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Topological superconductivity in tripartite superconductor-ferromagnet-semiconductor nanowires
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Motivated by recent experiments searching for Majorana zero modes in tripartite semiconductor nanowires
with epitaxial superconductor and ferromagnetic-insulator layers, we explore the emergence of topological
superconductivity in such devices for paradigmatic arrangements of the three constituents. Accounting for the
competition between magnetism and superconductivity, we treat superconductivity self-consistently and describe
the electronic properties, including the superconducting and ferromagnetic proximity effects within a direct
wave-function approach. We conclude that the most viable mechanism for topological superconductivity relies
on a superconductor-semiconductor-ferromagnet arrangement of the constituents in which spin splitting and
superconductivity are independently induced in the semiconductor by proximity and superconductivity is only
weakly affected by the ferromagnetic insulator.
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I. INTRODUCTION

Topological superconductors can be engineered through a
combination of spin-orbit coupling, conventional supercon-
ductivity, and Zeeman splitting [1–3]. A candidate platform
is based on hybrid semiconductor-superconductor nanowires
pierced by an external magnetic field [4,5]. The semiconduc-
tor, typically InAs or InSb, provides the spin-orbit coupling,
whereas the superconductor and the magnetic field contribute
the conventional superconductivity and the Zeeman splitting,
respectively. Experiments using this scheme have reported the
observation of zero-bias peaks, consistent with the presence of
Majorana zero modes [3,6–18]. Even if this blueprint proved
consistently successful for the engineering of topological su-
perconductivity, the use of an external magnetic field might be
inconvenient for engineering more involved devices underly-
ing a Majorana-based quantum computer [19]. In particular,
the magnetic field should ideally be applied parallel to the
nanowire, requiring all nanowires to be aligned.

In an effort to alleviate this constraint, recent experiments
[16–18] have explored the possibility of replacing the external
magnetic field by a proximity-induced exchange field exerted
by an epitaxial ferromagnetic insulator grown directly on the
nanowire. One set of experiments [17,18] uses semiconductor
nanowires (InAs) with epitaxial superconducting (Al) and
ferromagnetic (EuS) layers. Another experiment [16] grows
Au wires on top of a superconducting substrate (V) and cov-
ers them by an EuS layer. Motivated by these experiments,
we study the emergence of topological superconductivity in
such tripartite nanowires, which combine a semiconducting
or metallic core (N) with epitaxial superconducting (SC) and
ferromagnetic (F) layers, from a theoretical perspective, com-
plementing a series of concurrent studies [20–23].

A schematic section through the experimental nanowires in
Refs. [17,18] is shown in Fig. 1. A semiconducting nanowire
with a hexagonal cross section is covered by a ferromagnetic

insulator on one facet. The superconducting layer covers both
a neighboring facet as well as the ferromagnetic layer. Band
bending at the normal-superconductor interface is expected to
lead to electron accumulation near that interface, presumably
making the region where all three layers meet particularly
pertinent for the potential emergence of topological supercon-
ductivity. As seen from the enlarged rendering in Fig. 1, this
region includes interfaces among all three layers. Exemplify-
ing the experimental geometries by stacks of three layers, we,
thus, study the emergence of topological superconductivity for
the three possible stackings as shown in Fig. 1. Such a stacked
structure also closely resembles the experimental setup in
Ref. [16]. For both experimental geometries, our objective in
studying these three stackings is not to model the experimental
system in detail but rather to identify the mechanism that may
enable the emergence of topological superconductivity in such
tripartite wires.

We describe both the ferromagnetic and the supercon-
ducting proximity effects in these structures within a direct
wave-function approach. For stackings involving an interface
between the superconductor and the ferromagnetic insulator,
the superconducting pairing will be substantially suppressed.
We account for this competition by determining the su-
perconducting pairing self-consistently. The ferromagnetic
proximity effect on a thin superconducting layer resembles
but is not identical to the effect of an external Zeeman
field [24–28] and is uniform across the entire superconduct-
ing layer as long as its thickness is small compared to the
superconducting coherence length [29,30]. We find that all
three possible layer arrangements can support topological su-
perconductivity. However, the effects of the ferromagnet on
the superconductor greatly limit the extent of the topologi-
cal phase in parameter space when a direct SC-F interface
is present. Moreover, a ferromagnetic insulator sandwiched
between superconductor and semiconductor will tend to de-
couple the semiconductor from the superconductor so that a
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FIG. 1. Top left: Schematic of the nanowire geometry (cross
section) employed in the experiments in Refs. [17,18]. Bottom left:
Enlarged view of the region, presumably most important for the
emergence of topological superconductivity where the semiconduc-
tor (N), the superconductor (SC), and the ferromagnetic insulator (F)
meet. Right: Three paradigmatic stackings of N, SC, and F, which
we investigate to explore the emergence of topological superconduc-
tivity: (a) SC-N-F, (b) N-SC-F, and (c) N-F-SC. In experiment, the
diameter of the nanowire is on the order of 100 nm with epitaxial SC
and F layers of thickness ∼5 nm.

possible topological superconducting phase occurs only for
very thin F layers. We, thus, find that the topological super-
conducting phase has the largest extent in parameter space for
the SC-N-F arrangement where the emergence of the topolog-
ical phase closely parallels the familiar blueprint [4,5].

We begin with a physical discussion in Sec. II where we
provide semiclassical estimates and present the main results of
our paper. In Sec. III, we detail our model and the numerical
calculations, including the self-consistent treatment of super-
conductivity. In Sec. IV, we elaborate on the phase diagrams,
which we obtain numerically. Finally, we conclude in Sec. V.

II. PHYSICAL PICTURE

This section provides a summary of our principal results
on the basis of physical arguments. We begin with a brief
discussion of the proximity effect induced by a ferromagnetic
insulator. When a ferromagnetic insulator is brought into con-
tact with a normal metal or a superconductor, it induces a
spin polarization of the carriers. Carriers impinging on the
interface with the ferromagnet are reflected with the pene-
tration depth into the ferromagnet depending on their spin
state. This spin-dependent penetration reflects the different
band gaps for the two spin projections and is reflected in
spin-dependent scattering phases. In a semiclassical picture
(Bohr-Sommerfeld quantization), it is evident that this makes
the subband energies spin dependent, effectively inducing a
spin splitting analogous to a Zeeman field.

Although this proximity-induced spin splitting is closely
analogous to the effects of a Zeeman field, there are also
characteristic differences. To appreciate these differences,
compare the effects of a Zeeman field and a proximitiz-
ing ferromagnetic insulator on a thin-film superconductor.

With increasing Zeeman field, the normal state becomes
magnetized and energetically more favorable. Beyond the
Clogston-Chandrasekhar limit [31,32], the energy gain due
to the magnetization is larger than the superconducting con-
densation energy, resulting in a first-order phase transition
between the superconducting and the normal state. In contrast,
when proximity coupling the thin-film superconductor to a
ferromagnetic insulator, one expects a second-order phase
transition when increasing the exchange field exerted by the
ferromagnet [29]. The underlying reason is that the effect
of the ferromagnet depends on the transverse mode in the
superconductor, even when the thickness of the thin film is
small compared to the superconducting coherence length and
the superconductor becomes uniformly magnetized [28–30].
Semiclassically, the transverse modes can be thought of as
electron trajectories impinging on the interface with the fer-
romagnetic insulator at mode-specific angles. Due to Andreev
reflection, the overall length of the trajectory in the supercon-
ductor is limited by the superconducting coherence length ξ =
h̄vS/�0. (Here, vS is the Fermi velocity in the superconductor,
and �0 is the unperturbed superconducting pairing). Thus,
for a superconductor of thickness dS, the trajectories reflect
from the ferromagnet ∼( p̂ · ẑ)ξ/dS times, where ẑ denotes the
normal to the interface and p̂ denotes the direction of the elec-
tronic momentum. Modes which propagate mostly parallel to
the interface ( p̂ · ẑ ∼ 0) are little affected by the exchange
coupling of the ferromagnet. This effectively smoothens the
vanishing of the superconducting gap with increasing ex-
change coupling and results in a second-order transition.

A qualitative understanding of our results can be obtained
from semiclassical estimates of the proximity-induced effec-
tive Zeeman field Beff and induced superconducting gap �ind.
For these estimates, we assume a N-SC interface with unit
transparency. Even in the absence of an interface potential,
the transparency of the interface depends on the velocity mis-
match between the N and the SC layers. Unit transparency
is only found for equal Fermi velocities on both sides. For
typical nanowire materials, the Fermi velocities vN and vS of
the two layers can indeed be similar in magnitude, vN ≈ vS,
despite the large difference in Fermi wave vectors reflecting
the widely different electron densities in the semiconductor
and the superconductor. The reason is that this difference
in Fermi wave vectors is offset by a comparable difference
in effective masses. Thus, assuming unit transparency of the
N-SC interface, the superconducting gap �ind induced in the
normal region is proportional to the fraction of time a mode
spends in the superconductor [33],

�ind = τS

τS + τN

�. (1)

Here τi = di/viz with i = N, S. Note that the induced super-
conducting gap depends on the z component viz of the velocity
and is, thus, specific for each mode in the normal layer. (Due
to the large mismatch in densities, typical modes correspond
to almost normal trajectories in the superconductor so that
vSz ≈ vS [33].)

Similarly, the effective Zeeman field induced by the fer-
romagnetic insulator can be obtained from Bohr-Sommerfeld
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FIG. 2. Phase diagram for the SC-N-F arrangement. The magnitude of the overall gap Egap, multiplied by the topological invariant Q = ±1,
is color coded as a function of the phase difference �ϕN and the number kNdN/π of occupied transverse modes in the normal layer. In addition
to the joint �ϕN axis on the left, we also include (nonlinear) δV axes for all four panels for reference. The four panels (a)–(d) focus on those
regions where the first four modes of the N layer begin to be populated. Phase-transition lines are indicated by blue dashed lines. The inset
in panel (a) enlarges the apex of the topological region and includes the semiclassical estimate Eq. (3) for the minimal spin-dependent phase
difference required to enter the topological superconducting phase (red dashed line). The symbol in the top right corner of the panels indicates
the parameter choice as shown in Fig. 6. The number of transverse modes in S was fixed at kSdS/π = 27.52 for all panels. For other parameters,
see Table I.

quantization as

Beff = h̄ �ϕ

4(τS + τN )
. (2)

where �ϕ = ϕ↑ − ϕ↓ is the difference between the spin-
dependent scattering phases ϕσ . In accordance with the
discussion above and as for the induced superconducting gap,
this effective Zeeman field is mode dependent.

We are now in a position to discuss the emergence of
topological superconductivity in the three geometries shown
in Fig. 1. The phase diagram for the SC-N-F geometry,
obtained from our detailed theory described in Sec. III, is
shown in Fig. 2. In this geometry, the superconducting and
ferromagnetic layers are spatially separated. This minimizes
the detrimental effect of the spin splitting induced by the
ferromagnetic insulator on the superconductor. As a result,
we can deduce the phase difference required for topologi-
cal superconductivity directly from Eqs. (1) and (2) with �

equal to the unperturbed superconducting pairing �0 of the
superconductor. For the optimal chemical potential, modes
are expected to become topological when Beff � �ind [4,5].
Thus, using Eqs. (1) and (2), the condition for topological
superconductivity becomes

�ϕ � 4 �dS

h̄vSz

≈ 4dS

ξ
. (3)

TABLE I. Parameters used in the numerical calculations.

mN 0.1 me α 0.035 �0ξ

mS 1.16me lSOC 4.7 × 10−3ξ

kN (0–5.8) × 103ξ−1 dN 2.4 × 10−3ξ

kS ∼7 × 104ξ−1 dS 1.2 × 10−3ξ

κF 2.6 × 104ξ−1 dF 4.7 × 10−5ξ

�0 0.34 meV ξ 3680 nm

In the last step, we used vSz ≈ vS due to the large difference
in Fermi wave vectors between semiconductor and supercon-
ductor. We find that this minimal phase difference �ϕ is in
good agreement with the phase diagram in Fig. 2, see the
red dashed line in panel (a). Away from the optimal chemical
potential, the effective Zeeman splitting required to induce a
topological superconducting phase increases cf. [4,5], quali-
tatively explaining the shape of the topological regions. The
four panels detail the parameter ranges of the phase diagram
where the first four transverse modes of the N layer become
populated with increasing kN. In agreement with expecta-
tions, it is these regions where topological superconductivity
emerges. We find that the induced topological gap becomes
smaller for higher transverse modes. This reflects variations in
the ratio of the Fermi velocities in the semiconductor and the
superconductor.

For the other layer stackings, the direct proximity of
ferromagnetic insulator and superconductor suppresses su-
perconductivity, eventually driving the superconducting layer
normal. According to Eq. (3), the scattering phase difference
necessary to overcome the superconducting gap of a mode
with velocity vSz ≈ vS cos φ is

�ϕ = 4dS

ξ cos φ
, (4)

where cos φ = [1 − (kx/kS)2]1/2. Modes with a higher longi-
tudinal momentum kx impinge less often on the interface with
the ferromagnet, thus, requiring larger exchange couplings
to overcome their superconducting gap. With increasing spin
splitting in the ferromagnet, the superconducting gaps of the
modes successively close, which, in turn, affects the overall
pairing correlations. For these stackings, we, thus, determine
the pairing strength � from a self-consistent treatment. Once
the self-consistent pairing strength is determined, we can
again apply Eqs. (1) and (2) to estimate the minimal phase
difference for entering the topological phase.
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FIG. 3. Results of a self-consistent approach to superconduc-
tivity in a SC-F nanowire, including the self-consistent pairing
correlations � and the spectral gap �spec as a function of the scat-
tering phase difference �ϕS. �spec vanishes close to �ϕS ∼ 4dS/ξ ,
whereas the pairing correlations � remain finite. The condensation
energy �E goes to zero before the pairing correlations � vanish,
corresponding to a weakly first-order phase transition. Calculations
were performed for kSdS/π = 27.13 and a F layer of infinite thick-
ness. For other parameters, see Table I.

The result of such a self-consistent calculation for the su-
perconducting gap is shown in Fig. 3 for a ferromagnet of
thickness dF → ∞. We find that the spectral gap closes with
increasing spin-dependent phase difference. This occurs when
�ϕ ≈ 4dS/ξ where the coherence length is computed with
the bare superconducting pairing strength �0 in the absence
of the ferromagnetic layer. This is consistent with the fact
that for the value of �ϕ at which the spectral gap closes, the
self-consistent pairing strength � is only weakly suppressed.
The self-consistent pairing strength persists to stronger ex-
change fields exerted by the ferromagnet. We find that the
condensation energy �E drops to zero prior to a complete
suppression of the self-consistent pairing strength, predicting
a phase transition into the normal state that is weakly first

order. (For a uniform exchange field, the transition into the
normal state is first order and takes place before the spectral
gap closes [31,32]. The situation for a superconductor coupled
to a ferromagnetic insulator is different [29] and may reverse
the order in which the spectral gap closes and the order pa-
rameter vanishes.)

The resulting phase diagram for N-SC-F stacking is shown
in Fig. 4. Also in this case, we find regions of topological
superconductivity whenever a new transverse mode opens in
the semiconductor. However, the topological regions not only
have a smaller gap than in the SC-N-F stacking, but also are
limited to a much smaller parameter range. (The relative size
of the topological regions can be directly read off from the
phase diagrams in Figs. 2, 4, and 5 as we use corresponding
device parameters in all three cases.) This limitation is im-
posed by the small values of �ϕ that are compatible with
substantial superconducting correlations. It is also interesting
to compare this result to a recent result [34] that topolog-
ical superconductivity requires Zeeman fields that locally
exceed the pairing strength of the superconductor. This result
precludes topological superconductivity in a bipartite N-SC
structure, which applies the Zeeman splitting to the supercon-
ductor only. A N-SC-F structure can still support topological
superconductivity since the ferromagnetic proximity effect is
not identical to the application of a uniform Zeeman field to
the superconductor.

Finally, the semiclassical considerations and estimates per-
formed in this section do not apply directly to the N-F-SC
arrangement. In this stacking, the ferromagnetic insulator ef-
fectively acts as a potential barrier separating the N and SC
layers. The superconductor affects the semiconductor only
when the ferromagnet is sufficiently thin, satisfying κFdF � 1,
with κF as the wave vector characterizing the wave-function
decay in F. In this case, the system can enter a topological
superconducting phase, albeit with a smaller gap than for
the other two arrangements due to the reduced mixing of
superconductivity and spin-orbit coupling, see Fig. 5 for the
corresponding phase diagram. This arrangement is limited to
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FIG. 4. Phase diagram for the N-SC-F arrangement. The magnitude of the overall gap Egap, multiplied by the topological invariant Q = ±1,
is color coded as a function of the phase difference �ϕS and the number kNdN/π of occupied transverse modes in the normal layer. In addition
to the �ϕN axis on the left, we also include a δV axis on the right for reference. The four panels highlight the parameter ranges where the
first four transverse modes in N become populated. At the optimal chemical potentials, the onset of the topological phase takes place close
to the semiclassical estimate �ϕS = 4dS/ξ as indicated by the red dashed line. The gray dashed line labels the magnitude of �ϕS where
the superconducting condensation energy changes sign and superconductivity is fully suppressed by the adjacent ferromagnetic insulator.
Phase transitions are denoted by a blue dashed line. The symbol in the top right corner of the panels indicates the parameter choice as shown
in Fig. 6. The number of transverse modes in S was fixed at kSdS/π = 27.16 for all panels. For other parameters, see Table I.
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FIG. 5. Phase diagram for the N-F-SC arrangement. The magnitude of the overall gap Egap, multiplied by the topological invariant Q = ±1,
is color coded as a function of the phase difference �ϕS and the number kNdN/π of occupied transverse modes in the normal layer. In addition
to the �ϕN axis on the left, we also include a δV axis on the right for reference. The four panels highlight the parameter ranges where the
first four transverse modes in N become populated. At the optimal chemical potentials, the onset of the topological phase takes place close
to the semiclassical estimate �ϕS = 4dS/ξ as indicated by the red dashed line. The gray dashed line labels the magnitude of �ϕS where the
superconducting condensation energy changes sign, and superconductivity is fully suppressed by the adjacent ferromagnetic insulator. Due to
the finite thickness of F, this occurs at a higher �ϕS value than in Fig. 4. Phase transitions are denoted by a blue dashed line. The symbol in the
top right corner of the panels indicates the parameter choice as shown in Fig. 6. In all panels, the number of transverse modes in S was fixed
at kSdS/π = 27.61, and the thickness of F was chosen to satisfy κFdF = 1.22. For other parameters, see Table I.

small scattering phase differences for the same reason as for
the N-SC-F stacking as the superconductor and the ferromag-
net again share an interface. Numerically, the limiting value
of �ϕ is somewhat larger than in the N-SC-F arrangement.
This difference is a consequence of the small thickness dF of
the F region in the N-F-SC arrangement, which reduces the
detrimental effect of F on SC.

III. MODEL AND CALCULATIONS

In our detailed calculations, we model nanowires, which
are infinitely extended in the x direction and composed of
three layers stacked along the z direction: a semiconductor
(N), a superconductor (SC), and an insulating ferromagnet
(F). The extent in the y direction is assumed small enough
for a single mode to be occupied. In the conventional Nambu
basis � = (ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑ )T , the BdG Hamiltonian takes

the form

H = H0(z)τz + �(z)τx + α(z)kxσxτz, (5)

where τ and σ are Pauli matrices acting in particle-hole and
spin space, respectively. The superconducting pairing �(z)
and the strength α(z) of the Rashba spin-orbit coupling are
assumed piecewise constant and nonzero only within their
respective nanowire layers,

�(z) =
{
�0, z ∈ SC,

0, else, (6)

and

α(z) =
{
α, z ∈ N,

0, else. (7)

Finally, H0(z) is given by

H0(z) =
∑

i=x,y,z

pi
1

2m∗(z)
pi + V0(z), (8)

with pi as the momentum along the i direction, m∗(z) as the
effective mass, and V0(z) as the band offset. For simplicity, we
assume equal effective masses for the SC and the F layers,

m∗(z) =
{

mN, z ∈ N,

mS, z ∈ SC, F.
(9)

The band offset is expressed via the corresponding Fermi
wave-vectors kN and kS in N and SC, respectively, and via the
inverse decay length κF in F,

V0(z) =

⎧⎪⎪⎨
⎪⎪⎩

− k2
N

2mN
, z ∈ N,

− k2
S

2mS
, z ∈ SC,

κ2
F

2mS
+ δV σz, z ∈ F,

(10)

where we have set h̄ = 1. Thus, the ferromagnetic insulator F
is modeled as a spin-dependent potential barrier characterized
by the spin splitting δV . Previous studies point out that the
induced exchange coupling in a superconductor cannot be
fully explained in terms of the large optical band gap of the
ferromagnetic insulator and may also involve direct coupling
of the electrons with atomic exchange fields [29]. Still, we
model the ferromagnet as a spin-dependent potential barrier
and use the spin splitting δV as a phenomenological parameter
to parametrize the ferromagnetic proximity effect. Note also
that we assume that the spin-orbit field is oriented perpen-
dicular to the ferromagnetic proximity field as this is most
favorable for the emergence of topological superconductivity.
No assumption is made on the orientation of the spin-orbit
field relative to the wire axis.

The thicknesses of the layers are denoted by dN, dS, and dF.
The choice of dN and dS is the same in all three stackings to
enable direct comparison of Figs. 2, 4, and 5. We take dF to
be infinite in the N-SC-F and SC-N-F arrangements, which
is appropriate as long as the thickness of the ferromagnet
is large compared to the penetration depth into F. For the
N-F-SC stacking, we assume a small and finite dF to allow
for coupling between the N and SC regions. Finally, we note
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that the number of occupied transverse modes in the N and SC
layers can be estimated as kNdN/π and kSdS/π , respectively.

We summarize the parameters used for our numerical cal-
culations in Table I. These parameters are chosen to resemble
parameters in InAs, Al, and EuS. (The gap �0 = 0.34 meV of
Al is an enhanced thin-film value.)

A. Transverse modes

The eigenfunctions in the longitudinal direction are plane
waves for all three layers. The eigenfunctions in the transverse
direction (transverse modes) can, thus, be obtained by match-
ing piecewise solutions in the three layers. For the N layer, the
eigenfunctions separate into the particle and hole sectors. The
electron wave function is

ψN,e(z, ε) = ê+(c+
e eik+

Nz
(ε)z + c+′

e e−ik+
Nz

(ε)z )

+ ê−(c−
e eik−

Nz
(ε)z + c−′

e e−ik−
Nz

(ε)z ), (11)

whereas the hole wave function takes the form

ψN,h(z, ε) = ê+(c+
h eik+

Nz
(−ε)∗z + c+′

h e−ik+
Nz

(−ε)∗z )

+ ê−(c−
h eik−

Nz
(−ε)∗z + c−′

h e−ik−
Nz

(−ε)∗z ), (12)

with ê± = 1√
2
(1,±1)T the eigenspinors of σx. The overall

eigenfunction is

ψN(z, ε) = êe ⊗ ψN,e(r, ε) + êh ⊗ ψN,h(r, ε), (13)

where êe = (1, 0)T and êh = (0, 1)T are spinors in particle-
hole space. In the SC, the Hamiltonian splits into two blocks
that can be labeled by their σz eigenvalue ν = ±1,

ψS,ν (r, ε) = ε̂(d+
ν eik+

Sz
(ε)z + d+′

ν e−ik+
Sz

(ε)z )

+ (τxε̂)(d−
ν eik−

Sz
(ε)z + d−′

ν e−ik−
Sz

(ε)z ), (14)

with ε̂ = (eiβ, 1)T as the eigenspinors of the 2 × 2 supercon-
ducting BdG Hamiltonian and β = arccos(ε/�). The overall
SC eigenfunction then takes the form

ψS(r, ε) = ψS,+(r, ε) ⊗ ê↑ + ψS,−(r, ε) ⊗ ê↓. (15)

The spinors ê↑/↓ are (1, 0)T and (0, 1)T in spin space, respec-
tively. Note that ê↑/↓ corresponds to the ↑/↓ electron in the
particle sector and to the ↓/↑ holes in the hole sector. Finally,
the wave function in F does not mix particles and holes or spin
projections σz,

ψF(r, ε)=
∑

τ = e, h σ =↑ / ↓
êτ ⊗ êσ ( fτ,σ eκσz (τε)z + f ′

τ,σ e−κσz (τε)z ),

(16)

where τ = e, h acts as ±1 when not an index. The transverse
momenta k±

Nz
, k±

Sz
, and κσz are defined as

k±
Nz

(ε) =
√

k2
N − k2

x ∓ 2αmNkx − k2
y + 2mNε, (17)

k±
Sz

(ε) =
√

k2
S − k2

x − k2
y ± 2mS

√
ε2 − �2, (18)

κ↑/↓(ε) =
√

κ2
F + k2

x + k2
y − 2mS(ε ± δV ). (19)

Throughout the paper, we set ky = 0, effectively rendering the
nanowire two dimensional. Extending the calculation to finite
ky would be straightforward and amounts to a redefinition of
kS, kN, and κF. Even in such a three-dimensional calculation,
low-ky modes are expected to exhibit an enhanced mixing
of superconductivity, spin-orbit coupling, and spin splitting
as they scatter more strongly among the three nanowire con-
stituents.

B. Wave-function matching

We find the eigenfunctions and eigenenergies of the
nanowire by matching wave functions and ensuring current
conservation at the interfaces. One of the 3 × 8 free coeffi-
cients of the wave function sets the overall prefactor which
is ultimately fixed by the normalization condition. The re-
maining coefficients as well as the energy ε (for fixed kx)
are determined by: (i) the 2 × 2 × 4 equations accounting for
continuity of the wave functions and current conservation at
the two internal interfaces, and (ii) the vanishing of the wave
function at the outer interfaces adds 2 × 4 equations.

C. Ferromagnetic proximity effect

We quantify the strength of the induced exchange coupling
by the difference in the scattering phases from the interface
with the ferromagnet for the two spin directions. To this end,
consider an interface between a half-infinite ferromagnetic
insulator and a normal region without spin-orbit coupling or
superconductivity. Matching the wave functions at the in-
terface yields a spin- and momentum-dependent scattering
phase of

ϕβ,σ (kx ) = π − 2 arctan (vβz/vFz,σ ), (20)

where vβz = kβz/mβ with β = N, S and vFz,σ = κσz/mS and
with the momenta evaluated at α = 0, ε = 0, and � = 0. The
scattering phase difference is then

�ϕβ (kx ) = ϕβ,↑(kx ) − ϕβ,↓(kx ). (21)

In the N-SC-F and N-F-SC arrangements where SC and F
share an interface, we use �ϕS = |�ϕS(0)| to quantify the
induced exchange coupling. For the SC-N-F arrangement,
where F only shares an interface with N, we use �ϕN =
|�ϕN(0)|.

Within our model, �ϕN and �ϕS are determined by the
Fermi velocities for the three types of layers. As mentioned
above, we take these to be comparable for the three types of
layers. We note, however, that this may overestimate the cor-
relations between �ϕN and �ϕS in the experimental samples.
In addition to the ferromagnetic proximity effect involving
atomic exchange fields, band bending effects not included
in our modeling may modify the N-F and SC-F interfaces
differently.

D. Self-consistent treatment of superconductivity

In the SC-N-F arrangement, there is no direct interface
between the SC and the F layers. Since most modes in the
SC decay rapidly into N as a result of the large disparity in
electron densities, the ferromagnet affects the superconduct-
ing pairing correlations only weakly. In contrast, effects of
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self-consistency become important for the N-SC-F and N-F-
SC arrangements. For these geometries, the presence of N
has only a small influence on the strength of superconduct-
ing correlations. For this reason, we consider the interplay
between superconductivity and magnetism within a reduced
model of a bipartite SC-F nanowire. In Fig. 3, we present
results for a F layer, which is infinitely extended in the z
direction. Due to the rapid decay of the mode wave functions
into the ferromagnetic insulator, this is an accurate model
for the N-SC-F geometry and provides an upper bound on
the suppression of superconductivity by the ferromagnet for
the N-F-SC arrangement. (We have also considered finite F
slabs and find that the behavior is similar up to changes in the
spin-dependent phase difference by factors of order unity.)

We obtain the self-consistent order parameter � of the SC-
F structure from the equation,

�(r, δV ) = g〈ψ↑(r)ψ↓(r)〉
δV , (22)

with g < 0 denoting the strength of the attractive interaction
and making the dependence on the spin splitting δV in F
explicit. Using the modes obtained in Sec. III, we iteratively
solve for �(r, δV ) starting with an initial superconducting
pairing �0. As a result of the strictly local interaction g,
Eq. (22) will yield a spatially oscillatory �(r, δV ). The physi-
cally relevant pairing strength �(δV ) is obtained by averaging
over these oscillations, and it is this average � which is used
as input in subsequent iteration steps. The value of g is chosen
such that �(0) = �0. Convergence is attained once the differ-
ence between the input �(δV ) and the corresponding output
falls below a threshold.

The resulting self-consistent solutions for �(δV ) are pre-
sented in Fig. 3, showing a suppression of the gap function as
the spin splitting in F increases. The spectral gap �spec is sup-
pressed even more rapidly and vanishes when �(δV ) is still
finite. Modes with a larger transverse momentum (and, hence,
smaller kx) frequently scatter off the ferromagnet, rapidly
suppressing the excitation gap in these modes. It is, thus, the
effect of the spin splitting on these modes, which causes the
spectral gap �spec to vanish. More quantitatively, we find that

�spec vanishes close to the estimated value of �ϕS = 4dS/ξ of
the scattering phase difference (with ξ computed with �0).
In contrast, modes with higher kx scatter less often off the
ferromagnet and effectively sustain nonzero pairing correla-
tions. The intermediate regime of zero �spec and finite �(δV )
corresponds to a gapless superconductor. Here, inclusion of
spin-orbit coupling may reopen the gap and drive the system
into a topological phase.

Eventually, as the spin splitting increases further, �(δV )
decreases to zero. We also calculate the condensation energy
of the superconductor as the difference in the ground-state
energies of the system with and without superconductivity.
We find that, in our geometry, the condensation energy van-
ishes when the superconducting pairing is already strongly
suppressed but not yet zero. This indicates a weakly first-order
phase transition to the normal state [26] with a finite but small
discontinuity in the order parameter. This weakly first-order
phase transition is a consequence of the finite width dS and the
associated discrete mode structure in the superconductor. The
transition is second order if the discreteness of the transverse
modes in SC can be neglected.

IV. PHASE DIAGRAMS

Performing the numerical calculations outlined in the pre-
vious section, we extract topological phase diagrams for the
three layer arrangements. We first consider the induced gap
�ind of the system as a function of the number of propagating
modes kNdN/π and kSdS/π in the normal and the supercon-
ducting regions. (�ind is computed in the absence of any spin
splitting δV .) Figure 6 shows corresponding color-scale plots
of �ind for the three layer arrangements. �ind is found to be
only weakly dependent on kN, except when the first mode in
N begins to be occupied. In contrast, there is an oscillatory
dependence on kS, which originates from resonances between
the transverse modes in N and SC [33,35,36]. This oscillatory
dependence is emphasized by the insets in Fig. 6, which
display line cuts of �ind as a function of kSdS/π .
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FIG. 6. Induced gap �ind in the absence of spin splitting as a function of the mode occupations kSdS/π and kNdN/π in the N and SC layers,
respectively. The insets show line cuts along the dashed horizontal lines with vertical dashed lines corresponding between the main panels
and the insets. Note that the position of the resonance peak in kSdS/π shifts slightly with kNdN/π . (a) SC-N-F arrangement: Resonance at
kNdN/π = 1.78 and kSdS/π = 27.52. (b) N-SC-F arrangement: Resonance at kNdN/π = 1.78 and kSdS/π = 27.16. (c) SC-F-N arrangement:
Resonance at kNdN/π = 2.23 and kSdS/π = 27.61. The symbols marking the topological regions indicate the choice of parameter values in the
panels in Figs. 2, 4, and 5, which are labeled by corresponding symbols. For other parameters, see Table I.

165301-7



JOSIAS LANGBEHN et al. PHYSICAL REVIEW B 103, 165301 (2021)

The topological nature of the gap can be extracted by
computing the topological invariant Q = sgn[Pf(H)], which
corresponds to the fermion parity of the ground state of the
system [37–39]. Within our continuum model, there is only
one time-reversal invariant point kx = 0 where this change
in fermion parity can occur. The hatched regions superim-
posed on the color-scale plots in Fig. 6 indicate the extent of
the topological superconducting regions in the presence of a
nonzero spin-dependent phase difference (with �ϕ equal to
the largest value included in Figs. 2, 4, and 5.) The region has
a visible extent only for the SC-N-F arrangement, whereas
it is too small to be visible for the other two layer arrange-
ments. The phase transition lines are only weakly dependent
on kSdS/π away from the resonances and change by one unit
in kNdN/π around the resonances. This indicates that a new
mode becomes populated in the superconductor at these res-
onances. This behavior appears most clearly in the N-F-SC
arrangement where N and SC are separated by the potential
barrier of F.

To display the dependence on the strength of the ferromag-
netic proximity effect, we fix the number of occupied modes
in the superconducting layer to one of the resonances and plot
the spectral gap, multiplied by the topological invariant as a
function of both the mode number in the semiconducting layer
and the spin-dependent phase difference as shown in Figs. 2,
4, and 5 and discussed in Sec. II above. The four panels in
these phase diagrams are labeled by symbols, which indicate
the corresponding parameter choice in Fig. 6.

V. CONCLUSION

Tripartite nanowires proximity coupling a semiconducting
core to epitaxial superconductor and ferromagnetic-insulator
layers may obviate the need for applying an external magnetic
field for realizing topological superconductivity and thereby
open new design opportunities for Majorana-based devices.
At the same time, the additional epitaxial ferromagnetic insu-
lator adds new material-science challenges. Our paper aimed
at understanding the relevant mechanism that would underlie
the observation of zero-bias peaks in a recent experiment [18]
on such tripartite nanowires, provided that the zero-bias peaks
constitute evidence for topological superconductivity.

As shown schematically in Fig. 1, the relevant region of
the nanowire includes all three possible interfaces between the
three constituents, N, SC, and F. To elucidate and differentiate
the mechanisms by which topological superconductivity can
emerge in this structure, we focus on the three paradigmatic
stackings SC-N-F, N-SC-F, and N-F-SC (see also Ref. [22]).
Our approach treats these stackings within a microscopic
wave-function approach but neglects band bending effects
(which, however, would be the underlying reason why the
intersection region of the three constituents is most relevant
for the emergence of topological superconductivity [20,21,23]
and may explain why device geometries without such an in-
tersection region do not exhibit zero-bias peaks [18]). We also
focus on clean structures in the absence of bulk or interface
disorder.

We find that the SC-N-F arrangement has by far the largest
topological superconducting region in parameter space. In this
arrangement, superconducting correlations and spin splitting

are induced in N by proximity from the SC and F layers,
respectively. At the same time, the intermediate N region
effectively shields the SC from the detrimental influence of
the ferromagnetic insulator as most modes in the SC are
only weakly coupled to the N region due to the much larger
electron density in SC than in N. In this arrangement, topo-
logical superconductivity, therefore, emerges by essentially
the same mechanism as previously considered for hybrid
semiconductor nanowires [4,5] with spin splitting now emerg-
ing by proximity rather than by applied Zeeman field. This
mechanism is also expected to be rather robust against mod-
ifications of the model. In particular, we expect disorder in
the superconductor to increase the strength and the robustness
of the superconducting proximity effect [33]. This can be
understood as follows. According to Eq. (1), the induced gap
depends sensitively on the dwell time τS in the superconductor.
In the absence of disorder, the relevant trajectories propagate
in the superconductor essentially normal to the interface, re-
flecting the large mismatch in Fermi wave vectors between
semiconductor and superconductor. The dwell time τS is then
governed by the thickness of the superconducting layer. Bulk
or surface disorder in the superconductor will scatter electrons
away from the surface normal and effectively trap them within
the superconductor until they undergo Andreev reflection and
retroreflect. The dwell time is now controlled by the super-
conducting coherence length, which considerably exceeds the
thickness of the superconducting layer.

The two other stackings involve direct SC-F couplings,
requiring a self-consistent treatment of superconducting cor-
relations. The ferromagnet insulator has a strongly detrimental
effect on the superconductor thereby severely limiting the spin
splitting that can be induced in N without suppressing super-
conducting correlations entirely. We still find that topological
superconductivity can emerge for both the N-SC-F and the N-
F-SC stackings but only in very limited regions of parameter
space.

For the N-SC-F stacking, disorder in the SC layer may fur-
ther limit the topological region in parameter space. Although
the ferromagnetic proximity effect differentiates between
modes of the SC in the clean limit, this is no longer the case
when the SC layer is disordered. The ferromagnetic proximity
effect will then be essentially equivalent to the application of
a Zeeman field applied to the SC layer, a situation for which a
recent theorem [34] precludes topological superconductivity.

For the N-F-SC stacking, the F layer effectively acts as
a potential barrier between the N and the SC layers. This
strongly limits the strength of the proximity-induced super-
conductivity, unless the thickness of the F layer is comparable
to the penetration depth of the modes into the ferromagnetic
insulator. It appears unlikely that the F layer in the experiment
is sufficiently thin that this mechanism would be operative.

On this basis, we conclude that topological superconduc-
tivity in the tripartite wires in Ref. [18] most likely emerges
from the most conventional mechanism associated with the
SC-N-F stacking, provided that the observed zero-bias peaks
are indeed a signature of Majorana zero modes. The more
exotic possibilities associated with the other two stackings are
considerably less likely explanations. This conclusion is fur-
ther supported by the expectation that disorder stabilizes the
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SC-N-F mechanism but is expected to suppress topological
superconductivity in the N-SC-F setting. These conclusions
are also consistent with the results of the concurrent studies
which include the effects of band bending and device geome-
try more microscopically [20,21,23].
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[10] M. T. Deng, S. Vaitiekėnas, E. B. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygård, P. Krogstrup, and C. M. Marcus,
Science 354, 1557 (2016).

[11] H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani,
C. J. Palmstrøm, C. M. Marcus, and F. Nichele, Phys. Rev. Lett.
119, 176805 (2017).

[12] J. Chen, P. Yu, J. Stenger, M. Hocevar, D. Car, S. R. Plissard,
E. P. A. M. Bakkers, T. D. Stanescu, and S. M. Frolov, Sci. Adv.
3, e1701476 (2017).

[13] H. Zhang, Ö. Gül, S. Conesa-Boj, M. P. Nowak, M. Wimmer, K.
Zuo, V. Mourik, F. K. de Vries, J. van Veen, M. W. A. de Moor,
J. D. S. Bommer, D. J. van Woerkom, D. Car, S. R. Plissard,
E. P. A. M. Bakkers, M. Quintero-Pérez, M. C. Cassidy, S.
Koelling, S. Goswami, K. Watanabe et al., Nat. Commun. 8,
16025 (2017).

[14] O. Gül, H. Zhang, J. D. S. Bommer, M. W. A. de Moor, D. Car,
S. R. Plissard, E. P. A. M. Bakkers, A. Geresdi, K. Watanabe, T.
Taniguchi, and L. P. Kouwenhoven, Nat. Nanotechnol. 13, 192
(2018).
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