

dt
p2(t )

)
, (60)

where both instantaneous, adiabatic, and thermal components
of the probabilities p(t ) contribute. The contribution due to
the instantaneous components represents the work done by the
conservative forces, while the other terms will contribute to
the nonconservative work defined in Eq. (28). The explicit ex-
pressions for the different components of p(t ) for the driving
protocol of Eq. (44) are presented in Appendix E. We notice
that the terms originating from the coupling Hamiltonian in

Eq. (42), could in principle contribute to W and can be calcu-
lated from the time average of 〈 ˙̃Hc,α〉. However, this term is
neglected in the limit of very small Vkα . In fact, its contribution
to the work per cycle is smaller (by at least a factor of |Vkα|)
than the contribution to the work due to H̃S (t ).

2. Geometrical properties

We now derive the expressions corresponding to Eqs. (27)
and (28) within the formalism of the master equation. These
can be derived from Eqs. (56) and (60). We get

Qtr,ac =
∫ 2π/�

0
dt M(h)

R ( �B) · p(a)(t ), (61)

W =
∫ 2π/�

0
dt

dE
dt

· [
p(a)(t ) + p(i)

�T (t )
]
, (62)

where

M(h)
R ( �B) = δE ( �B)

[
−�R

1→2( �B)

�R
2→1( �B)

]T

. (63)

and E(( �B)) = (E1(t ), E2(t )). Using Eq. (54) and

dp(i)

dt
=

2∑
�=1

∂p(i)

∂B�

Ḃ�, (64)

the pumped heat given by Eq. (61) can be written as in
Eq. (27), by identifying

�3,�( �B) = M(h)
R ( �B) · M̄−1( �B) · ∂p(i)

∂B�

, � = 1, 2. (65)

In the present configuration, the explicit calculation of these
coefficients show that �3,� = −��,3, up to a function that van-
ishes upon integrating over the period. This means that these
terms are components of the antisymmetric thermal tensor
�A

μ,ν . The other components of the tensor can be derived from
the first terms (∝ p(a)(t )] of Eq. (62). More precisely, using
Eq. (54) with Eq. (64), and expressing

dE
dt

=
2∑

�=1

∂E
∂B�

· Ḃ�, (66)

we find

��,�′ ( �B) = ∂E
∂B�

· M̄−1( �B) · dp(i)

∂B�′
, �, �′ = 1, 2. (67)

We can see that these terms satisfy ��,�′ = ��′,�, as explic-
itly shown in Eq. (E10). Hence they are components of the
symmetric tensor �S

μ,ν .
On the other hand, by using the fact that we can define a

relation of the form Ḃ� = g�( �B)� for the protocol of Eq. (44),
we can express the total work in terms of purely geometric
quantities, by rewritting Eqs. (61) and (62) in terms of the
vector potentials of Eqs. (31) and (32). In the present case,
they read

�AA
3 ( �B) = (

�A
3,1( �B),�A

3,2( �B)
)
,

�AS
� ( �B) = (

�S
�,1( �B),�S

�,2( �B)
)
, � = 1, 2, (68)

�̃A( �B) = �

2∑
�=1

g�( �B)
(
�S

�,1( �B),�S
�,2( �B)

)
,
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We have highlighted the antisymmetric and symmetric char-
acter in each case. Notice that, according to the analysis of
Secs. II C and III, the symmetric component contributes
purely to dissipation of energy and entropy production, while
the antisymmetric one is related to useful work.

In order to characterize the performance of the heat engine
and refrigerator as in Eqs. (35) and (36), we also need the heat
transported in one period as a response to the thermal bias. It
reads

Qtr,�T =
∫ 2π/�

0
dt J (th)

R (t ) (69)

with J (th)
R (t ) defined in Eq. (55). This component is not geo-

metric and we recall that the total transported heat is Qtr =
Qtr,ac + Qtr,�T.

According to our conventions, the contribution to the con-
tour integral of the first component of Eq. (34) is always
positive and is the portion related to the net dissipated power
and entropy production due to the ac driving. Instead, the
second one, also defining Qtr,ac in Eq. (33), can have any
sign. In the case of a heat engine, Qtr,ac and Qtr,�T have the
same sign, i.e., the pumped heat flows in the same direction as
the component induced by the temperature bias. As a conse-
quence, it generates useful work that can be absorbed by the ac
sources. Notice that in such a case, the second term of Eq. (34)
has an opposite sign to the first. In the refrigerator, it is the
opposite. Irrespectively of the sign of Qtr,ac, which determines
that the system operates as a heat engine or a refrigerator, the
crucial quantity to optimize is the integral of �AA( �B) over a
suitable chosen closed path in the parameter space.

3. Results

We present some results for specific parameters of the
driving protocol defined in Eq. (44).

We start by analyzing the case with �T = 0 and showing
that a necessary condition for the heat currents to be finite is
that the coupling to the left and right reservoirs are different,
i.e., τ̂L �= τ̂R. In fact, let us notice that these couplings deter-
mine the functions λL( �B) and λR( �B). If we assume symmetric
couplings, we have λL( �B) = λR( �B) and �L = �R. Therefore
we get ML( �B) = MR( �B) in Eq. (46). After replacing the latter
matrices in Eq. (55), we get J (a)

L (t ) = J (a)
R (t ) at every time.

This implies that the currents obtained by averaging over
one period, i.e., JQ

tr,L and JQ
tr,R ≡ JQ

tr,ac, must be equal to zero
in order to agree with Eq. (3). Interestingly, one can check
by means of the explicit calculations that the adiabatically
pumped current in one period JQ

tr,ac is zero even if one allows
�L and �R to be different. Moreover, we verified that the
magnitude of the pumped heat current depends on the chosen
combinations of Pauli matrices (see Appendix E). The maxi-
mum pumping for the protocol of Eq. (44) corresponds to Hc,α

containing τ̂L = σ̂x and τ̂R = σ̂z, as in Eq. (40). As a matter
of fact, in the other two combinations (τ̂L = σ̂x, τ̂R = σ̂y, and
τ̂L = σ̂y, τ̂R = σ̂z) one obtains half the magnitude.

We now turn to analyze the geometric properties, which
can be fully characterized by the vector potentials �AA( �B) and
�̃AS ( �B), entering Eqs. (34) and (33). These vectors are rep-
resented with arrows in the parameters space in Fig. 3. In
the same figure, we show several paths, which are plotted in

0.1 0.2 0.3
Bz

0.1

0.2

0.3

B
x

φ = π
2

0.1 0.2 0.3

0.1

0.2

0.3

φ = π

0.1 0.2 0.3

0.1

0.2

0.3

φ = 3π
2

0.1 0.2 0.3

0.1

0.2

0.3

φ = 2π

FIG. 3. Vectors �AA and �̃AS
. Black and red arrows represent the

vector �AA
3 ( �B) ≡ (�A

3,1( �B),�A
3,2( �B)) in the parameter space, while

the green arrows represent the vector �̃AS
defined in Eq. (32). The

blue line is the closed path corresponding to the driving protocol
in Eq. (44) with Bx,0 = Bz,0 = 0.2kBT , Bx,1 = Bz,1 = 0.1kBT . The
other parameters are �L = �R = 0.2 and εC = 100kBT and define
the spectral properties of the bosonic bath as indicated in Eq. (50).

blue, corresponding to the protocol of Eq. (44) with different
relative phases φ. This provides a visual representation of the
magnitude of Qtr,ac and the two types of geometric compo-
nents of W . In all the cases, we represent with red arrows the
vector �AA( �B) along the path while the green arrows represent

the vector potential �̃AS ( �B) along the same protocol (note that
�̃AS ( �B) is inherently associated with the protocol and cannot
be defined outside it). The latter vectors follow the circula-
tion of the path. Thus they lead to a positive nonvanishing
contribution to W for all the values of φ. Instead, the vectors
�AA( �B) are in general opposite to the circulation of the path
along some pieces. In particular, for trajectories like the ones
corresponding to φ = nπ , they are parallel to the circulation
along half of the path and antiparallel in the other half, leading
to a vanishing result of the integral.

In Fig. 4, we plot the adiabatically pumped heat current
Qtr,ac, black curve, as a function of the phase lag φ in the weak
pumping limit. The latter corresponds to considering values
of Bx,1 and Bz,1 small enough so that

∮ �AA
3 · d �B in Eqs. (34)

and (33) is proportional to the area, in the parameter space,
enclosed by the closed contour defining the protocol. Indeed,
using the Green’s theorem, these integrals can be written as
a surface integral of the derivatives of �AA

3 with respect to �B.
When Bx,1 and Bz,1 are small, such derivatives do not depend
on �B and can be factorized outside the integral. Accordingly,
as shown in Fig. 4, the pumped heat current (black curve)
behaves as a sine function of φ, which vanishes at φ = 0.
In particular, we note that a heat current is extracted from
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FIG. 4. Adiabatically pumped heat Qac and total work W vs the
phase lag φ in the weak pumping limit for �T = 0. Same parameters
as in Fig. 3.

the reservoir R when φ is between 0 and π and injected for
π < φ < 2π . The dependence of the total work W developed
by the ac sources with respect to the phase lag φ is is also
plotted in Fig. 4 (red curve) using the same parameters as for
the heat current. We notice that W is finite in the whole range
of values of φ, behaving like a cosine function with a vertical
offset, hence, it is nonvanishing in any case.

In what follows, we show some results for the strong pump-
ing regime corresponding to larger amplitudes of Bx,1 and Bz,1.
In the top panel of Fig. 5, we plot the heat pumped and the
work performed in a period by the ac source as functions of
the phase lag φ. As in the case of weak pumping previously
analyzed, the pumped heat as well as the work performed by
the ac sources are equal to zero at φ = 0 and π , since the
contour has no area (see Fig. 3). For other parameters, it is
difficult to make a simple argument to explain in which direc-
tion is the heat pumped. In fact, we see that Qtr,ac changes sign
many times between φ = 0 and φ = 2π , whereas W shows
multiple positive peaks. In the bottom panel of Fig. 5, we plot
the pumped heat in the absence of thermal bias as a function
of temperature. For a suitable choice of parameters (relative
to the solid curves), the direction of the flow of adiabatic
heat can be reversed just by increasing the temperature of
the reservoirs. In Fig. 6, we plot the variation of the heat
pumped and the work performed by the ac source, namely
Qtr,ac and W , as a function of the temperature T . We note
that W is always positive, as expected, and is non monotonous
(displaying a maximum). Qtr,ac are the same data as in Fig. 5
bottom, but plotted in a larger range of temperatures. Qtr,ac is
non monotonous too and changes sign, going from negative
values for small T to positive values at around kBT = 0.02εC.
The inset of Fig. 6 shows the efficiency η(pump), defined in
Eq. (37), of the system operated as a heat pump as a function
of T . The nonmonotonic behavior simply reflects the fact that,
in the strong pumping regime, the heat currents change sign at
around kBT = 0.02εC, as shown in Fig. 5.
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FIG. 5. (Top) Pumped heat and work vs the phase difference
between adiabatically-driven system parameters for kBT = 0.01εC.
(Bottom) Normalized pumped heat currents flowing in the left
and right lead for φ = π/2. We have used the following parame-
ters: �L = �R = 1/5, Bz,0 = 0.06εC (Bz,0 = 0.04εC for the dashed
lines in the bottom panel), Bx,0 = 0.03εC, Bx,1 = Bz,1 = 0.07εC, and
�T = 0.

Finally, in Fig. 7, we assess the performance of the driven
q-bit as a refrigerator which removes heat from the cold reser-
voir (R) even in the presence of a positive thermal bias �T ,
i.e., for TR < TL. Given this temperature bias, we focus on a
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FIG. 6. Pumped heat and work vs reference temperature T .
(Inset) Efficiency of a heat pump for �T = 0 as a function of kBT .
Same parameters as in Fig. 5 for the solid curves.
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FIG. 7. Coefficient of performance for refrigeration (black
dashed curve for absolute value and red curve for normalized to the
Carnot value) vs �T , for h̄� = kBT/100 and vs � (in the inset),
for �T = T/500. We use the following parameters: �L = �R =
0.2, Bz,1 = 10kBT , Bx,0 = 20kBT , Bx,1 = 30kBT , Bz,0 = 7kBT , εC =
120kBT , and φ = π/2.

protocol with φ = π/2 and the same driving parameters as in
Fig. 4, in which case, we already know from the analysis of
this figure, that heat is pumped from the coldest reservoir and
the heat current at zero bias is maximum.

We plot the COP η(fr) as a black dashed curve, defined
in Eq. (36), and the normalized COP η(fr)/η

(fr)
C (red curve)

as functions of �T , where η
(fr)
C = T/�T is the Carnot COP.

Starting from �T = 0, where η(fr) is roughly equal to 1.1, the
plot shows that η(fr) monotonously decreases with �T . This
behavior can be understood by recalling that the refrigeration
mode results from a competition between the heat induced
by the temperature difference and the pumped heat against
the thermal bias. In fact, Qtr is made up of two components:
(i) the component Q�T = 2πJQ

tr,�T /�, which is the heat cur-
rent flowing from the hot to the cold reservoir during one
period, therefore entering the reservoir R (Q�T > 0). This
component increases linearly with �T ; (ii) Qtr,ac, which is
the pumped heat current extracted from the cold reservoir
R (Qtr,ac < 0), which is independent of �T . Therefore Qtr

remains negative as long as Q�T is not large enough to com-
pensate Qtr,ac. This occurs at �T 
 0.19 T , where the total
transported heat Qtr vanishes, i.e., the thermal machine is no
longer a refrigerator (a further increase of �T leads to a sign
reversal of the heat current).

On the other hand, the ratio η(fr)/η
(fr)
C (red curve) is bell-

shaped, since this ratio becomes ∝�T . In the inset of Fig. 7,
we plot the normalized COP as a function of the inverse of
the driving frequency �. Since Q�T ∝ �−1, increasing the
frequency—within the adiabatic regime—favors the pumping
component Qac relative to Q�T . Notice, however, that by in-
creasing the frequency the dissipative component represented

by �̃A in Eq. (34) becomes more detrimental to the efficiency.
There is, thus, a compromise between the two effects and an
optimal frequency of operation.

B. Driven quantum dot

In this case, the configuration consists of a central quantum
dot driven by a time-dependent magnetic field and coupled to
electron reservoirs with different polarizations. For the quan-
tum dot the Hamiltonian HS reads

HS (t ) = �
†
d [Vg σ̂0 − �B(t ) · �̂σ ]�d , (70)

where �
†
d = (d†

↑, d†
↓) is a spinor related to the spin degrees

of freedom of the electron in the quantum dot, while d†
σ and

dσ are respectively the creation and annihilation fermionic
operators for these particles. The quantum dot contains two
levels as a consequence of the Zeeman splitting introduced
by the magnetic field. �̂σ = (σ̂x, σ̂y, σ̂z ) is composed of the
2 × 2 Pauli matrices and σ̂0 is the identity, while �B(t ) =
(Bx(t ), By(t ), Bz(t )) is the external time-periodic magnetic
field and Vg is a gate voltage, which rigidly shifts the energies
of the two levels.

The reservoirs are represented by systems of nonin-
teracting fermions. The electrons in the α reservoir are
spin-polarized along the magnetization �mα . The Hamiltonian
Hα which describes the reservoir reads

Hα =
∑
kα

�
†
kα

[εkα − �mα · �̂σ ]�kα, α = L, R, (71)

where �
†
kα

= (c†
kα,↑, c†

kα,↓) are spinors composed by the

fermionic creation/annihilation operators c†
kα,σ

and ckα,σ . We
assume that both reservoirs have chemical potential μL =
μR = 0.

The coupling between the quantum dot and the reservoirs
is represented by

Hc,α =
∑

kα,σ=↑,↓
Vkα,σ (c†

kα,σ
dσ + d†

σ ckα,σ ). (72)

In order to solve the problem, it is convenient to change the
basis of Hα to the one where the quantization axis for the
spin coincides with the direction of �mα . This is accomplished
by the transformation (c†

kα,↑, c†
kα,↓) = Û α (c†

kα,+, c†
kα,−). In the

new basis the Hamiltonians for the reservoirs and the cou-
plings read

Hα =
∑

kα,s=±
c†

kα,sεkα,sckα,s, α = L, R, (73)

and

Hc,α =
∑

kα,s=±,σ=↑,↓
vkαs,σ (c†

kα,sdσ + H. c.), (74)

with vkαs,σ = U α
s,σVkα,σ .

As discussed in Sec. II C, in order to have a nonvanishing
pumping component we need to break spatial symmetry. We
achieve this by considering different polarizations in the reser-
voirs. For concreteness, we consider the L reservoir polarized
along the positive x, and the R one polarized along the positive
z direction. An illustration of the whole setup is sketched in
Fig. 8.

This device bears resemblance to the driven q-bit discussed
in Sec. IV A. In fact, only the electrons with spins z,↑ (x,↑)
can tunnel between the quantum dot and the R (L) reservoir.
Therefore, when the magnetic field polarizes the quantum dot
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FIG. 8. Illustration of the quantum dot driven by a magnetic
field and connected to electron reservoirs with different polariza-
tions, represented by different orientations of the paraboloids. The
hybridization strength is modified according to the magnetic field’s
pointing direction. In (a), the electron hopping between the quantum
dot and the right (z-polarized) reservoir is favored, as is denoted by
the thick arrow. In (b), the pointing direction of the magnetic field
has changed to x and now the quantum dot is stronger coupled to the
left reservoir.

along the positive x direction, the tunneling of the electrons
between the quantum dot and the L reservoir is optimal, while
the tunnel between the dot and the R reservoir is optimal
when the electron in the dot is polarized along the positive z
direction. The main difference between the present setup and
the q-bit studied in Sec. IV A is the nature of the reservoirs,
which is fermionic in the present case, while it is bosonic in
the previous one. This difference is crucial from the techni-
cal point of view, because in the case of the quantum dot
we will be able to solve the problem for arbitrary coupling
between the driven system and the reservoirs. In addition,
the quantum dot has a gate voltage, which moves its energy
levels upwards or downwards in energy, thus tuning different
parts of the spectrum of the quantum dot into the relevant
transport window—∼kBT —around the chemical potential of
the reservoirs. This ingredient can be used to improve the
performance, as we will discuss in Sec. IV B 2. Besides these
differences, we expect the operation to be similar in both
cases, at least within the regime where the coupling between
the driven system and the reservoirs is very weak.

The heat-engine operational mode in the present case could
be practically realized by implementing the time-dependent
magnetic field by means of a rotating classical magnetic mo-
ment. The dynamics of the latter realizes the load of the heat

engine. In such a case, a pumped heat Qtr,ac flowing in the
direction of the heat current induced by the thermal bias, will
generate a torque and exert work on the magnetic moment,
akin to the spin torque induced by an electrical bias [119,137–
139].

We will consider the same driving protocol as in the previ-
ous example, which is defined in Eq. (44), without focusing on
the detailed mechanism generating the magnetic field. As in
the previous example, we will show results for the heat pump
and refrigerator modes.

1. Green’s function approach

We can solve the problem exactly for arbitrary strength of
the coupling between the quantum dot and the reservoirs by
recourse to Green’s functions. We will use the equilibrium
finite-temperature formalism to evaluate the frozen suscep-
tibilities and compute the response functions from Eq. (15).
This problem could be also exactly solved by recourse to
the nonequilibrium Schwinger - Keldysh formalism in the
Floquet representation and afterwards consider the expansion
in small h̄� and �T as in Refs. [109,111] arriving at the same
results as the ones we present here. We briefly summarize the
results below and show some details on the calculations in
Appendix F,

�A
3,�( �B) = −1

h

∫
dε

df (ε)

dε
εTr

[
�̂Rρ̂(ε)σ̂�ρ̂(ε)

]
, � = 1, 2;

�S
�,�′ ( �B) = −1

h

∫
dε

df (ε)

dε
Tr[σ̂�ρ̂(ε)σ̂�′ ρ̂(ε)], �, �′ = 1, 2;

�S
3,3( �B) = −1

h

∫
dε

df (ε)

dε
ε2Tr[�̂RĜt (ε)�̂LĜ†

t (ε)], (75)

where f (ε) = 1/(eε/(kBT ) + 1) is the Fermi-Dirac distribution
function. We have also introduced the hybridization matrix
�̂α , with elements

(�̂α )σ,σ ′ = 2π
∑

kα,s=±
U α

σ,sU
α
σ ′,s|Vkα|2δ(ε − εkα,s). (76)

We consider L (R) reservoirs fully polarized with spins along
the positive x (z) directions and a constant density of states.
Thus �α 
 ∑

kα |Vkα|2δ(ε − εkα,+) and �̂α 
 �ατ̂α , with

τ̂L ≡ 1
2 (σ̂x + σ̂0), τ̂R ≡ 1

2 (σ̂z + σ̂0). (77)

The local density of states is described by the matrix

ρ̂(ε) = −2Im[Ĝt ( �B, ε)] = Ĝt ( �B, ε)�̂[Ĝt ( �B, ε)]†, (78)

which depends on the frozen Green’s function

Ĝt ( �B, ε) = (ε − �B(t ) · �̂σ + i�̂/2)−1, (79)

with �̂ = �̂L + �̂R.
In Eqs. (75), we have highlighted the symmetric or anti-

symmetric nature of the components in each case. The fact
that the components �3,�( �B) are purely antisymmetric while
��,�′ ( �B) are purely symmetric is a consequence of Onsager
relations in combination with symmetry properties of the
setup. These properties can be directly verified from the ex-
plicit calculations of Appendix F. The last component �S

3,3( �B)
is proportional to the thermal conductance. The symmetry
properties of �μ,ν ( �B) are the same as in the q-bit example
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FIG. 9. Pumped heat Qtr,ac = Qtr (top) and work done by the
ac sources W (bottom) for �T = 0 as functions of the phase dif-
ference in the protocol defined by Bx (t ) = Bx,0 + Bx,1 cos(�t + φ),
Bz(t ) = Bz,0 + Bz,1 cos(�t ) with Bx,0 = Bz,0 = 0.4kBT and Bx,1 =
Bz,1 = B1kBT . �L = �R = 0.4kBT and h̄� = kBT/800. The plot
with B1 = 0.1 is multiplied by a factor 20 in order to be shown in
the same scale.

of Sec. IV A. Thus the definitions of the vector potentials in
the present case are the same as in Eq. (68).

2. Results

We carry out a similar analysis to the one for the q-
bit example given in Sec. IV A. We consider the same
two-parameter driving protocol as before, with �B(t ) =
(Bx(t ), 0, Bz(t )) given by Eq. (44).

As mentioned before, for the case of Vg = 0 and weak
coupling to the reservoirs, we expect a similar behavior to
the case of the qubit. In Fig. 9, we present the pumped heat
Qtr,ac(φ) and the work developed by the ac sources W for
�T = 0, as function of the driving phase difference φ be-
tween the two ac components of the magnetic field. As in
the qubit case analyzed in Sec. IV A, for small amplitudes of
the driving, Qtr,ac is proportional to the area enclosed by the
contour defined by the protocol. For this reason, the pumped
heat behaves as ∝sin(φ) and the generated work as ∝cos(φ)
plus a constant. These functions are the same as in the case
of the driven qubit shown in Fig. 4. For larger values of the
driving amplitude the pumped heat departs from this behavior.
However, Qtr,ac(φ) vanishes for φ = 0, π for any value of
Bx,1 = Bz,1.

In Fig. 10, we further explore the comparison between
the driven quantum dot and the driven q-bit. In particular,
we show the behavior of the pumped heat as a function of
the coupling to the reservoirs, assuming �L = �R = � and the
same parameters and driving protocol of Fig. 4. We can verify
that as the latter parameter approaches the limit � → 0, the
value of the pumped heat of the quantum dot approaches the
one of the qubit case shown in Fig. 4. There is some quanti-
tative difference, which can be traced back to the fact that the
type of couplings are not exactly the same (notice the matrix
elements entering the couplings of the quantum dot are those
of Eq. (77), while in the qubit we have considered σ̂x,z). We
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FIG. 10. Pumped heat Qtr,ac = Qtr for the quantum dot with the
same parameters as the q-bit operating with the protocol of Eq. (44)
shown in Fig. 4 with φ = π/2.

see that the strength of the coupling has a significant impact on
the behavior of the pumped heat. For the present parameters,
we observe an inversion in the direction of the pumped heat
as the coupling increases and overcomes � ∼ | �B|, at which the
width of the levels of the quantum dot becomes comparable to
the energy difference between them.

We now focus on the properties in the operation of the
quantum-dot machine that are different from the weakly cou-
pled driven q-bit. To this end, we further analyze the structure

of the vector potentials �AS/A
μ ( �B) and �̃AS/A

( �B) in Eq. (68) with

the tensor �μ,ν ( �B) of Eq. (75). The vector map for �AA
3 ( �B) in

the parameter space for a given temperature T is shown in
Fig. 11. This representation is useful to visualize the sym-
metries of the setup and to select the driving protocol that
maximizes the contour integral

∮ �AA
3 ( �B) · d �B. In the left panel

the quantum dot is contacted with the same strength to both
reservoirs (�L = �R), L being polarized along positive x and
R along positive z direction, as indicated in the sketch of
Fig. 8. In the middle panel, the contact is stronger to L than
to R (�R = 0.1�L). Consequently, we can visualize a higher
intensity of the field �AA

3 along the Bx than along the Bz di-
rection. Both left and middle plots have Vg = 0, in which
case the Hamiltonian of Eq. (70) is symmetric under the
simultaneous transformations �

†
d → �d and �B → −�B. The

first one is a particle-hole transformation, under which the
heat current changes the sign. Consequently, the field maps of
Fig. 11 present the symmetry �AA

3 ( �B) = − �AA
3 (−�B). In the right

panel, we can visualize that the breaking of the particle-hole
symmetry by a gate voltage introduces a strong asymmetry in
the vector field.

With the picture of Fig. 11 in mind, we can readily design
a closed trajectory that optimizes pumping. The latter corre-
sponds to a path that goes parallel to the vector field within the
region where its intensity is high, and closes antiparallel to the
vector field in a very low-intensity region. An example of such
a trajectory is shown in Fig. 12. The corresponding vectors

�̃AS
( �B) along the trajectory are also shown in cyan. Trajectories

leading to high efficiencies of the machine would have as
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FIG. 11. Vector fields �AA
3 ( �B) for a driving protocol with �B(t ) = (Bx (t ), 0, Bz(t )), corresponding to a quantum dot coupled to reservoirs

with different polarizations. R (L) reservoirs is polarized along positive z (x) direction. Left panel corresponds to �L = �R and Vg = 0, middle
correspond to �L = 0.1�R and Vg = 0, while right panel corresponds to �L = 0.1�R and Vg = 2�R. The temperature of the reservoirs is
kBT = 0.5�R.

small dissipation as possible, in addition to high values of
heat pumping. While the optimization of the pumping can be
easily achieved by recourse to the vector field representation
�AA

3 ( �B), it is not easy to optimize a trajectory to decrease the

integral over�̃AS
( �B). However, we know that this quantity can

be reduced by decreasing the pumping frequency �.
In Fig. 13, we illustrate the behavior of the COP of the

driven quantum dot operating as a refrigerator. Overall, this
quantity follows a similar behavior as a function of �T/T

0 1 2
Bz

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
x

FIG. 12. Vector fields �AA
3 ( �B) (cyan) and �̃AS ( �B) (red) over a closed

path (solid blue curve) for the configuration shown in the lower
panel of Fig. 11 (�R = 0.1�L). The driving protocol defining the path
is Bx (t ) = Bx,0 + Bx,1 cos(�t + φ), Bz(t ) = Bz,0 + Bz,1 cos(�t ) with
Bx,0 = 1.5�R, Bz,0 = �R, Bx,1 = Bz,1 = �R, and φ = π/2. The black
arrows represent �A3( �B) outside the defined protocol.

and � as the one of the qubit (see Fig. 7). Therefore most
of the comments and remarks presented in the analysis of
Fig. 7 apply also here. However, it is several orders of mag-
nitude higher in the present case, achieving values as large as
14% ηfr

C . The key for this improvement is the selection of an
appropriate pumping protocol, taking advantage of the extra
features introduced by the existence of the gate voltage Vg in
the present problem.

We close this section by analyzing the geometric com-
ponent of the first-order adiabatic reaction force defined in
Eq. (30). In the present problem, the latter coincides with
the magnetic moment of the quantum dot. For �T = 0, the

0 1 2 3 4
ΔT/T ×10−2
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C

FIG. 13. Coefficient of performance for refrigeration (absolute
in dashed black and normalized to the Carnot value in red) vs �T
for the protocol of Fig. 12 for h̄� = �R/200. (Inset) Normalized
coefficient of performance for refrigeration as a function of h̄� for
�T = T/150.
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FIG. 14. Vector fields �AS
1 ( �B) (left) and �AS

2 ( �B) (right) following
Eqs. (68) and (75), for the parameters of the right panel of Fig. 11.

magnetic moment of the quantum dot is given by

m� = �

2π

∫ 2π/�

0
dt〈�†

d σ̂��d〉(t ) = mBO
� + mgeo

� ,

mgeo
� = �

2π

∮
�AS
� ( �B) · d �B, (80)

with σ̂x,y for � ≡ 1, 2, respectively. Here, mBO
� is the average

over one period of the instantaneous magnetization corre-
sponding to the equilibrium frozen Hamiltonian, while mgeo

�

is the geometric component, corresponding to the first-order
adiabatic reaction force of Eq. (30). The vectors �AS

� ( �B) are
calculated from Eq. (75) as defined in Eq. (68). Interestingly,
the symmetric component of the thermal geometric tensor,
which defines the dissipation, is directly related in the present
problem to a local physical quantity, which is the quantum
dot geometric magnetization [94]. The latter is experimentally
accessible. In fact, notice that the component mBO

� does not
explicitly depend on the driving frequency, while the second
term has an explicit linear dependence on �. Therefore, in a
concrete experimental measurement of the quantum dot mag-
netization, both components should be distinguishable from
one another.

The associated vector fields �AS
� ( �B) are shown in Fig. 14 for

configurations with stronger coupling to the L (x-polarized)

0 π/2 π 3π/2 2π
φ

−1

0

1

m
ge

o

×10−2

mgeo
1

mgeo
2

FIG. 15. Components of the geometric magnetization mgeo
1,2 , de-

fined in Eq. (80) as functions of the phase-lag φ corresponding to
paths of the form Bx (t ) = Bx,0 + Bx,1 cos(�t + φ), Bz(t ) = Bz,0 +
Bz,1 cos(�t ) with Bx,0 = 1.5�R, Bz,0 = �R, Bx,1 = Bz,1 = �R, on the
vector fields of Fig. 14.

reservoir than to the R (z-polarized) one and a finite gate volt-
age Vg, with the same values of the parameters as in the right
panel of Fig. 11. In this representation, we can visualize higher
intensity of the fields along Bx, Bz > 0 relative to Bx, Bz < 0,
as a consequence of the polarization of the reservoirs along
the positive x and z axis. The amplitudes of �AS

1( �B), shown
in the left panel, are larger than those of �AS

2 ( �B), shown in
the right panel, due to the larger coupling to the reservoir
polarized along x. The result of calculating the integrals over
closed trajectories with different phase lags φ between the
components Bx and Bz is shown in Fig. 15. As in the case
of the pumped heat, both components of the magnetization
vanish at φ = 0, π .

V. SUMMARY AND CONCLUSIONS

We have presented a general description of the geometrical
properties of quantum thermal machines under the effect of
adiabatic periodic driving and a small thermal bias due to
the contact to reservoirs at different temperatures. The cyclic
time dependence is introduced via classical variables, varying
slowly in time, that enter the quantum Hamiltonian of the
system. We show that the operation of the thermal machine,
consisting of a few-level quantum system, is fully character-
ized by the thermal tensor �μ,ν defined in Section III A.

The formal derivation of this tensor is obtained by means
of the adiabatic linear response theory complemented by Lut-
tinger’s representation of the thermal bias. The symmetric
component of �μ,ν characterizes the total rate of entropy
production, thus controlling the dissipation of all the sources
involved in the operation of the machine. When the system is
driven by two or more periodically-varying parameters, it is
possible to obtain pumping of heat between reservoirs, even
in the absence of a temperature bias. The heat pumped, the
work performed on the system, and the dissipated power can
be described by means of vector fields defined through the
thermal tensor. In particular, the pumped heat by the driving
and the work performed can be expressed in a purely geomet-
ric form as line integrals of those vector fields over the closed
paths which represent the driving cycles in the parameter
space. In the presence of a thermal bias, these two quantities
allow the characterization of a thermal machine which realizes
heat-work conversion.

We have illustrated these ideas using two paradigmatic
quantum systems coupled to two thermal reservoirs. The first
example consists of a qubit, whose energy levels and inter-
level tunneling depend harmonically on time, attached to two
bosonic reservoirs kept at different temperatures. The second
example is a quantum dot coupled to electronic reservoirs
and driven by a harmonically time-dependent and rotating
magnetic field. The two examples are solved with different
techniques, while two driving parameters are assumed. In the
case of the qubit, we rely on the master equation approach,
valid for weak coupling to the reservoirs, while in the case of
the quantum dot we solve the problem exactly for arbitrary
coupling by recourse to linear response and Green’s function
formalisms. The two problems are very similar qualitatively
and quantitatively when the driven system is weakly coupled
to the reservoirs. In the two cases, we have calculated the
vector fields responsible for the geometric characterization of
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the systems as thermal machines. We have computed the heat
pumped and the work as functions of (i) phase lag between
the two driving parameters, (ii) the reference temperature,
and (iii) the coupling between system and reservoir (for the
second example). The efficiency of the thermal machines has
been analyzed in terms of the temperature difference between
reservoirs, the average temperature, and the frequency of the
driving parameters in both cases. Finally, in the second exam-
ple, we have shown how the representation of the pumped heat
by means of vector fields can be used to identify the cycles
that maximize it, thus improving the performance of a thermal
machine.
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APPENDIX A: LUTTINGER THEORY
OF THERMAL TRANSPORT

The idea of expressing the thermal difference in a Hamil-
tonian language was originally introduced by Luttinger [110].
Here, we follow the revised version of Luttinger’s theory
presented by Tatara in Ref. [112], which we briefly review and
adapt in order to deal with a Hamiltonian containing a tun-
neling contact between the central system and the reservoirs
at which the thermal difference is applied. Luttinger’s theory
is formulated in the continuum starting from a Hamiltonian
HE(t ) = ∫

drh(r)ψ (r, t ), where ψ (r, t ) is a “gravitational”
potential. Gradients of the latter induce energy flows jE akin
to the electrical currents induced by gradients of the elec-
tric potential. Such energy flows obey a continuity equation
ḣ(r) = −∂r · jE (r) as a consequence of energy conservation,
which motivates the definition

HLutt (t ) =
∫ t

−∞
dt ′

∫
dr jE (t ′) · ∂rψ (r, t ), (A1)

with ∂rψ (r, t ) = ∂rT/T . Such formulation is consistent with
the rate of change of the entropy production,

Ṡ = −
∫

dr
1

T
∂r · 〈jE (t )〉 = −

∫
dr〈jE (t )〉 · ∂rT

T 2
, (A2)

through the relation 〈HLutt (t )〉 = T S.
Reference [112] considers the alternative Hamiltonian

HAT (t ) = −
∫

dr jE (t ′) · �AT (r, t ). (A3)

The Hamiltonians of Eqs. (A1) and (A3) coincide in the long-
time average. In fact,

∫ +∞
−∞ dt HLutt (t ) = ∫ +∞

−∞ dt HAT (t ) with

∂t �AT (r, t ) = ∂rψ (r, t ) = ∂rT/T . (A4)

In this way, �AT (r, t ) and ψ (r, t ) behave, respectively, in a
similar way as the vector and scalar potentials of electromag-
netism.

APPENDIX B: IDENTITIES SATISFIED BY THE
ADIABATIC SUSCEPTIBILITIES

In order to prove the identities of Eq. (B7), satisfied by the
adiabatic susceptibilities for the thermal driving correspond-
ing to the frozen Hamiltonian Ht , we proceed by writing the
following equation satisfied by the current operators,

J E
L (t ) + J E

R (t ) = ḢS (t ), (B1)

where ḢS encloses all the terms of Ht corresponding to the
central system and contacts between system and reservoirs.
All the operators are expressed in Heisenberg representation
with respect to Ht∑

α,β=L,R

χ ad
t

[
J E

α ,J E
β

] = χ ad
t [ḢS, ḢS] = 0. (B2)

In order to prove that the right-hand side (rhs) of this equation
is zero, we start from the definition of the adiabatic suscepti-
bility,

χ ad
t [ḢS, ḢS] = −i lim

ω→0
∂ωχṠ,Ṡ (ω) = lim

ω→0

Im[χṠ,Ṡ (ω)]

ω
,

(B3)

being χṠ,Ṡ (ω) the Fourier transform of the susceptibil-
ity χṠ,Ṡ (t − t ′) = −iθ (t − t ′)〈[ḢS (t ), ḢS (t ′)]〉t . Since all the
mean values correspond to the equilibrium frozen Hamil-
tonian Ht , we have χṠ,Ṡ (t − t ′) = ∂t∂t ′χS,S (t − t ′), being
χS,S (t − t ′) = −iθ (t − t ′)〈[HS (t ),HS (t ′)]〉t . Hence,

χṠ,Ṡ (ω) = −ω2χS,S (ω). (B4)

For a system with a bounded spectrum, χ ad
t [ḢS, ḢS] = 0

when the limit ω → 0 is evaluated in Eq. (B3). In fact, intro-
ducing the Lehmann representation in χS,S (ω) and using (B4)
and (B3), we get

χ ad
t [ḢS, ḢS] = π lim

ω→0
ω2

∑
n,m

pm|〈m|HS|n〉|2

×[δ(ω − (εm − εn)) − δ(ω − (εn − εm))]

(B5)

with Ht |m〉 = εm|m〉. In the latter equation |〈m|HS|n〉|2
is finite for a system with a bounded spectrum, while∑

n,m [δ(ω − (εm − εn)) − δ(ω − (εn − εm))] is the density of
states for the excitations of the full system. Typically, the latter
function is gapped or has a power-law behavior ∼|ω|γ with
γ > 0, which proves the rhs of Eq. (B2).

Using Eq. (B2), we get the identities of Eq. (B7). A similar
argument can be elaborated for the identities related to the
response functions combining energy currents and ac-driving
forces. In that case, we can prove∑

α=L,R

χ ad
t

[
J E

α ,Fl
] = χ ad

t [ḢS,Fl ] = 0,

(B6)∑
α=L,R

χ ad
t

[
Fl ,J E

α

] = χ ad
t [Fl , ḢS] = 0,

following similar reasoning as with Eq. (B2).

155407-18



GEOMETRIC PROPERTIES OF ADIABATIC QUANTUM … PHYSICAL REVIEW B 102, 155407 (2020)

Summarizing, the adiabatic response functions in which
the energy current enters are

χ ad
t

[
J E

α ,J E
α

] = χ ad
t

[
J E

ᾱ ,J E
ᾱ

]
,

χ ad
t

[
J E

α ,J E
α

] = −χ ad
t

[
J E

α ,J E
ᾱ

]
, (B7)

χ ad
t

[
Fl ,J E

α

] = −χ ad
t

[
Fl ,J E

ᾱ

]
,

χ ad
t

[
J E

α ,Fl
] = −χ ad

t

[
J E

ᾱ ,Fl
]
, (B8)

up to some function that vanishes when averaging over one
period. In the above equations ᾱ denotes the reservoir opposite
to α.

APPENDIX C: ENTROPY PRODUCTION RATE

In what follows, we present a microscopic derivation of the
expression for the entropy production rate associated to the
combined effect of the time-dependent and thermal driving in
the adiabatic regime.

1. ac driving

We start by analyzing the effect of the time-dependent
driving. To this end, we can proceed along the lines of
Refs. [100,140] and start from the definition of von Neumann
entropy

S(t ) = −kBTr[ρ(t )lnρ(t )]. (C1)

We also introduce the following auxiliary function:

S[Ht ] = kBTr[ρ(t )(βHt + lnZt )], (C2)

with Zt = Tr[e−βHt ]. Under a small change in the parameter
space, X(t ) → X(t + δt ), the Hamiltonian evolves to

Ht+δt = Ht + ∂H(t )

∂X
· Ẋ(t )δt = Ht − F · Ẋ(t )δt . (C3)

Consequently,

S[Ht+δt ] = kBTr[ρ(t + δt )(βHt+δt + lnZt+δt )]. (C4)

The change in the latter function is δS[H] = S[Ht+δt ] −
S[Ht ], which keeping terms up to first order in δt explicitly
reads

δS[H] = kBβ{Tr[ρ(t + δt )Ht ] − Tr[ρ(t )Ht ]}
+ kBlnZt+δt − kBlnZt

− kBβTr[ρ(t )F ] · Ẋ(t )δt . (C5)

In the last Eq. we have used Tr[ρ(t + δt )] = Tr[ρ(t )] = 1. We
can identify the first term with a change in the internal energy,

U = Tr[ρ(t )Ht ], (C6)

i.e., δU = Tr[ρ(t + δt )Ht ] − Tr[ρ(t )Ht ], as well as the
change in the internal free energy,

F = −kBT lnZt . (C7)

The other terms are related to the work developed in the
change of the time-dependent parameters [141],

δW = −Tr[ρ(t )F ] · Ẋ(t )δt . (C8)

Therefore Eq. (C6) can be expressed as follows:

T δS[H] = δU − δF + δW. (C9)

Following Ref. [100,142–144], we define the nonequilibrium
entropy production as the following difference:

δSneq = δS − δS[H], (C10)

and we evaluate it for a protocol δC in the parameter space
starting in X(t0) and ending in X(τ ), which consists in a
sequence of the previous small changes. Using Eq. (C1) and
(C6), and introducing the definition of the relative entropy
S[ρ(t )||ρt ] = S(t ) + kBTr[ρ(t )lnρt ], the nonequilibrium en-
tropy change can be written as in Ref. [100]

δSneq = S[ρ(τ )||ρτ ] − S[ρ(t0)||ρt0 ]

+ kBβ

∫
δC

dtTr[ρ(t )F ] · Ẋ(t ). (C11)

APPENDIX D: LEHMANN REPRESENTATION FOR
THE THERMOADIABATIC TENSOR

Performing a Fourier transform in the adiabatic suscepti-
bilities entering the of Eq. (15), we see that the elements of
this tensor can be expressed as

�μ,ν ( �X ) = −i∂ωχμ,ν (ω)|ω=0 = lim
ω→0

Im[χμ,ν (ω)]

ω
, (D1)

being χμ,ν (ω) the Fourier transform of the susceptibility
χμ,ν (t − t ′) = −iθ (t − t ′)〈[Fμ(t ),Fν (t ′)]〉t . Using the nota-
tion Fμ = −∂μHt and expressing the susceptibility in the
Lehmann representation we have

χμ,ν (ω) = h̄
∑
n,m

pm(εm − εn)2

[ 〈∂μm|n〉〈n|∂νm〉
ω − (εm − εn) + iη

− 〈∂νm|n〉〈n|∂μm〉
ω − (εn − εm) + iη

]
, (D2)

with η = 0+. We have used the following identities calculated
from Ht |n〉 = εn|n〉 and 〈n|∂μ(Ht |m〉):

〈n|∂μHt |m〉 = (εm − εn)〈n|∂μm〉 + δn,m∂μεm,

〈m|∂μHt |n〉 = (εm − εn)〈∂μm|n〉 + δn,m∂μεm. (D3)

Calculating the derivative as indicated in Eq. (D1), we have
�μ,ν ( �X ) = �A

μ,ν ( �X ) + �S
μ,ν ( �X ), with the antisymmetric and

symmetric components given by

�S
μ,ν ( �X ) = h̄π lim

ω→0

∑
n,m

pm
(εn − εm)2

ω
Re[〈∂μm|n〉〈n|∂νm〉]

× [δ(ω − (εm − εn)) − δ(ω − (εn − εm))]

�A
μ,ν ( �X ) = 2h̄

∑
m

pm Im[〈∂μm|∂νm〉]. (D4)

APPENDIX E: DRIVEN QUBIT: CALCULATION OF
CURRENTS AND POWER FOR DIFFERENT

SPIN COUPLINGS

1. Coupling: τ̂L = σ̂x and τ̂R = σ̂z

The different components of p(t ) for the driving protocol
of Eq. (44) with τ̂L = σ̂x and τ̂R = σ̂z can be calculated by
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solving Eqs. (52) and (53). They read

p(i)
1 = 1

1 + e−δE/kBT
,

p(i)
1,�T = δE

(−B2
z �L + B2

x�R
)

sech2
(

δE
2kBT

)
4kB

(
B2

z �L + B2
x�R

) �T

T 2
,

p(a)
1 = −d p(i)

1

dt

δE tanh
(

δE
2kBT

)
eδE/εC

4
(
B2

z �L + B2
x�R

) ,

p(i)
2 = 1 − p(i)

1 , p(i)
2,�T = −p(i)

1,�T , p(a)
2 = −p(a)

1 . (E1)

The heat currents are

J (a)
L (t ) = d p(i)

1

dt

δE B2
z �L

B2
z �L + B2

x�R
,

J (a)
R (t ) = d p(i)

1

dt

δE B2
x �L

B2
z �L + B2

x�R
. (E2)

2. Coupling: τ̂L = σ̂x and τ̂R = σ̂y

In this case, the adiabatic probabilities can be written as

p(a)
1 = −d p(i)

1

dt

δEeδE/εC tanh (δE/kBT )

4B2
z �L + δE2�R

,

p(a)
2 = −p(a)

1 . (E3)

In the absence of a bias, the instantaneous contribution to
the current vanishes, and the only contributions come from
adiabatic corrections. The adiabatic heat current flowing in the
left and right lead are given by

J (a)
L (t ) = d p(i)

1

dt

4δEB2
z �L

4B2
z �L + δE2�R

,

J (a)
R (t ) = d p(i)

1

dt

δE3�R

4B2
z �L + δE2�R

. (E4)

Using the modulation in Eq. (44) with φ = π/2, we obtain

d p(i)
1

dt
= −� sech2 (δE/kBT)

2kBT δE

[
2Bz,0Bz,1 sin(�t )

+ 2Bx,0Bx,1 cos(�t ) + (
B2

z,1 − B2
x,1

)
sin(2�t )

]
.

(E5)

Plugging Eq. (E5) into Eqs. (E4), the time averaged adiabatic
heat currents can be written as a function of different parame-
ters

JQ
tr,L = 1

τ

∫ τ

0
J (a)

L (t )

= kBT �

2π

∫ 2π

0
dx f

[
ε0

kBT
,

ε1

kBT
,

�0

kBT
,

�1

kBT
,

�α

kBT
, x

]
,

(E6)

where f is a dimensionless function which depends on all
the parameters of the driving modulation and on the coupling
strengths with the leads. Similar expression can be obtained
for the heat current flowing in the right contact. In particular,
the adiabatic heat currents are linear in the driving frequency
as observed in Eq. (E6).

3. Symmetry properties of ��,�′

For �T = 0, we can rewrite the work W as

W =
∫ 2π/�

0
dt

(
dE1

dt
p(a)

1 + dE2

dt
p(a)

2

)
(E7)

and, by using the normalization condition
∑

j p(a)
j = 0 and the

fact that E1(t ) = −E2(t ), we find

W = 2
∑

j

∫ 2π/�

0
dt

dE2

dXj
Ẋj p(a)

2 , (E8)

where X1(t ) and X2(t ) are the two driving parameters of the
q-bit. Moreover, applying the fact that δE = 2E2, we find

W =
∫ 2π/�

0
dt ζ (B)

∑
j,k

dδE

dXj

d p(i)
2

dXk
Ẋj Ẋk

=
∫ 2π/�

0
dt ζ (B)

∑
j,k

dδE

dXj

d p(i)
2

dδE

dδE

dXk
ẊjẊk, (E9)

where ζ (B) is defined by the relation p(a)
2 = ζ (B) d p(i)

2
dt [see

Eq. (E1)], which is a consequence of Eq. (54). Comparing
Eq. (E8) with Eq. (28), we obtain

�12(B) = �21(B) = ζ (B)
dδE

dX1

d p(i)
2

dδE

dδE

dX2
. (E10)

Equations (E10) and (67) have the same form.

APPENDIX F: DRIVEN QUANTUM DOT - CALCULATION
OF THE THERMAL GEOMETRIC TENSOR

We need to calculate the following coefficients:

�μ,ν (t ) = 1

h̄

∫ −∞

−∞
dt ′(t − t ′)χμ,ν (t − t ′)

= − lim
ω→0

Im[χμ,ν (ω)]

h̄ω
, μ, ν = 1, 2, 3 (F1)

with

χμ,ν (t − t ′) = −iθ (t − t ′)〈[Fμ(t ),Fν (t ′)]〉, (F2)

being F1,2 = �
†
d σ̂x,z�d , and F3 = JQ,R = −i

∑
kR,s,σ

εkR,svkR,s,σ c†
kR,sdσ + H.c. We can calculate (F1) follow-

ing standard procedures based on the formalism of
imaginary-time Green’s functions. We can define Ĝ(τ ) =
−〈Tτ [�d (τ )�†

d (0)]〉 and ĜkR,d (τ ) = −〈Tτ [�kR (τ )�†
d (0)]〉,

where Tτ denotes ordering along the imaginary axis. In terms
of this, it is possible to write

χ�,�′ (iqn) = 1

β

∑
ikn

Tr[σ̂�Ĝ(ikn + iqn)σ̂�′ Ĝ(ikn)],

χ3,�(iqn) = 1

β

∑
ikn

∑
kR

Tr{ε̂kR v̂R[iĜ(ikn + iqn)σ̂�

×Ĝd,kR (ikn) − iĜkR,d (ikn)σ̂�Ĝ(ikn − iqn)]}
= −χ�,3(iqn), �, �′ = 1, 2;

155407-20



GEOMETRIC PROPERTIES OF ADIABATIC QUANTUM … PHYSICAL REVIEW B 102, 155407 (2020)

χ3,3(iqn) = − 1

β

∑
ikn

∑
kR,k′

L

× Tr
{
ε̂kR v̂RĜkR,d (ikn + iqn)ε̂k′

R
v̂LĜk′

L,d (ikn)

+ Ĝd,kR (ikn + iqn)ε̂kR v̂RĜd,k′
L
(ikn)ε̂k′

L
v̂L

}
(F3)

with εkα,s,s′ = εkα,sδs,s′ , α = L, R, qn = 2πn/β, and kn =
(2n + 1)π/β.

It is convenient to introduce the spectral representation

Ĝ(ikn) =
∫

dε

2π

ρ̂t (ε)

ikn − ε
,

Ĝkα,d (ikn) =
∫

dε

2π

ρ̂kα,d (ε)

ikn − ε
(F4)

with

ρ̂t (ε) = −2Im[Ĝt (ε)] = Ĝt (ε)�̂[Ĝt (ε)]†, (F5)

ρ̂kα,d (ε) = ρ̂0
kα

(ε)v̂αρ̂t (ε) + ρ̂0
kα

(ε)v̂αρ̂t (ε), (F6)

where ρ0
kα,s,s′ (ε) = 2πδs,s′δ(ε − εkα,s) and G0

kα,s,s′ (ε) =
δs,s′ (ε + iη − εkα,s)−1. The retarded frozen Green’s function
of the quantum dot in contact to the reservoirs is given
in Eq. (79), while �̂ = −2Im[Ĝt (ε)−1] = ∑

α �̂α is the
hybridization matrix accounting for the contact between the
quantum dot and the reservoirs, being �̂α = ∑

kα
v̂kα

ρ̂0
kα

v̂kα
.

Using Eq. (F4) into Eq. (F3), after some algebra and
performing the analytic continuation to the real axis, we
get

��,�′ (t ) = −1

h

∫
dε

df (ε)

dε
Tr[σ̂�ρ̂t (ε)σ̂�′ ρ̂t (ε)], �, �′ = 1, 2;

�3,�(t ) = −1

h

∫
dε ε

df (ε)

dε
Tr[�̂Rρ̂t (ε)σ̂�ρ̂t (ε)],

= −��,3(t ), � = 1, 2;

�3,3(t ) = −1

h

∫
dε ε2 df (ε)

dε
Tr[�̂RĜt (ε)�̂LĜ†

t (ε)]. (F7)
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