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Theoretical descriptions of Yu-Shiba-Rusinov (YSR) states induced by magnetic impurities inside the gap
of a superconductor typically rely on a classical spin model or are restricted to spin- 1

2 quantum spins. These
models fail to account for important aspects of YSR states induced by transition-metal impurities, including the
effects of higher quantum spins coupled to several conduction-electron channels, crystal or ligand-field effects,
and magnetic anisotropy. We introduce and explore a zero-bandwidth model, which incorporates these aspects,
is readily solved numerically, and analytically tractable in several limiting cases. The principal simplification of
the model is to neglect Kondo renormalizations of the exchange couplings between impurity spin and conduction
electrons. Nevertheless, we find excellent correspondence in those cases, in which we can compare our results
to existing numerical-renormalization-group calculations. We apply the model to obtain and understand phase
diagrams as a function of pairing strength and magnetic anisotropy as well as subgap excitation spectra.
The single-channel case is most relevant for transition-metal impurities embedded into metallic coordination
complexes on superconducting substrates, while the multichannel case models transition-metal adatoms.

DOI: 10.1103/PhysRevB.103.205424

I. INTRODUCTION

While magnetic impurities in superconductors are a long-
standing topic in condensed matter physics, there has been
a recent resurgence of interest, fueled in part by possible
sightings of topological superconductivity in chains of mag-
netic adatoms on superconducting substrates [1–6]. Scanning
tunneling microscopy (STM) addresses individual magnetic
adatoms on superconductors and directly resolves the Yu-
Shiba-Rusinov (YSR) states, which the adatoms induce in the
superconducting substrate at subgap energies [7,8]. Experi-
mental advances such as the use of superconducting STM tips
have greatly improved the resolution [9,10] and experiments
now routinely identify multiple subgap YSR states [11–14],
probe the hybridization of YSR states in adatom dimers
[15–18], or explore larger assemblies of adatoms, for instance
in the search of Majorana bound states of one-dimensional
[19–21] or the Majorana edge modes of two-dimensional
topological superconductors [22–24].

In many of these experiments, the magnetic impurities
of choice are transition metals, either directly as adatoms
[7,9,11,16] or integrated as metal centers into coordination
complexes [10,12,17,25–29]. These systems are typically
characterized by higher spins (up to Si = 5/2 for d elec-
tron systems), crystal or ligand-field splittings, and single-ion
anisotropy, either due to the substrate or the coordination
complex. While these effects are of crucial importance in ex-
periments, they are frequently sidestepped by minimal models
in theoretical works on YSR states. Crystal fields have been
shown to induce multiple YSR states in higher-spin systems
[11,13] and magnetic anisotropy has been explored by numer-
ical renormalization group (NRG) calculations for a limited

set of parameters [30]. While these NRG calculations give im-
portant guidance, much of the current understanding remains
descriptive due to the lack of analytical approaches.

It is the purpose of the present paper to develop a
framework for understanding YSR states of transition-metal
impurities in real metals within a minimal model, clearly
revealing the underlying physics and allowing extensions to
many cases of experimental interest. The purpose of the model
is not to quantitatively predict detailed properties for specific
impurities but rather to provide qualitative insights into phase
diagrams and subgap excitation spectra of higher-spin impuri-
ties when crystal or ligand fields and anisotropies are present.
Even though the model neglects Kondo renormalizations,
it qualitatively reproduces and explains many observations
made in much heavier NRG calculations.

As emphasized by Schrieffer [31], transition-metal impuri-
ties do not exchange scatter conduction electrons in the � = 0
angular-momentum channel, as assumed in most models of
YSR states, but rather in the � = 2 channel. This implies
that the impurity spin couples to up to five (rather than
one) conduction-electron channels. The detailed nature of
the symmetry-adapted conduction-electron channels as well
as the crystal-field splitting of the impurity d orbitals are
governed by the point group at the impurity location. For a
quenched orbital moment and strong Hund’s coupling, the im-
purity exchange scatters the conduction electrons within each
channel coupled to a singly occupied d orbital so there are
2Si channels for an impurity spin of magnitude Si (see Fig. 1
for an illustrative example based on Ref. [11]). Taking this
picture as a starting point [11,32], one generally expects the
appearance of multiple YSR states, with the number of YSR
states and their degeneracies reflecting the symmetries of the
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FIG. 1. Illustration of crystal-field effects for spin- 5
2 Mn adatoms on a Pb(001) substrate [11]. (a) Adsorption site of Mn on Pb(001) has C4v

point-group symmetry. (b) Crystal-field splitting of the � = 2 manifold. According to Hund’s rules for the d5 configuration of Mn, all d orbitals
are singly occupied, which results in an Si = 5

2 spin. Each ligand-field-split d orbital couples to a separate conduction-electron channel. The
point-group symmetry implies that the dxz and dyz orbitals are degenerate and the exchange couplings with their respective conduction-electron
channels are identical. (c) Bare anisotropy splitting of an Si = 5

2 spin for uniaxial anisotropy D < 0 (easy-axis anisotropy). The levels are
labeled by the projections M of the impurity spin. (For easy-plane anisotropy, D > 0, the order of the levels would be reversed.) The effect of
the anisotropy is strongly modified when the impurity binds quasiparticles on a superconducting substrate.

crystal field. For adatoms, there is strong experimental support
for the validity of this picture from a direct observation of the
YSR wave functions in STM maps, which closely resemble
appropriate d orbitals [11,18].

As a further consequence of crystal fields, YSR states are
also subject to single-ion anisotropy [30]. On normal-metal
substrates, magnetic anisotropy regularly leads to the appear-
ance of spin excitations in tunneling spectra, resulting from
transitions between different eigenstates of the anisotropy
Hamiltonian of the impurity spin [33,34]. According to these
experiments, typical anisotropy energies can be comparable
to superconducting energy gaps, making magnetic anisotropy
a relevant perturbation of standard models of YSR states.
NRG calculations show that the ground state and the subgap
excitation spectra of magnetic adatoms on superconductors
are indeed sensitive to the type and magnitude of the magnetic
anisotropy [30]. This is further supported by experiments
on a transition-metal complex for which the observation of
multiple YSR resonances has been interpreted in terms of
single-ion-anisotropy-induced splittings [12,25].

Experiments on magnetic adatoms and molecules show
that adatom spins are typically quantum mechanical. This
follows most directly from the observation of Kondo res-
onances, both on normal-metal substrates [35,36] and on
superconductors [10,20,25,37–40], as well as the discrete na-
ture of spin excitations [33,34,41,42]. At the same time, YSR
states are frequently described within models which treat the
adatom spin as classical [43–45]. While these models are
quite successful [46–53], they fall short in a number of ways.
For instance, they fail to predict the correct degeneracies
of the many-body ground state or incorrectly suggest that
YSR binding energies should be independent of the sign of
the exchange interaction between adatom spin and substrate
electrons. Important insight into the YSR states of quantum
impurities comes from approximate analytical calculations
[53–55] as well as numerical studies [30,56–59]. With few ex-
ceptions [30], these studies of quantum spins have focused on
spin- 1

2 impurities, precluding considerations of crystal-field or
magnetic-anisotropy effects.

Assemblies of magnetic adatoms on superconductors have
been studied as platforms for realizing topological supercon-
ductivity. Most prominently, signatures of Majorana bound
states have been observed in chains of Fe adatoms on a Pb

substrate [1–5]. In these experiments, the adatoms are closely
spaced and it is believed that the emergence of topological
superconductivity in these structures is possible due to the
direct hybridization of the Fe d orbitals [60,61]. It would also
be extremely interesting to realize topological superconduc-
tivity in more dilute assemblies of adatoms, with the adatoms
sufficiently spaced out so that the direct overlap of their d or-
bitals can be neglected [50]. In this case, each adatom induces
YSR states in the superconducting substrate which would then
hybridize with one another. Clearly, a detailed understanding
of YSR states in real metals would be highly desirably for
designing and interpreting corresponding experiments, which
may then open the path to designer topological superconduc-
tors by STM manipulation of adatoms.

II. MODEL

A. Exchange coupling

The impurity spin Si emerges from the interplay of Hund
coupling and crystal- or ligand-field splittings. High-spin con-
figurations are favored when the Hund coupling exceeds the
crystal field splitting (or the combined ligand- and cystal-field
splittings in metal coordination complexes), while low-spin
configurations result in the opposite case. For atomic impuri-
ties, the crystal-field splitting of the d orbitals is controlled by
the point group of the impurity site. The split sets of d levels
and their degeneracies can be understood in terms of irre-
ducible representations of the point group (Fig. 1). Similarly,
it is convenient to work with conduction-band states, which
transform according to irreducible representations of the point
group. Hybridization of impurity and conduction-band states
will then conserve the representation label m. For bulk im-
purities, it is natural to expand the conduction-band states
in spherical waves and only � = 2 partial waves exchange
scatter from the impurity [31]. Assuming symmetry-adapted
d orbitals and conduction-electron channels for adatoms, the
antiferromagnetic exchange coupling takes the form

Hex =
∑

m

JmSi · ψ†
m(0)sψm(0), (1)

where m labels the channels. If two channels are symme-
try related, their exchange couplings Jm are identical. The
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expression for the exchange coupling is valid when orbital
angular momentum is quenched, so that there is only spin ex-
change. Here, ψm(0) denotes the spinor of conduction electron
field operators for partial waves in representation m, evaluated
at the impurity position, and s = 1

2σ is the electron spin in
terms of the vector of Pauli matrices σ in spin space. The
sum over m extends over the half-filled d-electron orbitals of
the adatom so the impurity spin is exchange coupled to 2Si

independent conduction-electron channels, with a different
exchange coupling Jm > 0 for each set of symmetry-related
d orbitals.

For impurity spins associated with adsorbed transition-
metal complexes, the molecular ligand field may not have the
same symmetry as the crystal field imposed by the substrate.
Moreover, the metal center will be typically lifted slightly
off the surface by the molecular scaffold. In this situation,
hybridization to conduction band electrons may be dominated
by the dz2 orbital, as this orbital extends furthest toward the
substrate and originates predominantly from Bloch wave vec-
tors k directed perpendicular to the surface, whose evanescent
tail extends furthest out of the substrate. The reduction in
symmetry will tend to induce a complete splitting between
channels and a single channel may have a much larger ex-
change coupling than the others.

B. YSR states of classical impurities

The Hamiltonian of the impurity spin coupled to the sub-
strate superconductor takes the form

H =
∫

dr
∑

m

ψ†
m(r)[(εp − μ)τz + �τx

+ (Vmτz + JmSi · s)δ(r)]ψm(r). (2)

Here, we included the amplitude Vm for potential scattering in
all channels m, while εp denotes the normal-state dispersion
of the substrate electrons, μ is the chemical potential, � the
superconducting pairing, and τ the vector of Pauli matrices
in particle-hole space. For all channels, the electron field
operator ψm is a Nambu spinor ψ = [ψ↑, ψ↓, ψ

†
↓,−ψ

†
↑]T .

YSR states are most commonly described within a model,
which describes the magnetic impurity spin Si as classi-
cal [43–45]. In this model, the different conduction-electron
channels decouple and the impurity induces a single pair of
YSR states in each channel with energies ±εm, where

εm = �
1 − α2

m + β2
m√(

1 − α2
m + β2

m

)2 + 4α2
m

(3)

in terms of the dimensionless exchange coupling αm =
πν0JSi/2 (ν0 is the normal-state density of states at the Fermi
energy) and the dimensionless strength β = πν0V of potential
scattering. Potential scattering leads to a difference between
the orbital electron and hole wave functions of the YSR state.

As a function of the exchange coupling, the YSR states
traverse the gap and cross at zero energy for a critical value of
α2

m = 1 + β2
m. This zero-energy crossing indicates a quantum

phase transition, at which the fermion parity of the ground
state changes [62]. Beyond this critical value, the impurity
binds a quasiparticle, which (partially) screens the impurity
spin. A classical spin breaks the time-reversal symmetry of

the full quantum model and the many-body ground states are
nondegenerate on both sides of the quantum phase transition.

C. Few-site model for quantum impurities

1. Spin- 1
2 impurity

When the impurity spin is classical, we can choose a coor-
dinate system such that Si = Si,zẑ and the exchange coupling
is purely longitudinal ∼Si,zsz. This reduction to a longitudinal
exchange coupling does not carry over to quantum spins,
for which the transverse exchange ∼ 1

2 [Si,+s− + Si,−s+] plays
an important role. For instance, either the unscreened or the
screened state of the quantum model must be Kramers de-
generate. Thus, the quantum phase transition is generically
associated with a change in the ground-state degeneracy. This
follows because time-reversal symmetry is unbroken in the
full quantum model and the system has half-integer total spin
on one side of the transition.

This is correctly captured by a zero-bandwidth model for
an Si = 1

2 quantum impurity, in which the superconductor has
only a single site (see, e.g., Refs. [53,63–69] for applications
to Josephson junctions and quantum dot systems):

H = �(c†
↓c†

↑ + c↑c↓) +
∑
σσ ′

c†
σ [V τzδσσ ′ + JSi · sσσ ′]cσ ′ . (4)

Here, cσ denotes the annihilation operator of an electron with
spin σ on the superconducting site and V models the poten-
tial scattering amplitude associated with the impurity. This
single-site Hamiltonian is time-reversal symmetric, preserves
fermion parity, and has full spin-rotation symmetry. Eigen-
states can thus be classified according to magnitude and z
component of the total spin

S = Si +
∑
σσ ′

c†
σ sσσ ′cσ ′ (5)

as well as fermion parity.
The even-parity subspace is spanned by states in which the

site is empty – states |Si = 1
2 , M = ± 1

2 〉 ⊗ |0〉 – or doubly oc-
cupied – states | 1

2 , M〉 ⊗ |2〉 with |2〉 = c†
↑c†

↓|0〉. None of these
states has a net electronic spin and the exchange coupling
has only zero matrix elements within this subspace. Thus,
the impurity spin remains unscreened and free and there is a
Kramers doublet of low-energy states | 1

2 , M〉 ⊗ |BCS〉, where
the electronic state is the BCS state,

|BCS〉 = u|0〉 + v|2〉, (6)

with electron and hole amplitudes u2 = 1
2 [1 + V/

√
V 2 + �2]

and v2 = 1
2 [1 − V/

√
V 2 + �2], respectively. The (many-

body) energy of these low-energy states is Ee = V −√
V 2 + �2. We note that the second set of degenerate eigen-

states | 1
2 , M〉 ⊗ (v|0〉 − u|2〉) are above-gap excited states

with two Bogoliubov quasiparticles, which will play no role
in the following.

In the odd-parity subspace spanned by | 1
2 , M〉 ⊗ | 1

2 , σ 〉
with | 1

2 , σ 〉 = c†
σ |0〉, pairing is ineffective. (Note that we write

the state of the impurity spin first, followed by the electronic
state, for which we find it convenient to indicate the magnitude
of the spin in addition to the spin projection σ = ± 1

2 .) Due to
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spin-rotation symmetry, the impurity and electron spins cou-
ple into singlet and triplet states, with the singlet state having
the lower energy. Thus, there is only a single low-energy state,

|sing〉 = 1√
2
(| 1

2 , 1
2 〉 ⊗ | 1

2 ,− 1
2 〉 − | 1

2 ,− 1
2 〉 ⊗ | 1

2 , 1
2 〉), (7)

with energy Eo = V − 3J/4. The energy of the triplet state
equals Eo = V + J/4 and corresponds to an above-gap state,
which we do not consider.

The even- and odd-fermion-parity states become degener-
ate when 3J/4 = √

V 2 + �2. This defines the quantum phase
transition between a Kramers doublet of even-fermion-parity
ground states with free and unscreened impurity spin and a
singlet ground state with screened impurity spin. For weak
exchange coupling, 3J/4 <

√
V 2 + �2, the even-fermion-

parity BCS states form the doublet ground state, and the
odd-fermion-parity singlet state the subgap YSR excitation
with excitation energy ε = √

V 2 + �2 − 3J/4. Conversely,
the singlet odd-fermion-parity state becomes the ground state
for strong exchange coupling, 3J/4 >

√
V 2 + �2 and the

YSR excitation is the even-fermion-parity doublet with exci-
tation energy ε = 3J/4 − √

V 2 + �2.

2. Spin-Si impurity

In the remainder of this paper, we will discuss a gener-
alized version of this zero-bandwidth model for higher-spin
impurities subject to crystal or ligand fields and single-ion
anisotropy. In this model, each of the 2Si conduction-electron
channels of the superconductor is represented by a separate
single-site superconductor labeled by m. Thus, the Hamilto-
nian of the model takes the form

H =
∑

m

�(c†
m↓c†

m↑ + cm↑cm↓)

+
∑
σσ ′

∑
m

c†
mσ [Vmτzδσσ ′ + JmSi · sσσ ′]cmσ ′

+ DS2
i,z + E

(
S2

i,x − S2
i,y

)
. (8)

Here, the last two terms describe the single-ion anisotropy,
with D and E quantifiying the axial and transverse
anisotropies, respectively. There are many cases in which the
transverse anisotropy is symmetry forbidden. For this reason,
we retain only the axial anisotropy D throughout most of this
paper, and comment on the effects of E only occasionally,
when a nonvanishing E introduces qualitative changes. The
spectrum of the anisotropy term by itself is illustrated in
Fig. 1(c) for the case of easy-axis anisotropy, D < 0, which
favors large projections M of the impurity spin. Easy-plane
anisotropy, D > 0, in contrast, favors small impurity-spin pro-
jections M.

In many ways, the quantum model goes over into the
classical model in the limit of large easy-axis anisotropy.
In this limit, the anisotropy essentially freezes the impurity
spin into the M = ±Si states. Then, the exchange coupling is
dominated by the longitudinal contribution and the transverse
contribution to the exchange coupling becomes suppressed.
However, even in this limit the binding of a quasiparticle
remains associated with a change in the ground-state degen-
eracy of the quantum model. This is a consequence of the
existence of the two large-spin-projection states M = ±Si,

and leads to characteristic differences in the excitation spectra
of the classical and quantum models as we will see below.
It should also be kept in mind that, even in this case, the
classical-spin model does not capture Kondo renormalizations
of the exchange coupling strength due to processes above the
energy scale of the anisotropy energy.

It is the main point of this paper to show that the model
in Eq. (8) is remarkably useful to treat the YSR physics of
higher-spin quantum impurities coupled to several channels
and subject to single-ion anisotropy. The model can be viewed
as the limit of the full problem, in which � becomes large
compared to the bandwidth, but it is important to keep its
limitations in mind. We close this section by commenting
on aspects that are not captured. To start, the model clearly
cannot properly describe above-gap excitations. Due to the
single-site nature of the superconducting channels, there is
no quasiparticle continuum of the superconductor, with which
above-gap states of the impurity could hybridize. We will
thus systematically ignore such above-gap states and focus
exclusively on subgap excitations. Even for subgap states
close to the superconducting gap edge, the zero-bandwidth
approximation does not fully capture level-repulsion effects.

The absence of a quasiparticle continuum also implies
that the model neglects Kondo renormalizations of the ex-
change coupling. Thus, the exchange couplings entering
into the model should be interpreted as renormalized cou-
plings. In superconductors, scaling to stronger coupling
(for antiferromagnetic exchange) is ultimately cut off at
the superconducting gap. Moreover, the renormalized ex-
change coupling can depend on the strength of the magnetic
anisotropy, which lifts the degeneracy of the 2Si + 1 impurity-
spin states (see Sec. III D for further discussion of this point).

Finally, restricting the superconductor to a single site elim-
inates the spatial wave-function structure of the YSR states,
which can be probed directly in experiment [11].

III. YSR STATES OF METAL COORDINATION
COMPLEXES: SINGLE-CHANNEL MODEL

We begin by considering higher-spin magnetic impurities
coupled to a single channel [i.e., we consider Si � 1, setting
J1 = J and all other Jm = 0 in Eq. (8)]. This situation has been
treated by extensive NRG calculations [30], which allows us
to probe the validity of the zero-bandwidth model. Moreover,
as argued above, this situation will frequently constitute a
useful model for discussing YSR states of transition-metal
complexes on superconducting substrates due to the dominant
exchange coupling in one channel.

For a single channel, the model Hamiltonian in Eq. (8)
reduces to

H = �(c†
↓c†

↑ + c↑c↓) +
∑
σσ ′

JSi · c†
σ sσσ ′cσ ′

+ DS2
i,z + E

(
S2

i,x − S2
i,y

)
. (9)

Here, we set V = 0 for all channels, neglecting potential
scattering by the impurity for simplicity. Compared to the
spin- 1

2 model already discussed, the new aspect is that mag-
netic anisotropy becomes relevant and we can discuss phase

205424-4



YU-SHIBA-RUSINOV STATES IN REAL METALS PHYSICAL REVIEW B 103, 205424 (2021)

FIG. 2. Phase diagrams for various impurity spins Si as a function of pairing strength � and uniaxial anisotropy D, based on the single-
channel model in Eq. (9). Transverse anisotropy is set to zero and the exchange coupling J = 1 sets the energy scale. Phases are labeled by
(Q, Sz ), where Q is the number of bound quasiparticles (fermion parity) and Sz the projection of the total spin. The phases at larger pairing
strengths � have an unscreened impurity spin and no bound quasiparticle (Q = 0, even fermion parity). The phases at lower pairing strengths
� have a partially screened impurity spin and a bound quasiparticle (Q = 1, odd fermion parity). See the Appendix for corresponding spectra
of the Hamiltonian in Eq. (9).

diagrams as well as excitation spectra as a function of mag-
netic anisotropy.

To classify the eigenstates as well as the phases of the
model, it is useful to consider the symmetries of the model.
The general model in Eq. (8) conserves the fermion parity of
each channel separately, while spin rotation symmetry is com-
pletely broken by the anisotropy. However, the model remains
invariant under spin rotations about the ẑ axis for vanishing
transverse anisotropy E . In this case, the z component of the
total spin,

S = Si +
∑
σσ ′

∑
m

c†
mσ sσσ ′cmσ ′ , (10)

remains a good quantum number. The ground states can then
be labeled by (Q, Sz ), where Sz is the projection of total spin
and

Q = 1

2

∑
m

[1 − (−1)nm ] (11)

with nm = ∑
σ c†

mσ cmσ denotes the number of quasiparticles
bound to the impurity. (Notice that in the ground state, the
quasiparticles will always be bound in those channels, which
have the largest exchange couplings. Thus, Q specifies the
fermion parities (−1)nm of all channels.) In the single-channel
model in Eq. (9), Q takes on the values 0 and 1, distinguishing
between even and odd electron-number eigenstates.

A. Phase diagrams

Figure 2 shows phase diagrams as a function of pairing
strength � and uniaxial anisotropy D for various impurity
spins, obtained by numerical diagonalization of the single-
channel model in Eq. (9). Since E = 0, the phases are labeled
by (Q, Sz ). Larger pairing energies favor Q = 0 states, cor-
responding to unscreened, even-fermion-parity ground states.
The spin projection of these states depends on the sign of the
anisotropy D. For D < 0, the anisotropy favors large spin pro-
jections, and the unscreened ground state has Sz = ±Si. For
D > 0, the anisotropy favors small spin projections, and the
unscreened ground state has Sz = 0 for integer Si or Sz = ± 1

2
for half-integer Si.

For smaller pairing energies �, the impurity binds a quasi-
particle, resulting in partially screened, odd-fermion-parity
ground states with Q = 1. The quasiparticle is bound to
the impurity by the exchange interaction, which grows with
the impurity spin Si for our definitions. Consequently, the
partially screened phases become more prominent with in-
creasing impurity spin Sz. (The exchange coupling J is fixed
to unity for all panels.) Just as for the unscreened phases, the
spin projections of the partially screened ground states depend
on the sign of the uniaxial anisotropy. For D < 0, the spin
projections equal ±(Si − 1

2 ) and are reduced in magnitude
compared to the unscreened phase. This is a consequence of
the fact that the exchange interaction binding the quasiparticle
to the impurity is antiferromagnetic. For D > 0, the binding
of the quasiparticle implies that the ground state has Sz = 0
for half-integer Si and Sz = ± 1

2 for integer Si, just reversed
compared to the unscreened phases. The case of Si = 1 is
exceptional in that there is only a single partially screened
phase, independent of the sign of D. The reason is that in
this case, the partially screened phase has Sz = ± 1

2 , so the
anisotropy causes no energy splitting.

The effects of anisotropy differ qualitatively for positive
and negative uniaxial anisotropies. Negative anisotropy, D <

0, systematically favors the unscreened phase. The phase
boundary moves to smaller pairing energies as D < 0 in-
creases in magnitude, tending toward a nonzero value of �

for D → −∞. This trend of the phase boundary results from
the increasing polarization of the impurity spin along the ẑ
direction as D becomes more negative. This suppresses the
contribution of the transverse part of the exchange interaction,
J (Si,xsx + Si,ysy), reducing the gain in exchange energy of the
quasiparticle.

Positive anisotropies, D > 0, consistently favor, or at least
stabilize, the phases with zero spin projection. For integer
impurity spins, it is the unscreened phase which has zero spin
projection and the phase boundary to the partially screened
phase moves to smaller pairing energies � as D increases.
The phase boundary ultimately approaches � = 0 and the par-
tially screened phase disappears completely as D → ∞. This
suppression of the screened phase is absent for half-integer
impurity spins. In this case, the phase boundary between
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the unscreened and partially screened phases is insensitive
to the anisotropy and the partially screened phase with zero
spin projection is robust. This striking difference in behavior
can be traced to the Kramers degeneracy, which necessarily
exists for half-integer spins. Integer impurity spins have a
unique ground state for large and positive anisotropy, and the
exchange coupling affects the energy only in second order
in perturbation theory. The resulting binding energy is thus
proportional to J2/D and vanishes as D → ∞. In contrast,
the ground state is Kramers degenerate for half-integer spins
and the exchange interaction acts in first order in perturbation
theory, resulting in binding energies of order J .

There are various quantum phase transitions between the
ground states in Fig. 2. Fermion parity changes between the
unscreened and the partially screened phases. The existence of
these quantum phase transitions is robust when modifying the
Hamiltonian. In contrast, fermion parity remains unchanged
at the quantum phase transitions at D = 0 between states
with different spin projections. First, it should be noted that
right at these fermion-parity-preserving quantum phase tran-
sitions, additional spin projections can be degenerate with the
two phases (for the unscreened phases, for instance, Sz = ±1
for Si = 2 and Sz = ± 1

2 ,± 3
2 for Si = 5/2). Second, these

quantum phase transitions are absent if the Hamiltonian fully
breaks spin rotation symmetry, e.g., due to a nonzero trans-
verse anisotropy E . In this case, the two phases can no longer
be distinguished as the spin projection Sz ceases to be a good
quantum number.

B. Excitation spectra

Excitations can be investigated by fermion-parity-
preserving probes such as microwaves. More commonly, one
measures subgap tunneling spectra, which probe excitations
from even- to odd-fermion-parity states, or vice versa. Subgap
excitations appear as pairs of peaks at symmetric positive and
negative bias voltages. For normal-metal tips, these peaks
occur directly at eV = ±ε, where ε is the excitation energy
of a YSR state. For superconducting tips, the peaks appear at
voltages which are offset by the tip gap, eV = ±(ε + �tip ).
Below, we restrict attention to the excitation energies ε,
which appear universally in STM experiments, regardless
of whether the YSR states are probed by normal-metal or
superconducting tips, whether tunneling is dominated by
single-electron or two-electron (Andreev) tunneling [70],
and whether the adsorbate is an adatom or a transition metal
complex.

In principle, one can also compute peak heights within
the model. However, the physics of the peak heights is much
less universal and sensitive to the nature of the potential
scattering, of the tip, of the tunneling process, and of the
adsorbate [37,70]. For instance, tunneling is dominated by
single-electron processes for weak tip-substrate coupling and
the peak heights at positive and negative bias voltages reflect
single-particle spectral weights. For stronger tip-substrate
coupling, tunneling proceeds by Andreev processes. The
corresponding peak heights are no longer described by single-
particle spectral weights and moreover depend on the nature
of the tip [70]. In experiments, the peak heights also ex-
hibit pronounced spatial variations, reflecting the YSR wave

functions [11]. Clearly, single-site models are incapable of
capturing these spatial dependencies. In view of its nonuni-
versal physics, we refrain from further discussion of the peak
heights.

1. Tunneling spectra

Figure 3 illustrates the subgap tunneling excitation ener-
gies as a function of anisotropy D for Si = 1 and Si = 3/2.
Representative spectra for Si = 1 are shown in Fig. 3(a) for
excitations out of the unscreened ground states and Fig. 3(b)
for excitations out of the partially screened ground state.
Anisotropy splits the Q = 0 manifold (no bound quasiparti-
cle) into Sz = 0 and degenerate Sz = ±1 states. (The latter
would be further split by a nonzero transverse anisotropy
E .) The Q = 1 manifold consists of two Kramers degenerate
Sz = ± 1

2 states. For the unscreened ground states [Fig. 3(a)],
the subgap tunneling spectrum shows a single YSR excita-
tion into the Q = 1 manifold, originating from the Sz = ±1
(Sz = 0) state for negative (positive) D. Additional excitations
associated with the anisotropy splitting of the Q = 0 manifold
would appear at finite temperatures (thermal peaks), where
the excited states of the Q = 0 manifold have a finite occu-
pation probability, see the dashed arrow in the term diagram
in Fig. 3(a).

The anisotropy splitting shows up directly in zero-
temperature tunneling spectra, when exciting the system out
of the screened ground state. Figure 3(b) shows the sub-
gap tunneling spectrum at a lower pairing strength �, for
which the ground state is unscreened at large positive and
negative anisotropies D (blue and orange backgrounds) but
partially screened at intermediate anisotropies (green back-
ground). We again find a single YSR excitation into a partially
screened state in the regions with unscreened ground states,
consistent with the discussion of Fig. 3(a). However, there
are two YSR excitations when the ground state is partially
screened. In this case, the excited Q = 0 manifold is un-
screened and split by the anisotropy. Tunneling excitations
connect the partially screened Q = 1 ground state with both of
these anisotropy-split levels, resulting in two YSR excitations
unless the splitting becomes so large that one of the exci-
tations moves out of the subgap region. The corresponding
excitations are also shown in the term diagram included in
Fig. 3(b).

Quantum phase transitions can be associated with cusps in
the excited-state spectrum, both at finite and at zero excitation
energy [Figs. 3(a) and 3(b), respectively] or even with termi-
nations of excitations. Cusps occur at zero excitation energy,
when the quantum phase transition is between states with
�Q = ±1. In this case, the ground-state and excited-state
manifolds simply trade roles at the quantum phase transition
and one of the excitations necessarily reaches zero right at the
transition. Cusps appear at finite excitation energies, when the
quantum phase transition is between ground states with �Q �=
±1 and the YSR excitation excites the same manifold from
both ground states. This situation occurs in Fig. 3(a), where
the system is excited into the partially screened manifold from
both of the unscreened phases. Terminations of excited states
occur when the excited-state manifold on one side of the
transition can no longer be reached from the ground state on
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FIG. 3. Subgap tunneling excitation energies of the single-channel model in Eq. (9) as a function of anisotropy D for Si = 1 [(a), (b)] and
for Si = 3/2 [(c), (d)]. Background color indicates the ground state and line color the excited state (same color coding as in the corresponding
phase diagram in Fig. 2). Transverse anisotropy is set to zero and the exchange coupling J = 1 sets the energy scale. Pairing strength � is
chosen as indicated in the panels. The maximal excitation energies shown correspond to the gap edge � of the superconductor. (a) Tunneling
excitations out of the unscreened ground states for Si = 1. The corresponding term diagram for D < 0 uses the same color scheme. Allowed
transitions out of the ground state, shown as full arrows, are included in the excitation spectrum. The anisotropy splitting generates additional
excitations out of excited states, shown as a dashed arrow. These appear at finite temperatures, with their intensity showing an activated
temperature dependence. (b) Tunneling excitations for Si = 1 at smaller pairing energy, including excitations out of the screened ground
state (green background). The corresponding term diagram for D < 0 shows that for a screened ground state, the YSR excitations exhibit
an anisotropy splitting even at zero temperature. (c) Tunneling excitations out of the unscreened ground states for Si = 3/2. (d) Tunneling
excitations out of the screened ground states for Si = 3/2. Anisotropy splitting is seen at negative anisotropy D < 0, see left term diagram.
For positive anisotropy D > 0, the anisotropy splitting cannot be observed due to the selection rule �Sz = ± 1

2 , see right term diagram. In all
tunneling spectra, cusps and terminations of excited-state energies are associated with quantum phase transitions.

the other side. This happens in Fig. 3(b), where the high-Sz

unscreened excited state (blue line) can be excited from the
partially screened ground state but not from the unscreened
low-Sz ground state, reflecting the selection rule �Q = ±1.

Corresponding results for Si = 3/2 are shown in Figs. 3(c)
and 3(d). Excitations out of the unscreened ground states are
shown in Fig. 3(c). For negative D, there is only a single
excitation into the singly screened states, while the anisotropy
splitting appears as two excitations at positive D. This ef-
fectively leads to the termination of one of the excitations
at the quantum phase transition. A similar effect is present
for excitations out of the screened ground states shown in
Fig. 3(d). Here, the anisotropy splitting appears only for ex-
citations out of the high-spin screened ground state (green
background; left term diagram) but not for excitations out
of the low-spin screened ground state (red background; right
term diagram). In both cases, the reason for the termination is
associated with the selection rules for tunneling excitations,
albeit now with a selection rule for the spin projection Sz.
Electron tunneling can change Sz only by ± 1

2 . The transitions
into both anisotropy-split sublevels satisfy this selection rule
for excitations out of the high-spin partially screened ground

state (see left term diagram) but not for excitations out of the
low-spin partially screened ground state (see right term dia-
gram). Similarly, for transitions out of the unscreened states,
the anisotropy splitting of the singly screened states is only
compatible with the Sz selection rule when exciting out of the
low-Sz ground state.

A nonzero transverse anisotropy E leads to qualitative
changes in several of these results. First, a nonzero E elim-
inates the quantum phase transition at D = 0 in Fig. 3(a).
Second, it mixes states with �Sz = 2, splitting the degener-
ate unscreened Q = 0 states with Sz = ±1 for Si = 1. When
Q = 0 is the ground-state manifold, this results in the appear-
ance of an additional finite-temperature thermal peak. When
Q = 0 is the excited state, the YSR excitation splits into three
anisotropy sublevels even at zero temperature. This would
happen in Fig. 3(b). No corresponding splitting appears in
Fig. 3(d) for Si = 3/2, where the degeneracy of the Q = 0
levels is protected by time reversal. Third, a nonzero E leads
to eigenstates, which are superpositions of different Sz states.
Consequently, there will generally be no forbidden transitions
in Figs. 3(c) and 3(d), and the anisotropy splitting becomes
visible for both signs of the anisotropy.
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FIG. 4. Subgap excitation spectra of the single-channel model in Eq. (9) for fixed fermion parity as a function of anisotropy D for impurity
spins Si as indicated above the panels. Top row refers to even fermion parity states without quasiparticle (Q = 0; illustrated by top inset in
panel for Si = 1) and the bottom row to odd fermion parity states with quasiparticle (Q = 1; illustrated by bottom inset in panel for Si = 1).
Background color indicates the ground state and line color the excited state (same color coding as in the corresponding phase diagram in Fig. 2).
Gray lines correspond to intermediate total spin projections, which do not become the ground state at any D. Dashed lines indicate above-gap
excitations (see Sec. III B 2). The term diagrams illustrate the underlying transitions out of the ground states. In experiments, some transitions
may be forbidden due to additional selection rules beyond �Q = 0, characteristic of the specific probe, and transitions out of excited states
may appear at finite temperatures. Transverse anisotropy is set to zero and the exchange coupling J = 1 sets the energy scale. The excitation
spectra are independent of pairing strength �, except that �, here chosen as � = 1.5, determines the range, over which the states appear as
subgap excitations.

2. Parity-preserving excitations

Figure 4 shows subgap spectra with parity-preserving ex-
citations for different impurity spins Si. Within our model,
the parity-preserving spectra are independent of the supercon-
ducting gap as initial and final states involve the same number
of paired channels. However, the pairing strength determines
the range of energies, over which the excitations are observed
as subgap excitations. We therefore plot the subgap spectra for
both ground-state parities for the entire range of anisotropies.
For a specific point in the phase diagram, the relevant excita-
tion spectrum is the one for the particular ground-state parity
and the particular � determines the energy range, over which
the excitations appear at subgap energies.

For the unscreened states (top row in Fig. 4), parity pre-
serving excitations just reflect the anisotropy splitting of the
impurity-spin spectrum. While the slopes of the states with the
largest and smallest impurity-spin projections Sz are symmet-
ric on the two sides of the quantum phase transition at D = 0,
the slope of transitions into states with intermediate Sz values
differs between the two sides, reflecting the different ground
states.

For the singly screened states (bottom row in Fig. 4),
the number of excitations remains unchanged compared to
the screened state when the impurity spin is half-integer. In
contrast, the number of excitations is reduced by one for
integer impurity spins. These splittings are consistent with
the expectation that screening results in an effective (Si − 1

2 )
spin. This means that the partially screened impurity behaves
just like a quantum impurity with a correspondingly reduced
spin, albeit with a renormalized anisotropy D and noticeably
nonlinear anisotropy dependence at larger positive D.

The nonlinear dependence on the anisotropy D is par-
ticularly pronounced for half-integer impurity spins and
excitations into states with spin projections Sz = 1. This can
be understood as follows. At large and positive D, the spin
projection of a half-integer impurity spin strongly prefers
the Sz = ± 1

2 states. Then, the Sz = 0 ground state becomes
a linear combination of the states |Si, M = ± 1

2 〉 ⊗ | 1
2 ,∓ 1

2 〉,
while the excited Sz = ±1 states are made up of |Si, M =
± 1

2 〉 ⊗ | 1
2 ,± 1

2 〉. All these states have the same anisotropy
energy and the corresponding excitation energy must saturate
at large D, implying a nonlinear dependence on D.

For partially screened phases, there are additional spin
excitations at higher energies. For the parameters chosen here,
such excitations appear for Si = 1 (dashed lines in Fig. 4).
These emerge from the ferromagnetically coupled quasiparti-
cle states with total spin S = 3

2 at D = 0. However, it should
be noted that these are above-gap excitations. As can be seen
in Fig. 2, the maximal �, at which there is a partially screened
ground state for J = 1 is � = 1, and these excitations appear
only at higher energies.

C. Analytical considerations

Many aspects of the phase diagrams and the excitation
spectra can be understood analytically by considering the
limits of small and large uniaxial anisotropies.

1. Even-fermion-parity eigenstates

The even-fermion-parity subspace is spanned by the
unoccupied and doubly occupied states of the single-site su-
perconductor. Consistent with the spin-singlet nature of the
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superconductor, neither of these states has an effective spin
and the exchange coupling has no nonzero matrix elements
within this subspace. Thus, the low-energy eigenstates are
direct products of the impurity eigenstates |Si, M〉 (with M =
−Si,−Si + 1, . . . , Si − 1, Si) and the paired electron state
|BCS〉,

|Si, Sz〉 ⊗ |BCS〉, (12)

with eigenenergies

Ee(Sz ) = −� + DS2
z . (13)

Here, the first term is the pairing energy of the BCS ground
state |BCS〉, while the second term is the anisotropy energy
(assuming zero transverse anisotropy E = 0). Here and below,
the subscript of the energy denotes the fermion parity and the
argument indicates the projection of the total spin. We denote
the projections of the total spin by Sz and the projections of the
impurity spin by M. These projections coincide for the even-
fermion-parity subspace considered here, but are in general
different.

A nonzero transverse anisotropy E will further split the
degeneracy between the states with ±Sz for integer impurity

spins. In contrast, this is a Kramers degeneracy protected by
time-reversal symmetry for half-integer spins.

2. Odd-fermion-parity eigenstates at small uniaxial anisotropies

Unlike for the even-fermion-parity subspace, the spectrum
of the odd-fermion-parity subspace cannot be found ana-
lytically in full generality. However, much insight can be
gained from perturbation theory in the limits of small and
large anisotropies. We begin with the limit of small uniaxial
anisotropy D. The odd-fermion-parity subspace is spanned by
the states

|Si, M; 1
2 , σ 〉 = |Si, M〉 ⊗ | 1

2 , σ 〉. (14)

Initially neglecting the anisotropy, the rotationally symmet-
ric exchange interaction couples impurity and quasiparticle
spins into eigenstates of the total spin. For antiferromagnetic
exchange interaction, the low-energy states have total spin
Si − 1

2 , leaving a 2Si-fold degenerate manifold of eigenstates.
Using Clebsch-Gordan coefficients, these states can be ex-
panded in the product basis in Eq. (14):

∣∣∣∣Si,
1

2
; Si − 1

2
, Sz

〉
=

∑
σ=± 1

2

∣∣∣∣Si, Sz + σ ;
1

2
,−σ

〉〈
Si, Sz + σ ;

1

2
,−σ

∣∣∣∣Si,
1

2
; Si − 1

2
, Sz

〉

=
√

1

2
+ Sz

2Si + 1

∣∣∣∣Si, Sz + 1

2
;

1

2
,−1

2

〉
−

√
1

2
− Sz

2Si + 1

∣∣∣∣Si, Sz − 1

2
;

1

2
,

1

2

〉
. (15)

Here, the first pair of entries in the state on the left-hand side
denote the spins that are being coupled and the second pair
give the eigenvalues of the total spin and its projection. A
standard calculation shows that these states have exchange
energy − J

2 (Si + 1).
This 2Si-fold degenerate manifold of eigenstates is split

further by the uniaxial anisotropy D. Perturbatively in D, the
states Eq. (15) remain eigenstates of the Hamiltonian with
energies:

Eo(Sz ) = −J

2
(Si + 1) + D

(
2Si + 3

2Si + 1
S2

z + 1

4

)
. (16)

Note that the anisotropy energy is nonzero even for vanishing
projection of the total spin, Sz = 0, a situation which can occur
for half-integer impurity spins Si. The reason is that, according
to Eq. (15), the Sz = 0 states are composed of states with M =
± 1

2 . We will see below that this fact has ramifications for the
phase diagrams.

3. Odd-fermion-parity eigenstates at large uniaxial anisotropies

In the opposite limit of large anisotropy, we first consider
D < 0. The low-energy eigenstates of the anisotropy Hamil-
tonian, |Si,±Si; 1

2 , σ 〉, are shifted in energy by the exchange
coupling. To linear order in J , only the longitudinal exchange
coupling JSi,zsz contributes and we find

Eo

(
±

(
Si − 1

2

))

 DS2

i − JSi

2
. (17)

Comparing to Eq. (16), we observe that the large and negative
anisotropy effectively reduces the gain in exchange energy.

For large and positive uniaxial anisotropy D, we need to
distinguish between integer and half-integer impurity spins.
For integer impurity spins, the lowest-energy eigenstates of
the uniaxial anisotropy are |Si, M = 0〉 ⊗ | 1

2 , σ 〉 and have zero
anisotropy energy. These two states are Kramers partners and
will therefore remain uncoupled by the exchange interaction.
However, the transverse exchange coupling shifts their energy
in second order in perturbation theory and we find

Eo

(
±1

2

)

 −J2Si(Si + 1)

4D
. (18)

For large positive D, the exchange interaction is thus consider-
ably less effective in binding quasiparticles to integer impurity
spins.

For half-integer impurity spins, there are four low-energy
eigenstates |Si, M = ± 1

2 〉 ⊗ | 1
2 , σ 〉 of the uniaxial anisotropy,

with anisotropy energy D/4. Unlike for integer impurity spins,
time-reversal symmetry no longer forbids exchange couplings
within this degenerate manifold and the longitudinal exchange
coupling contributes in addition to transverse exchange. We
thus find a splitting in first order in the exchange coupling and
the state binding a quasiparticle has energy

Eo(0) 
 D

4
− J

2
(Si + 1). (19)
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At large and positive D, quasiparticles are therefore much
more effectively bound to half-integer impurity spins than to
integer impurity spins. This is not offset by the anisotropy
energy as this energy also contributes to the energy of the
unscreened state.

4. Phase diagrams

We are now in a position to interpret the phase diagrams in
Fig. 2. Quantum phase transitions occur whenever two ground
states cross in energy. On the one hand, this happens at D = 0.
The ground state favors large projections Sz of the total spin at
negative uniaxial anisotropy D but small Sz at positive D. This
quantum phase transition occurs strictly at D = 0. It is absent
when the total spin is smaller than 1 and the anisotropy does
not split the eigenstates, e.g., for a spin- 1

2 impurity or a singly
screened spin-1 impurity. It is present for vanishing transverse
anisotropy E only.

On the other hand, quantum phase transitions are associ-
ated with the binding of a quasiparticle to the impurity. These
occur when states with different fermion parities cross in en-
ergy. Thus, for the single-channel model the phase boundary
is determined by the condition Ee = Eo. First consider D < 0,
where the anisotropy favors large projections of the impu-
rity spin. For the unscreened state with even fermion parity,
Eq. (13) gives

Ee 
 −� + DS2
i (20)

for the lowest-energy state. For large and negative D, this
should be compared to the lowest-energy odd-fermion-parity
state, whose energy Eo is given in Eq. (17), and the quantum
phase transition occurs at

� = JSi

2
. (21)

For small and negative D, the screened state with odd fermion
parity extends to larger �. In this case, Eq. (16) with Sz =
±(Si − 1

2 ) gives

Eo 
 −J

2
(Si + 1) − D

(
1 − S2

i − 2

2Si + 1

)
(22)

for the lowest-energy state with odd fermion parity. Thus, the
phase boundary follows

� = J

2
(Si + 1) + D

(
1 − 2

2Si + 1

)
(23)

in this region.
For D > 0, the anisotropy favors small values of the spin

projection Sz, and there are qualitative differences between
integer and half-integer impurity spins. At small uniaxial
anisotropy D, Eq. (13) implies that the lowest-energy state
with even fermion parity has energy

Ee 
 −� +
{

0 integer Si
D
4 half-integer Si.

(24)

The difference emerges from the fact that the minimal spin
projection is Sz = 0 for integer impurity spins but Sz = ± 1

2 for
half-integer impurity spins. Similarly, we find from Eq. (16)

that the lowest-energy state with odd fermion parity has

Eo 
 −J

2
(Si + 1) +

{
Si+1

2Si+1 D integer Si

D
4 half-integer Si.

(25)

Due to the screening electron, the minimal spin projection is
now equal to Sz = ± 1

2 for integer and Sz = 0 for half-integer
impurity spins Si. As a result of the fact that anisotropy con-
tributes to the energy for half-integer Si despite the fact that
Sz = 0 [see discussion below Eq. (16)], the phase boundary re-
mains unaffected by small anisotropies for half-integer spins:

� 
 J

2
(Si + 1). (26)

In contrast, small anisotropies favor the unscreened state for
integer impurity spins and the phase boundary follows:

� 
 J

2
(Si + 1) − Si + 1

2Si + 1
D. (27)

Comparing to Eq. (23), the slope of the phase boundary not
only changes sign at D = 0, resulting in a cusp, but also has
different magnitudes for positive and negative D.

Finally, at large positive D, we find from Eqs. (13), (18),
and (19) that the phase boundary is given by

� 

{

J2

4D Si(Si + 1) integer Si

J
2 (Si + 1) half-integer Si.

(28)

For half-integer spins, the phase boundary occurs at the same
value of � as for small positive anisotropy D. This is consis-
tent with the numerical results in Fig. 2, which show that for
D > 0, the phase boundary between unscreened and screened
ground states of half-integer spin impurities is completely
independent of D (but see also the discussion in Sec. III D
below). In contrast, large positive anisotropy suppresses the
screened ground state substantially for integer impurity spins,
with the phase boundary approaching � = 0 for D → ∞.

5. Excitation spectra

Excitation energies follow directly from the eigenenergies
computed above. Moreover, Fermi’s golden rule allows one
to compute dependencies of tunneling rates for instance on
the anisotropy. Here, we briefly discuss the selection rule
�Sz = ± 1

2 for tunneling excitations with �Q = 1. There are
two issues. First, in the case of metal coordination complexes,
tunneling will typically proceed by cotunneling via a virtual
state of the coordination complex instead of direct tunneling
into the substrate [71]. Second, tunneling into subgap states of
superconductors can be a single-electron process followed by
inelastic excitation or a two-electron Andreev process trans-
ferring a Cooper pair into the superconducting substrate [70].

The selection rule �Sz = ± 1
2 evidently applies to direct

single-electron tunneling into (or out of) the superconducting
substrate from a nonmagnetic STM tip. In this process, domi-
nant for low tunneling rates, the tunneling electron excites the
subgap YSR quasiparticle in the substrate, followed by rapid
inelastic excitation of the YSR quasiparticle into the above-
gap continuum [70]. The tunneling Hamiltonian changes the
spin projection due to the tunneling electron, but does not
involve the impurity spin operator. Thus, a nonzero tunneling
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amplitude originates from those components of the initial and
final states which have the same projections M of the impurity
spin.

Cotunneling into the superconducting substrate via virtual
states of the metal coordination complex generally proceeds
via several interfering tunneling paths including both poten-
tial and exchange scattering [37,72]. The effective tunneling
Hamiltonian

HT =
∑
σσ ′

ψ†
σ (R)[VT δσσ ′ + JT Si · sσσ ′]φσ ′ (R) + H.c. (29)

emerges from eliminating virtual high-energy states of the
metal coordination complex by a Schrieffer-Wolff transfor-
mation. Here, we denote the electron operators in the tip and
in the substrate at the tip position R by φσ (R) and ψσ (R),
respectively. Potential scattering VT leaves the impurity spin
unchanged, just as direct tunneling into the superconducting
substrate. In contrast, the amplitude for exchange scattering
JT depends on the impurity spin operator. The selection rule
�Sz = ± 1

2 applies to both contributions, even though the im-
purity spin projection can be altered in the exchange process.
For instance, for tunneling from tip to substrate, the Si,+s−
term adds a spin-down electron to the substrate, while chang-
ing the impurity spin projection by +1.

The importance of the transverse contributions Si,+s− +
Si,−s+ to the exchange scattering depends on the uniaxial
anisotropy. Their contribution will be strongly suppressed in
the limit of large negative anisotropy D for any impurity spin
and for large positive D for integer impurity spins.

At large tunneling rates, inelastic processes are no longer
efficient at exciting YSR quasiparticles into the quasiparticle
continuum. In this case, tunneling resonances associated with
YSR states are predominantly due to resonant Andreev pro-
cesses, which transfer Cooper pairs into the superconducting
substrate [70]. The expression for the tunneling current due
to resonant Andreev processes involves the Fermi golden rule
rates for electron and hole processes [70,73] and thus the same
matrix elements as the single-electron tunneling processes.
As a result, the resonant Andreev processes are subject to
the same selection rule for the total-spin projection as the
single-electron processes.

D. Beyond the single-site approximation

Higher-spin impurities coupled to a single superconduct-
ing channel in the presence of uniaxial anisotropy have been
investigated in extensive NRG calculations in Ref. [30]. The
paper contains schematic phase diagrams as well as repre-
sentative excitation spectra for the unscreened and partially
screened phases, which can be directly compared with the
results of our model.

Our phase diagrams in Fig. 2 are in close correspondence
with schematic phase diagrams for Si = 1, 3

2 , and 2 obtained
from the NRG calculation (Fig. 2 of Ref. [30]). The NRG
calculations also predict that uniaxial anisotropy of either sign
suppresses the partially screened state for the integer impurity
spins Si = 1, 2. Moreover, the phase diagrams agree in that
for the half-integer impurity spin Si = 3

2 , uniaxial anisotropy
suppresses the partially screened phase for D < 0 but not
for D > 0. In the latter case, however, there is a difference.

Figure 2 shows a phase boundary, which is independent of
D, while NRG predicts that positive uniaxial anisotropy even
favors the partially screened case.

This difference can be traced to the neglect of Kondo
renormalizations in our model. These renormalizations are
themselves sensitive to the anisotropy D and may thus af-
fect the phase boundary. For half-integer spins, the Kondo
renormalizations are stronger at large positive D than at D =
0, implying that the screened phases become increasingly
favored as D > 0 increases. The underlying reason is the
twofold ground-state degeneracy of the uncoupled impurity
between the states with Sz = ± 1

2 that remains at large D > 0,
which contrasts with the (2Si + 1)-fold degeneracy at zero
anisotropy, D = 0. While the Kondo renormalizations from
energies above the anisotropy scale are identical in both cases,
there are differences on scales between the anisotropy scale
and the superconducting gap.

These differences can be quantified by considering the
scaling equations for the exchange coupling as a function of
the band cutoff � in the two limits. For vanishing D, the
scaling equations take the form [74]

dJ

d ln �
= −J2 (30)

and apply to the single-channel Kondo effect for any Si. For
large and positive D, the twofold degeneracy implies that the
problem maps to a spin- 1

2 model with anisotropic exchange
interactions Jz = J and J⊥ = (Si + 1

2 )J . The anisotropy arises
because Si,z |Si,± 1

2 〉 = ± 1
2 |Si,± 1

2 〉, but Si,± |Si,∓ 1
2 〉 = (Si +

1
2 ) |Si,± 1

2 〉. Thus, spin-flip processes become relatively more
important at large D > 0, implying a flow to larger exchange
couplings. This can also be seen explicitly from the corre-
sponding scaling equations [74]:

dJz

d ln �
= −J2

⊥,

dJ⊥
d ln �

= −JzJ⊥. (31)

These predict a Kondo temperature

TK = �0e
− 2√

J2⊥−J2
z

arctan
√

J⊥−Jz
J⊥+Jz

, (32)

which increases with J⊥ > Jz [75].
For integer spins and D > 0, the Kondo renormalizations

will effectively terminate once the cutoff becomes comparable
to the anisotropy splitting. Thus, the renormalized exchange
coupling decreases as D increases, further amplifying the
suppression of the screened phases by the anisotropy.

The dependence of Kondo renormalizations on D will also
affect the phase boundaries at negative D for any spin. As D
becomes large, the two states |Si,±Si〉 with the largest spin
projections increasingly dominate. Spin-flip scattering be-
tween these states is only possible in higher-order perturbation
theory, leading to a suppression of the Kondo renormaliza-
tions. This should further suppress the screened phases at
large and negative D.

There is also a remarkable degree of correspondence of
the excitation spectra in Figs. 3 and 4 with the corresponding
NRG results (Fig. 14 in Ref. [30]). In comparing these results,
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FIG. 5. Phase diagrams for an impurity spin with Si = 1 coupled to two channels as a function of pairing strength � and uniaxial anisotropy
D, for different values of the exchange couplings J1 and J2 in the two channels. Transverse anisotropy is set to zero. Phases are labeled by
(Q, Sz ). (a) For equal couplings of both channels, there are direct quantum phase transitions between the unscreened phases (0,1) and (0,0) to
the fully screened phase (2,0). (b) For similar but different exchange couplings in the two channels, a singly-screened phase (1, ± 1

2 ) appears at
small anisotropy, while there is a direct transition between the unscreened and doubly screened phases at larger anisotropy of either sign. (The
singly screened phase reappears for intermediate � at even larger D < 0, see text.) (c) For significantly different exchange couplings (right
panel), the intermediate singly screened phase exists for all negative D but only up to a maximal positive D. (d) For very asymmetric exchange
couplings, the singly screened phase persists for all values of the anisotropy D.

it should be noted that we separate excitations into tunnel-
ing spectra and parity-preserving excitations, and account for
selection rules of the tunneling process. When accounting
for these differences of presentation, agreement includes the
appearance of zero-energy and finite-energy cusps of the ex-
citation energies at quantum phase transitions, the quantum
numbers of excitations, and in many cases even relative slopes
of excitation energies as a function of D.

Based on this comparison, we conclude that most (though
not all) aspects of the phase diagrams and the excitation
spectra are controlled by the spin couplings, which are fully
included in our model. In principle, it would be desirable
to combine the approach taken here with a more complete
treatment of Kondo renormalizations, but this is beyond the
scope of the present paper.

IV. YSR STATES OF MAGNETIC ADATOMS:
MULTI-CHANNEL MODEL

In view of the success of the model for single-channel
situations, we now turn to the general case, in which all 2Si

channels are exchange coupled to the impurity spin. As ar-
gued above, this will typically happen for magnetic adatoms,
with the site symmetry potentially enforcing equal exchange
couplings for sets of symmetry-related channels.

A. Phase diagrams

When all 2Si channels are exchange coupled to the impu-
rity spin, the impurity can in principle bind a quasiparticle in
each of these channel. The impurity spin will be completely
unscreened when binding no quasiparticle, fully screened
when binding a quasiparticle in each of the 2Si channels, or
partially screened when the number Q of bound quasiparticles
is in between zero and 2Si. Since fermion parity is separately
conserved in every channel, ground states with different num-
bers Q of bound quasiparticles define separate phases of the
system. In the absence of transverse anisotropy, we can further

classify the ground states according to the projection Sz of the
total spin, so that we label phases by (Q, Sz ).

Figure 5 shows phase diagrams for Si = 1 as a function
of the pairing strength � and the uniaxial anisotropy D (and
vanishing transverse anisotropy, E = 0) for representative val-
ues of the exchange couplings in the two channels. For equal
exchange couplings, J1 = J2 = 1, the phase diagram exhibits
direct transitions between phases with unscreened spin at
large pairing energy � and a fully screened phase at smaller
�, see Fig. 5(a). There are two unscreened phases (0,1) and
(0,0), which differ in their total-spin projections, reflecting
the different signs of the uniaxial anisotropy. In contrast,
there is only one fully screened phase (1,0). An intermediate
singly screened phase (1,± 1

2 ) appears when the two channels
involve different exchange couplings, and becomes increas-
ingly prominent as the ratio between the exchange couplings
increases, see Figs. 5(b)–5(d). Positive uniaxial anisotropy D
suppresses the screened phases more strongly than a negative
D of the same magnitude. In particular, positive anisotropy
can completely suppress the singly screened phase for suf-
ficiently large D > 0, see Figs. 5(b) and 5(c). For negative
anisotropies, the singly screened phase can disappear at in-
termediate values but will always reappear for sufficiently
large and negative D (not shown; see analytical considerations
below).

Representative phase diagrams for a half-integer impurity
spin, namely, Si = 3

2 , are shown in Fig. 6. First consider the
case of equal exchange couplings in all three channels, shown
in Fig. 6(a). At negative uniaxial anisotropies D, there is a
direct transition between the unscreened phase (0,± 3

2 ) at
larger � and a fully screened phase (3,0) at smaller �. In
contrast, the unscreened and screened phases are separated
by an intermediate singly-screened phase (1,0) at positive
anisotropies D > 0. As for the single-channel case discussed
above, the phase boundary between the unscreened and singly
screened phase is independent of D for positive anisotropies
D > 0. When the exchange couplings differ between the
channels [see Fig. 6(b)], there is a cascade of phases as a
function of � for negative D. These phases bind Q = 1, 2, or 3
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FIG. 6. Phase diagrams for Si = 3
2 coupled to three channels as a

function of pairing strength � and uniaxial anisotropy D. Transverse
anisotropy is set to zero. Phases are labeled by (Q, Sz ). (a) When the
exchange couplings in all three channels are equal, there is a direct
transition from the unscreened to the fully screened state for negative
uniaxial anisotropy, D < 0. For positive anisotropy, D > 0, there is
an intermediate phase in which the impurity is screened only in a
single channel. (b) If the exchange couplings differ between all chan-
nels, there is a cascade of phases at negative anisotropy D in which
the impurity spin is successively screened as the pairing strength is
reduced. The phases correspond to states in which Q = 0, 1, 2, or 3
quasiparticles are bound to the impurity. In contrast, for sufficiently
large positive anisotropy D, there are only phases with zero, one, or
three bound quasiparticles.

quasiparticles to the impurity and have a spin projection,
which is reduced by 1

2 by each bound quasiparticle. In con-
trast, there is still a direct transition between the singly and
triply screened phases at a sufficiently large and positive D.
The doubly screened phase is found to persist to arbitrarily
large positive D, when reducing the smallest exchange cou-
pling J3 below a certain threshold value (not shown).

Phase diagrams for yet larger impurity spins are shown in
Fig. 7. These phase diagrams for Si = 2 [Figs. 7(a) and 7(b)]
and Si = 5

2 [Figs. 7(c) and 7(d)] show similar characteristic
features as the corresponding phase diagrams for smaller im-
purity spins. When all exchange couplings are equal, the phase
diagram is dominated by the unscreened and fully screened
phases for negative D. However, there appears a very narrow

region between these two phases, in which phases with other
Q appear. These are not resolved in the main panels but can
be seen in the inset of Fig. 7(c). When the exchange cou-
plings in all channels differ, there is a cascade of transitions
through phases (Q,±(Si − Q

2 )) in which the impurity spin
is increasingly screened by quasiparticles. At positive D, the
phase diagram is systematically dominated by phases with
zero projection of the total spin, Sz = 0. With the exception of
the fully unscreened phase, phases with half-integer impurity
spin appear only in much smaller regions and disappear for
sufficiently large and positive D.

B. Excitation spectra

1. Tunneling spectra

Figure 8 shows subgap tunneling spectra for Si = 1 and
Si = 3

2 for representative values of the pairing strength � and
the exchange couplings Ji. As for the single-channel case,
tunneling excitations occur between states with �Q = ±1 and
�Sz = ± 1

2 . First consider the excitation spectra for Si = 1
(top row of Fig. 8). For unequal exchange couplings of the
two channels, there are two tunneling excitations out of the
unscreened ground states, one for each channel [Fig. 8(a)].
The quantum phase transition at D = 0 is reflected in finite-
energy cusps in both excitations. The excitation energies of
the two channels become degenerate for equal couplings to
the two channels (Fig. 8(d)).

At intermediate pairing strength �, a singly screened
ground state appears [green background in Fig. 8(b)]. In this
region, tunneling can excite the unscreened states (blue and
orange lines) or the doubly screened state (red lines). The
excitations into the unscreened states exhibit an anisotropy
splitting as for the single-channel case and a zero-energy
cusp at the quantum phase transitions, at which the excited
state turns into the ground state. One of the excitations into
the doubly screened state appears at rather low energies due
to the close proximity of the doubly screened phase at this
particular value of � [cf. Fig. 5(b)]. Interestingly, there are
two excitations into the doubly screened phase at D < 0.

This is a direct consequence of the quantum nature of
the impurity spin and can be best understood from the

FIG. 7. Phase diagrams for higher impurity spins with (a), (b) Si = 2 and (c,d) Si = 5
2 as a function of pairing strength � and uniaxial

anisotropy D. The values of the exchange couplings in all 2Si + 1 channels are given above the panels. Transverse anisotropy is set to zero.
Phases are labeled by (Q, Sz ). The inset in (c) shows a higher-resolution calculation of the D < 0 region between the unscreened and the fully
screened phases. The color coding of the intermediate phases is as in (d).
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FIG. 8. Subgap tunneling spectra of the multichannel model for (a)–(d) Si = 1 and (e)–(h) Si = 3
2 as a function of uniaxial anisotropy D,

for pairing strengths � and exchange couplings Ji as indicated in the panels. Transverse anisotropy is set to zero. Background color indicates
the ground state and line color the excited state (same color coding as in the corresponding phase diagrams in Figs. 5 and 6). The maximal
excitation energy shown corresponds to the gap edge � of the superconductor.

limit of large and negative D. In this limit, there are two
fully screened states, |Si = 1, M = 1〉 ⊗ | 1

2 ,− 1
2 〉 ⊗ | 1

2 ,− 1
2 〉

and |Si = 1, M = −1〉 ⊗ | 1
2 , 1

2 〉 ⊗ | 1
2 , 1

2 〉. The two states are
almost degenerate, but will be coupled at order J1J2/D in
second-order perturbation theory in the transverse-exchange
couplings. This leads to a splitting and the two red lines in
Fig. 8(b) extend from these weakly split levels at large and
negative D.

At smaller pairing strength �, there is a direct phase tran-
sition between the doubly screened and an unscreened phase
[Fig. 8(c)]. These phases differ by �Q = 2 and are therefore
not associated with a zero-energy cusp of a tunneling excita-
tion. Instead, the tunneling transitions, one for each channel,
excite into the singly screened states from both phases, which
results in finite-energy cusps in the excitation spectra.

Many of these themes also appear in the subgap tunnel-
ing spectra for Si = 3

2 shown in Figs. 8(e)–8(h). Excitations
from the unscreened into the singly screened states can now
proceed within three channels, so the tunneling spectrum in
Fig. 8(e) is a threefold copy of the one for the single-channel
model shown in Fig. 3(c). Tunneling excitations from the
singly screened ground states [green and red background in
Fig. 8(f)] can now also proceed into the doubly screened
states (purple lines). Since channel 1 is already screened in
the ground state, there are two such excitations, one each for
channels 2 and 3.

Close to the quantum phase transition between the high-
spin singly screened and unscreened phases [green and blue
backgrounds in Fig. 8(f), respectively], the excitations from
the singly screened into doubly screened states (purple lines)
are rather close in energy to the excitations from the un-
screened into the singly screened states in channels 2 and

3 (green lines). This reflects that both sets of lines appear
due to exciting a quasiparticle in channels 2 and 3. However,
in the singly screened phase, the impurity spin is already
partially screened by a quasiparticle in channel 1, and the
additional quasiparticle in channel 2 or 3 interacts with this
partially screened impurity. For a purely classical impurity,
interacting only via the longitudinal exchange interaction with
the quasiparticle, this would be inconsequential and the ex-
citation spectrum would be continuous across the quantum
phase transition. In contrast, for a quantum impurity, the trans-
verse exchange interactions modify this picture and lead to a
nonzero shift of the excitation energies at the quantum phase
transition.

At even smaller pairing strength [Fig. 8(g)], the doubly
screened ground state appears around zero anisotropy (purple
background). Tunneling excitations from this state into the
singly screened states (green and red lines) exhibit anisotropy
splittings. In addition, there are tunneling excitations into
the fully paired state (yellow lines). At first sight, there
should only be a single such excitation since channel 3 is
the only unpaired channel in the doubly screened ground
state. However, we observe a pair of such excitations for
negative D, which rapidly move closer in energy as D be-
comes large and negative. The origin of this doubling can
again be understood from the limit of large negative D. In
this limit, there are two fully screened states, |Si = 3

2 , M =
3
2 〉 ⊗ | 1

2 ,− 1
2 〉 ⊗ | 1

2 ,− 1
2 〉 ⊗ | 1

2 ,− 1
2 〉 and |Si = 3

2 , M = − 3
2 〉 ⊗

| 1
2 , 1

2 〉 ⊗ | 1
2 , 1

2 〉 ⊗ | 1
2 , 1

2 〉. These states are again coupled at or-
der J1J2J3/D2 in the transverse exchange couplings, leading
to a splitting. The two yellow lines extend again from these
weakly split states in the limit of large and negative D. The
same splitting can also be seen in Fig. 8(h).
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FIG. 9. Subgap excitation spectra of the multichannel model at fixed fermion parity for Si = 5
2 as a function of anisotropy D. The exchange

couplings were chosen as J1 = 1, J2 = 0.9, J3 = 0.8, J4 = 0.7, and J5 = 0.6. Transverse anisotropy is set to zero. Background color indicates
the ground state and line color the excited state [same color coding as in the corresponding phase diagram in Fig. 7(d)], except for the gray lines
for Q = 0, 1, 5. The gray lines in the panels for Q = 0 and 1 correspond to intermediate total spin projections Sz = 3

2 and Sz = 1, respectively,
which do not become the ground state at any D. The gray line in the panel for Q = 5 corresponds to an Sz = 1 excitation. There is no panel
for Q = 4, since there are no subgap excitations in that case. The excitation spectra are independent of pairing strength �, except that �

determines the range over which the state still appears as a subgap excitation. The excitations are limited to energies below the maximal �, at
which the particular ground state can still be observed at D = 0.

2. Parity-preserving excitations

Figure 9 shows the subgap excitations at fixed fermion
parity for Si = 5

2 . For Q bound quasiparticles, the excitation
spectrum can be understood as the spectrum of the anisotropy
Hamiltonian of a spin-(Si − Q

2 ) impurity, consistent with the
antiferromagnetic coupling between the impurity spin and the
conduction electrons. The nonlinear dependence on uniaxial
anisotropy can be understood as explained in Sec. III B 2
above for the single-channel model.

Additional low-energy excitations appear for Q = 5. As
already discussed above for Si = 1 and Si = 3

2 , there are two
low-energy states |Si = 5

2 , M = 5
2 〉 ⊗ | 1

2 ,− 1
2 〉⊗5 and |Si =

5
2 , M = − 5

2 〉 ⊗ | 1
2 , 1

2 〉⊗5 at large negative D. These two Sz = 0
states are coupled in fifth-order perturbation theory in the
transverse exchange couplings, resulting in a splitting of order
J1J2J3J4J5/D4. The excitation from the ground to the excited
state of this pair leads to the (cyan) excitation, which rapidly
approaches zero energy as D becomes large and negative. At
D = 0, the ground state evolves into the total-spin eigenstate
|S = 0, Sz = 0〉, while the excited state evolves into |S =
1, Sz = 0〉. The latter is part of a degenerate triplet, together
with |S = 1, Sz = ±1〉. It is these latter states, from which the
twofold degenerate gray line develops for Q = 5.

C. Analytical considerations

Many aspects of the multichannel model can again be read-
ily understood analytically by considering the limits of large
(negative and positive) or zero anisotropies. We begin with
large and negative anisotropies, which favor large projections
of the impurity spin, Si,z = ±Si. Then, the many-body energy
of a state with Q screened channels is given by

EB = −�(2Si − Q) + DS2
i − 1

2 (J1 + . . . + JQ)Si. (33)

Here, the first term accounts for the superconducting pairing
energy in the 2Si − Q unpaired channels, the second term
is the anisotropy energy of the impurity spin, and the last
term denotes the exchange coupling between the impurity
and quasiparticle spins in the Q screened channels with ex-
change couplings J1, . . . , JQ. Notice that the transverse terms
in the exchange coupling take the impurity spin out of the
low-energy manifold Si,z = ±Si, so only the longitudinal con-
tribution to the exchange coupling contributes to leading order

in the limit of large and negative D. Equating these many-body
energies for states with Q and Q + 1 bound quasiparticles, we
find that an additional quasiparticle is bound by the impurity
whenever

� = Jm

2
Si. (34)

This implies a direct transition from the unscreened into the
fully screened phase, when all exchange couplings Jm take
on the same value and a cascade of transitions binding an
additional quasiparticle each as � decreases, when all Jm are
different. This is in agreement with the phase diagrams in
Figs. 5–7. The only apparent exception is the phase diagram
for Si = 1 in Fig. 5(b). However, as already alluded to above,
the intermediate singly screened phase reemerges at negative
anisotropy D of even larger magnitudes, consistent with the
perturbative result in Eq. (34).

At large and positive D, the anisotropy favors minimal
projections Si,z of the impurity spin. For integer impurity
spins, large and positive anisotropy D locks the impurity into
the state with M = 0, and the exchange coupling with the
quasiparticles only contributes in quadratic order as for the
single-channel case discussed in Sec. III A above. Importantly,
this implies that large and positive uniaxial anisotropy D
strongly favors the unscreened phase, with the critical ex-
change couplings for quantum phase transitions to screened
phases scaling as J ∼ √

�D.
For a single bound quasiparticle, the second-order pro-

cesses are analogous to those for the single-channel case
in Eq. (18). For multiple bound quasiparticles, second-order
processes in the transverse exchange coupling also induce si-
multaneous flips of antiparallel quasiparticle spins, in addition
to diagonal energy shifts. The lowest-energy configurations
will thus have minimal projections Sz of the total spin. We
illustrate the principle for the case of two bound quasiparti-
cles. Minimal Sz implies that the lowest-energy state lies in
the subspace spanned by the quasiparticle states | 1

2 〉 ⊗ | − 1
2 〉

and | − 1
2 〉 ⊗ | 1

2 〉. Projected into this basis, the second-order
terms in the exchange couplings take the form

−Si(Si + 1)

4D

(
J2

1 + J2
2 2J1J2

2J1J2 J2
1 + J2

2

)
. (35)

Here, the factor 2 in the off-diagonal terms emerges from the
two possible orders in which the second-order spin flip can

205424-15



FELIX VON OPPEN AND KATHARINA J. FRANKE PHYSICAL REVIEW B 103, 205424 (2021)

proceed. For exchange couplings J1 � J2, we thus find the
ground-state energy

EB=0 = −2� (36)

for the unscreened phase,

EB=1 
 −� − J2
1

4D
Si(Si + 1) (37)

for the singly screened phase, and

EB=2 
 − (J1 + J2)2

8D
Si(Si + 1) (38)

for the doubly screened phase. A transition from the un-
screened state into the singly screened state is thus predicted

at � 
 J2
1

4D Si(Si + 1), and into the doubly screened phase at

� 
 (J1+J2 )2

8D Si(Si + 1). This implies that at large D > 0, the
transition into the singly-screened phase is preempted by a
direct transition into the doubly screened phase as long as
J1/J2 � 1 + √

2, in agreement with the phase diagrams in

Fig. 5. It is also interesting to note that the ground state of the
doubly screened phase couples the two quasiparticle spins into
an M = 0 triplet state, which then forms a product state with
the M = 0 state of the impurity spin. These considerations can
be readily extended to binding more than two quasiparticles to
understand the corresponding regions in the phase diagrams
for Si = 2 in Fig. 7.

For half-integer impurity spins, large positive D leads to a
two-dimensional low-energy manifold of the impurity spin,
spanned by |M = ± 1

2 〉 and having anisotropy energy D/4.
In this case, both the longitudinal and transverse exchange
couplings already contribute in linear order and screened
phases persist to much larger pairing energies compared to the
integer-spin case. It is in principle straightforward to perform
perturbative calculations, but the resulting expressions are not
particularly revealing.

In the limit of weak anisotropy, exchange coupling Q
quasiparticles to the impurity results in the eigenstates |Si −
Q
2 , M〉 (with 2Si − Q unscreened channels). These eigenstates
can be expanded into product states:

|Si, M; σ1, . . . , σQ〉 = |Si, M〉 ⊗ | 1
2 , σ1〉 ⊗ · · · ⊗ | 1

2 , σQ〉 ⊗ |BCS〉⊗2Si−Q. (39)

Here, we write the product state on the right-hand side such that the Q-screened channels follow the impurity state and the
unscreened channels are written last. Notice also that on the left-hand side, we only write the spin projections of the quasiparticles
for simplicity. Coupling the quasiparticles one by one, we find∣∣∣∣Si − Q

2
, M

〉
=

∑
σ1,...,σQ

|Si, M + σ1 + · · · + σQ; −σ1, . . . ,−σQ〉
〈
Si, M + σ1 + · · · + σQ; −σ1, . . . ,−σQ

∣∣∣∣Si − Q

2
, M

〉
, (40)

where the overlaps on the right-hand side can be written as products of Clebsch-Gordan coefficients:〈
Si, M + σ1 + . . . + σQ; −σ1, . . . ,−σQ

∣∣∣∣Si − Q

2
, M

〉

=
〈
Si, M + σ1 + . . . + σQ;

1

2
,−σ1

∣∣∣∣Si,
1

2
; Si − 1

2
, M + σ2 + · · · + σQ

〉

×
〈
Si − 1

2
, M + σ2 + · · · + σQ;

1

2
,−σ2

∣∣∣∣Si − 1

2
,

1

2
; Si − 1, M + σ3 + · · · + σQ

〉

× · · · ×
〈
Si − Q − 1

2
, M + σQ;

1

2
,−σQ

∣∣∣∣Si − Q − 1

2
,

1

2
; Si − Q

2
, M

〉
. (41)

In the absence of single-ion anisotropy, the many-body energy
of these states is equal to

EB(M ) = −�(2Si − Q) − 1
2 (J1 + . . . + JQ)(Si + 1). (42)

Thus, we find that the quantum phase transition at which a
particular channel m is screened occurs when

� = Jm

2
(Si + 1). (43)

Consequently, there is also a cascade of transitions at zero
anisotropy, binding quasiparticles one by one unless some
channels have the same exchange couplings. We also conclude
by comparison with Eq. (34) that at large and negative uniaxial
anisotropy, the corresponding quantum phase transitions oc-
cur at a smaller value of �, i.e., large and negative anisotropy
suppresses the screened phases.

V. CONCLUSION

In experiment, YSR excitations in real metals come in a
bewildering variety, which contrasts with the simple behavior
of popular theoretical models. The number of YSR excitations
varies widely between different magnetic adsorbates, or even
for identical adsorbate and substrate, but differing surface
orientations or adsorption sites. The most popular model treats
the magnetic impurity as classical, while experiments show
clear quantum behavior. Moreover, the model ignores the
transition-metal nature of the impurity with its higher spin,
the ligand and crystal fields, and the magnetic anisotropy. The
present paper is an attempt to transcend the standard modeling
in an effort to clarify the origins of the rich phenomenology of
YSR excitations while retaining a sufficiently simple frame-
work to admit detailed understanding and to incorporate many
experimentally relevant situations.
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The impurity spin is a result of the large Hund’s coupling
within the d shell of the magnetic ion and may further depend
on the ratio between Hund’s coupling and ligand or crys-
tal fields. The latter split the d orbitals in accordance with
the point group of the magnetic adsorbate. Each half-filled
d orbital is exchange coupled to its own symmetry-adapted
conduction-electron channel, with exchange constants of
equal magnitudes for symmetry-related d orbitals. The im-
purity spin is in general subject to magnetic anisotropy,
ultimately resulting from spin-orbit coupling.

There can be a subgap YSR quasiparticle bound in any of
the 2Si conduction-electron channels. States with and with-
out bound quasiparticles are distinguished by the fermion
parity quantum numbers of the channels, which are all sep-
arately conserved. Tunneling excitations change the fermion
parity in one of the channels. In the absence of anisotropy,
one thus finds a maximal number of 2Si YSR excitations,
five, for instance, for the maximal possible spin Si = 5

2 of
a transition-metal ion. When point-group symmetry imposes
equal exchange couplings, some of these excitations will be
degenerate, resulting in fewer than 2Si separate YSR peaks in
a tunneling experiment.

Magnetic anisotropy leads to refinements of this picture.
Assuming full spin rotation symmetry, the states in the ab-
sence of magnetic anisotropy can be further classified by their
total spin and its projection. For antiferromagnetic exchange
couplings between the impurity spin and the conduction elec-
trons, binding Q quasiparticles to the impurity results in a total
spin of S = Si − Q

2 , corresponding to (partial) screening of the
impurity spin. These (2Si − Q)-fold degenerate spin multi-
plets split under the magnetic anisotropy. Kramers theorem
imposes a twofold degeneracy of all states when Si − Q

2 is
half integer. Degeneracies can also occur for integer Si − Q

2 ,
when transverse anisotropy is symmetry forbidden. While the
splitting patterns can be qualitatively understood in a picture,
in which one subjects a spin-(Si − Q

2 ) impurity to magnetic
anisotropy, a quantitative understanding must account for the
fact that the magnetic anisotropy acts only on the impurity
spin.

Magnetic anisotropy can lead to additional subgap YSR
excitations in tunneling spectra. In the absence of anisotropy,
the excitation count does not depend on whether the exchange
coupling binds quasiparticles in any of the channels or not.
In contrast, the number of excitations observed in the pres-
ence of anisotropy can depend sensitively on the particular
ground and excited states as well as the magnitude of the
anisotropy splitting. First, anisotropy splittings will only be
observed at subgap energies as long as the splitting remains
sufficiently small compared to the superconducting gap. Sec-
ond, at zero temperature, the initial state of a tunneling process
is always the lowest-energy state within the anisotropy-split
ground-state manifold, but the final state can in principle
be any of the sublevels of the anisotropy-split excited-state
manifold. Since states with and without bound quasiparti-
cles split into different numbers of sublevels, the detailed
excitation count will now depend on the specific fermion-
parity nature of the ground state. At finite temperatures, states
other than the lowest-energy sublevel are also thermally popu-
lated, adding additional excitations with activated temperature
dependence.

The detailed excitation count is further governed by ad-
ditional selection rules. In particular, the system remains
symmetric under spin rotations about the ẑ axis for uniax-
ial magnetic anisotropy. In this case, states can be classified
according to the projection Sz of the total spin. Tunneling
excitations are then subject to the selection rule �Sz = ± 1

2 .
This selection rule applies regardless of whether the YSR line
is excited in a single-electron tunneling process or in a two-
electron Andreev process. It also applies regardless of whether
the tunneling amplitude is independent of the impurity spin
as for direct tunneling into the substrate or dependent on the
impurity spin as in cotunneling via virtual states associated
with the impurity ion. The intensities with which particular
excitations are being observed may, however, be quite sensi-
tive to the particular tunneling process. For instance, while
direct tunneling into the substrate leaves the impurity spin
projection unchanged, this is not the case for the impurity-
spin-dependent cotunneling process.

The detailed phase diagram depends on the exchange cou-
plings in the various channels. When all exchange couplings
are substantially different, there will be ground states that
bind any number Q of quasiparticles, depending on pairing
strength and anisotropy. Partially screened states are consider-
ably more robust for negative (easy-axis) uniaxial anisotropy.
For positive (easy-plane) uniaxial anisotropy, there are charac-
teristic differences between half-integer and integer impurity
spins. (Partially) screened phases are more robust for impu-
rities with half-integer spin, but even in this case there is
a stronger tendency towards skipping even-Q phases than at
D < 0. In contrast, positive (easy-plane) uniaxial anisotropy,
which is large compared to the exchange coupling between
impurity spin and conduction electrons, substantially weakens
the binding of quasiparticles to integer impurities, strongly
suppressing all (partially) screened phases. When symmetry
imposes that the exchange couplings of several channels are
identical, these channels will tend to be screened simulta-
neously, or near simultaneously. The quantum phases of the
model are not only characterized by Q but also by the projec-
tion of the total spin when transverse anisotropy is symmetry
forbidden. The associated quantum phase transitions between
phases with equal Q occur at D = 0, with a phase favoring
maximal spin projections for easy-axis anisotropy, D < 0,
and a phase favoring minimal spin projections for easy-plane
anisotropy, D > 0.

The quantum phase transitions between states with differ-
ent Q or different Sz are reflected in the tunneling excitation
spectra. In general, quantum phase transitions are signaled by
zero-energy or finite-energy cusps in excitation energies as
well as terminations of excitation lines. Zero-energy cusps oc-
cur for transitions between phases with neighboring values of
Q, but are absent for transitions with �Q �= 1. Finite-energy
cusps can exist in both cases. Excitations can terminate at a
quantum phase transition when the transition into a particu-
lar excited state is allowed on one side of the transition but
forbidden by selection rules on the other.

There are several aspects of this broad picture which
explicitly reflect the quantum nature of the impurity spin.
One consequence is the suppression of the (partially)
screened phases with increasing negative (easy-axis) uniaxial
anisotropy D. At large and negative D, the impurity spin is
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effectively locked along the ẑ direction and only the lon-
gitudinal exchange coupling contributes to the binding of
quasiparticles. In contrast, longitudinal and transverse ex-
change couplings contribute for small D, resulting in more
robust binding. Similarly, the binding of quasiparticles is en-
tirely due to the transverse exchange coupling for positive
(easy-plane) anisotropy. Another prominent consequence of
the quantum nature of the impurity spin are the anisotropy
splittings. There are also more subtle aspects. First, YSR exci-
tations reflecting the binding or unbinding of a quasiparticle in
some channel can exhibit discontinuities in excitation energy
across a quantum phase transition. Second, the fully screened
states at large negative D exhibit a weak splitting induced by
the transverse exchange coupling, which results in splittings
of tunneling excitations and additional parity-preserving exci-
tations.

At the same time, our model neglects Kondo renormaliza-
tions. The broad qualitative agreement between our results
and existing NRG calculations for the single-channel case
implies that the structure of the phase diagrams as well as
the subgap excitations are largely governed by the physics of
spin couplings. However, we also observe differences. These
can be readily understood in terms of the familiar scaling
equations for the exchange couplings. Kondo renormaliza-
tions will cause the effective exchange couplings to grow
with increasing easy-plane anisotropy D > 0 for half-integer
spins but to decrease for integer spins. In contrast, the Kondo
renormalizations are increasingly suppressed for any spin as
D becomes large and negative.

It is interesting to place existing experimental results
within this broad picture. Magnetic adatoms frequently
exhibit several YSR states [9,11,13,14,40], reflecting the cou-
pling of the impurity spin to multiple conduction-electron
channels. Direct evidence for the influence of crystal-field
splittings on YSR excitations comes from spatially mapping
the YSR wave functions of Mn adatoms on Pb surfaces by
STM [11]. The maps as well as the number of YSR excitations
are consistent with symmetry considerations for the particular
surface orientations and adsorption sites.

Experimentally exploring the phase diagrams and the
quantum phase transitions is desirable but difficult for
adatoms. YSR energies have been modified by varying the
local density of states at the Fermi level exploiting quantum-
well states [76], a charge density wave [14], or local surface
reconstructions [40]. In some cases, these variations were
sufficiently large to induce a quantum phase transition [14].
However, these influences cannot be controlled in a con-
tinuous manner but instead depend on the local properties
of the adatom’s adsorption site. In contrast, the distance of
the STM tip to the substrate can be tuned continuously.
The tip-induced electrostatic potential as well as mechanical
forces may be used to manipulate the exchange coupling
strength. This strategy has been successfully applied to molec-
ular adsorbates (see below) [26,27] and (sub)surface defects
[77,78].

On substrates with negligible spin-orbit coupling,
anisotropy splittings would be signaled by identical spatial
maps of different YSR excitations. However, there seem to
be no reports of anisotropy splittings of YSR excitations
for adatoms, presumably because there is only a narrow

parameter window over which anisotropy splittings are small
enough to yield additional subgap excitations and large
enough to be experimentally resolvable. Under favorable
conditions, the anisotropy parameters can be extracted from
independent normal-state measurements of spin excitations
as a function of applied magnetic field. Anisotropies on
the order of the superconducting gap were extracted in this
way for transition-metal impurities on Re substrates, but the
associated inelastic spin excitations were located outside the
superconducting gap [79].

While multiple YSR states are frequently observed for
adatoms, transition-metal coordination compounds typically
induce a single YSR excitation, if any. A YSR state present
for one adsorption site on a particular substrate can be absent
(or unresolved) for a different adsorption site of the same
substrate [37,38]. This may be a consequence of a change
in hybridization and thus exchange coupling between metal
center and substrate or a change in sign or magnitude of the
magnetic anisotropy. These changes may also be amplified
by their effects on Kondo renormalizations. Multiple YSR
states of metal coordination complexes have been interpreted
in terms of a two-channel model in Ref. [38], but are otherwise
traced to anisotropy splittings [12]. Exploiting a moiré struc-
ture, Ref. [12] could realize both unscreened and screened
ground states of a Mn-phthalocyanine molecule on Pb(111),
which allowed for detection of the characteristic differences
in the anisotropy splittings of the two ground states and the
associated spectral weights. Unlike for adatoms, equal spatial
STM maps do not constitute a signature of anisotropy-split
YSR excitations for molecular adsorbates. For molecular ad-
sorbates, tunneling does not map the YSR wave functions,
but proceeds via virtual molecular orbitals and reflects their
spatial dependence [37].

Few experiments report the simultaneous observation of
YSR states and above-gap spin excitations in the same sys-
tem [42,79]. Our model does not preclude this in general.
However, no spin excitations are expected when screen-
ing by binding quasiparticles results in an effective spin- 1

2
or even spin-0 impurity. This situation should be partic-
ularly relevant for adatoms, which can be screened in
multiple channels. Moreover, above-gap spin excitations ex-
ist, when the anisotropy is larger than the superconducting
gap. However, large positive (easy-plane) anisotropies sub-
stantially reduce the binding energy of YSR states for
integer-spin impurities, potentially merging them with the
BCS peak in experiment. It should, of course, be kept in
mind that our model neglects the above-gap continuum,
which plays a relevant role in the context of above-gap spin
excitations.

Existing experiments probing the quantum phase transi-
tions were performed using metallic coordination complexes
[12,25–27] and are thus limited to the case �Q = 1. The
transitions could be induced by exploiting moiré lattices
between superconducting substrate and adsorbed molecu-
lar structure [10,12,25] or by explicitly manipulating the
molecule-substrate interaction by exerting forces with the
STM tip [26,27]. It was identified by the observation of
zero-energy cusps in the excitation spectrum, with additional
evidence provided by the discontinuous behavior of the peak
strengths across the transition [12,26]. We also note that
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FIG. 10. Representative plots of the eigenenergies E of the single-channel Hamiltonian in Eq. (9) for (a) S = 1 and (b) S = 3
2 as a function

of anisotropy D for J = 1 and representative pairing strengths �. (Transverse anisotropy E = 0.) For even-fermion parity, spectra include only
the BCS state of the single-site superconductor. Colors label the number of bound quasiparticles Q and the projection Sz of total spin, see
legends. Color coding matches the corresponding phase diagrams in Fig. 2.

within experimental resolution, these experiments are consis-
tent with true zero-energy cusps. Discontinuous changes in the
YSR energies due to self-consistency effects have been pre-
dicted [47,48,80] but should be far below current experimental
resolution for typical experimental parameters [26]. There
seem to be no existing experiments which reveal quantum
phase transitions with �Q �= 1.

This paper provides a starting point for further explorations
of YSR excitations in real metals. Aspects of real metals
that we have not considered include the existence of several
bands [32] or the effects of spin-orbit coupled substrates
[14,81–83]. We have also sidestepped unconventional types
of pairings [49,84–86]. These aspects need to be included,
for instance, for a thorough understanding of YSR excitations
of adsorbates and subsurface impurities on superconducting
transition-metal dichalcogenides such as NbSe2, which have
recently received significant attention [14,87–89]. Another
natural extension considers the couplings of multiple mag-
netic adsorbates [15–18,20,39].
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APPENDIX: EIGENVALUE SPECTRA

This Appendix shows representative plots of the eigenen-
ergies as a function of anisotropy D for representative
pairing strengths �, see Figs. 10(a) and 10(b) for S = 1
and S = 3

2 impurity spins coupled to a single channel. The
(symmetry-protected) level crossings of the lowest-energy
states indicate quantum phase transitions between different
ground states. Lower-energy states depend more sensitively
on the anisotropy D for easy-axis anisotropy (negative D
favoring large Sz) than for easy-plane anisotropy (positive D
favoring small Sz). Spectra focus on potential subgap states
and include only the BCS state for even-fermion parity of the
single-site superconductor.
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