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Proposals for realizing Majorana fermions in condensed-matter systems typically rely on magnetic fields,
which degrade the proximitizing superconductor and plague the Majoranas’ detection. We propose an alternative
scheme to realize Majoranas based only on phase-biased superconductors. The phases (at least three of them)
can be biased by a tiny magnetic field threading macroscopic superconducting loops, focusing and enhancing
the effect of the magnetic field onto the junction, or by supercurrents. We show how a combination of the
superconducting phase winding and the spin-orbit phase induced in closed loops (Aharonov-Casher effect)
facilitates a topological superconducting state with Majorana end states. We demonstrate this scheme with an
analytically tractable model as well as simulations of realistic setups comprising only conventional materials.
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Introduction. The realization of robust Majorana zero
modes (MZMs) at the ends of quasi-one-dimensional (quasi-
1D) p-wave superconductors (SCs) has been a long-standing
goal in contemporary condensed-matter physics [1]. These
exotic quasiparticles, predicted to possess non-Abelian ex-
change statistics, signal the appearance of a novel phase
of matter: a topological superconductor. Interest in realizing
MZMs has been stimulated by the fundamental-physics quest
of discovering new phases of matter, as well as by potential
applications to topological quantum computation [2,3].

Following the canonical toy model of a spinless p-wave
SC chain [4], several proposals for experimentally realizing
MZMs have been put forward [5]. These platforms include
the surface of topological insulators proximity coupled to
a superconductor [6], hybrid semiconductor-superconductor
nanowires [7,8], possibly current biased [9] semiconductor-
ferromagnet heterostructures [10,11], quantum wells with an
in-plane magnetic field [12], phase-biased Josephson junc-
tions [13–17], carbon nanotubes [18–20], chains of magnetic
adatoms on superconductors with strong spin-orbit cou-
pling [21–23], and full-shell proximitized nanowires [24,25].

Generally, three ingredients are needed to realize topologi-
cal superconductivity in one dimension: proximity coupling
to a conventional s-wave superconductor (sufficiently thick
to be free of phase fluctuations); a spin-rotation mechanism,
most commonly spin-orbit coupling (SOC); and a source of
time-reversal-symmetry breaking. With a proper combination
of these ingredients, the low-energy band becomes effectively
spinless while remaining susceptible to pairing, thus real-
izing a p-wave superconductor. Time-reversal symmetry is
usually broken by an external Zeeman field or by internal
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magnetic phenomena, such as the exchange field of a nearby
ferromagnet.

Realizations in which the proximitizing superconductor
is subjected to a magnetic field have the drawback of de-
grading superconductivity [26]. In particular, all types of
time-reversal-symmetry breakers—Zeeman field, exchange
field, magnetic flux in the presence of conventional impuri-
ties, and magnetic impurities—lead to depairing of Cooper
pairs and the formation of in-gap states. In extreme cases, a
gapless superconductor is formed [27]. This makes MZMs
fragile and renders their detection ambiguous. Moreover, one
may wonder why a Zeeman or exchange field is necessary
at all. Indeed, several proposals rely on controlling only the
phase of the SC order parameter [6,28]. Other proposals
include on top of that the application of a weak magnetic
field [9,14,15,25,29,30].

In this Letter, we show that in the presence of a winding
superconducting phase, topological superconductivity arises
without any Zeeman field or magnetic flux penetrating the
sample, using a conventional (nontopological) semiconduct-
ing substrate with strong spin-orbit coupling. The distinction
between opposite spins is generated by closed electron tra-
jectories (loops) having gauge-invariant Aharonov-Casher
phases [31]. Such gauge-invariant phases arise when the loops
encircle a net charge [31]. The winding can be obtained when
the phases of at least three superconductors form a polygon on
the unit circle surrounding the origin [32] [see Fig. 1(b)]. This
alleviates the need for a Zeeman field, an exchange field, mag-
netic fluxes [25], or relatively large supercurrents [29]. The
superconducting phases can be controlled by macroscopic su-
perconducting loops, which focus the time-reversal-breaking
element on the junction. Therefore, a tiny magnetic field, of
less than a microtesla for a micron-size loop, can be used
to achieve topological superconductivity. In this method, the
superconductors remain free of pair-breaking perturbations,
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FIG. 1. Coupled-wires model for topological superconductivity
induced by only phase bias. (a) Illustration of the system under study:
three spin-orbit-coupled wires, proximity coupled to SCs with three
different phases. (b) Topological phase diagram as a function of the
SC phases φ1 and φ2, with φ3 set to zero (see inset). The square
outlined by thick solid lines repeats periodically. The thin solid lines
correspond to the phase boundaries at the optimal manifold where the
critical value required for a topological phase is fcrit = −1, whereas
the dashed lines correspond to fcrit = −1.1, away from the optimal
manifold. The phase windings in the central triangles realize a vortex
(+) and an antivortex (−). Time-reversal-invariant points are shown
as red squares. Notice that the phase diagram is mirror symmetric
about the line θ = 0.

in-gap states, and flux trapping, thereby allowing even the use
of type-II superconductors such as Nb. Fu and Kane [6] stud-
ied the two-dimensional (2D) surface of a three-dimensional
topological insulator in proximity to a conventional s-wave
superconductor, showing that a discrete vortex associated with
three phase-biased superconductors binds a MZM. This MZM
emerges as a result of two topological phases accumulated by
the surface Dirac fermions along loops encircling the vortex
center. In addition to the π phase associated with the vortex,
there is a π Aharonov-Casher (or Berry) phase [31], which
originates from spin-momentum locking in the language of
surface Dirac electrons. Importantly, both phases are required
for inducing Majorana zero modes, even though the system
is already topological without the vortex. It would be very
attractive to implement a similar scheme in one dimension
using conventional materials, as inducing a discrete vortex
requires only minimal magnetic fields or supercurrents. How-
ever, whether this is possible is not evident. First, the 1D
system will not already be topological by proximity coupling
to the conventional superconductor, and MZMs are in one-
to-one correspondence with the formation of a topological
superconducting state. Second, phase biasing does not directly
introduce a Zeeman splitting, which is typically required.
Here, we show for explicit examples that Aharonov-Casher
phases in conjunction with a discrete vortex can stabilize
topological superconductivity in 1D systems using conven-
tional materials. We believe that this design principle can be
highly beneficial in realizing topological superconductivity, as
it eliminates the severely detrimental effects of large magnetic
fields.

Our main result is the phase diagram in Fig. 1(b) for the
three-phase system depicted in Fig. 1(a). The phase diagram
depends on the two phase differences, φ1 and φ2 (φ3 is set
to zero), and periodically repeats the unit cell indicated by
the black square [33]. To highlight the role of time-reversal
symmetry, we plot the phase diagram as a function of θ =
(φ1 − φ2)/2 and φ = (φ1 + φ2)/2. Then, like for a single
phase-biased planar Josephson junction [14,15], φ = π , θ =
0 is a time-reversal-symmetric point (as are φ = π/2, θ =
π/2, and φ = 3π/2, θ = π/2). In contrast to conventional
Josephson junctions where a Zeeman field is needed to break
time-reversal symmetry and to drive the system into a topolog-
ical state, here, this effect is achieved by the phase difference
θ between the superconductors.

Coupled-wires model. To demonstrate our approach in a
tractable model, we consider three spin-orbit-coupled wires
in proximity to three s-wave superconductors with pair poten-
tials of magnitude � and phases φ1, φ2, φ3, as illustrated in
Fig. 1(a).

In the continuum limit, the topological properties are al-
ready encoded in the spectrum for zero momentum along
the wires, k‖ = 0 [4]. In this case, the Hamiltonian of the
three-wire model takes the form

H(k‖ = 0) =
N∑

n=1

∑
s,s′=±

{−μδss′
c†

n,scn,s′

+ [t⊥(eiλnσz )ss′
c†

n,scn+1,s′ + H.c.]}

+
N∑

n=1

(�eiφn c†
n,↑c†

n,↓ + H.c.), (1)

where cn,s annihilates an electron in wire n with k‖ = 0 and
spin projection s along z, t⊥ is the interwire hopping ampli-
tude, μ is the chemical potential, � is the induced SC pair
potential, and λn is the SOC angle accumulated between the
neighboring wires n and n + 1. Here, we assume periodic
boundary conditions, cN+1,s = c1,s. As we will see, it is crucial
that electrons acquire an Aharonov-Casher phase [31], which
will combine with the SC phase winding to eliminate one
spin species at the Fermi level. Equation (1) is written for a
general number of wires N ; for simplicity, we will focus on
the minimal value to create a phase winding, N = 3. Notice
that the gauge transformation cn,s → cn,seiφn/2 eliminates the
phases from the SC terms and changes the hopping term to
t⊥ → t⊥ exp (i φn+1−φn

2 ). This resembles but is not equivalent
to magnetic flux: unlike magnetic flux, the phases φn can be
gauged away when � = 0.

To identify phase transitions in the parameter space of our
model, we search for gap closures by equating the determinant
of the Hamiltonian Eq. (1) to zero:

det H(k‖ = 0)

= 6μ2t2
⊥(�2 + μ2) − (�2 + μ2)3

− 3t4
⊥(�2 + 3μ2) − 2 f �2t2

⊥(�2 + μ2 + t2
⊥)

− 4μt3
⊥	( f �2 − μ2 + 3t2

⊥) − 4t6
⊥	2 = 0, (2)

where f = cos (φ1 − φ2) + cos (φ2 − φ3) + cos (φ3 − φ1)
and 	 = cos (λ1 + λ2 + λ3).
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The SC phases appear in the determinant through a single
parameter, −3/2 � f � 3, which has a simple geometric in-
terpretation: for −3/2 � f � −1 the phases wind, i.e., when
plotted as complex numbers {eiφn} on the unit circle, the tri-
angle connecting them contains the origin [34]. Solving the
quadratic equation det H(k‖ = 0) = 0 for 	, we find that a
real solution is possible only for f � −1 [34], and therefore,
phase winding is a necessary condition for the existence of a
zero-energy state, in agreement with the results of Ref. [32].

Assuming that the SC phase winds, we still have to de-
termine the regions in the three-dimensional parameter space
spanned by μ, �, and 	 (choosing units such that t⊥ = 1)
for which the system is topological. An optimal situation
occurs when the values of the three parameters are such that
the determinant equation (2) is zero already for f = −1.
Then, the system is topological for the maximal range of
−3/2 � f < −1. Setting f = −1 in Eq. (2), we find that
the optimal situation occurs when (μ,�,	) are points on
a circle C parametrized by (μ,

√
1 − μ2, μ) (see [34] and

Fig. S1). Setting f = fcrit with −3/2 � fcrit < −1 in Eq. (2)
defines a surface in the parameter space; when (μ,�,	)
lie on this surface, topological superconductivity occurs for
−3/2 � f < fcrit [see Fig. 1(b)]. Hence, we conclude that
topological superconductivity is obtained for all (μ,�,	)
points within the bulk of the shape defined at fcrit = −3/2
(see Fig. S1 in the Supplemental Material [34]), with optimal
values on the circle C.

To find the energy gap in the topological state, we analyze
the full spectrum of the system away from k‖ = 0. Belonging
to symmetry class D [35–37], the full Hamiltonian is charac-
terized by the Z2 topological invariant [4,38],

Q = sgn{ Pf[PH(k‖ = 0)]Pf[PH(k‖ = π )]}, (3)

where Pf is the Pfaffian and P is the particle-hole operator.
Q = 1 indicates the trivial phase, whereas Q = −1 in the
topological phase, where the system supports MZMs [39].
The energy gap must be calculated for all values of k‖.

The numerically calculated [40] topological phase diagram
of the system is shown in Fig. 2(a), for parameters chosen
on the optimal manifold. Remarkably, the model supports a
topological phase with an excitation gap of about 0.3�, with
the application of only a phase difference and without any
applied Zeeman or orbital field in the sample. We note that at
(θ = π

3 , φ = π ) and (θ = 2π
3 , φ = 0) (perfect vortices with

equal phase differences forming an equilateral triangle) the
system becomes C3 symmetric and turns out to be gapless due
to a nontopological gap closure at finite k‖ [see Fig. 2(b)].
In Fig. 2(c), we demonstrate that the gap opens when the
C3 symmetry is broken [41]. In addition, the topological gap
is bounded from above by the minimum of � (the induced
SC gap) and �SO ∼ t⊥ sin2 ( 1

2N

∑
n λn) (the SOC splitting

energy).
Further confirmation of the existence of the topological

phase is given in Fig. 2(d), where we show the Majorana wave
functions deep in the topological phase. These are obtained by
diagonalizing the Hamiltonian on a finite lattice. The appear-
ance of two localized Majorana modes with near-zero energy
at the edges of the system signals its topological nature.

0 100 200 300 400 500 600
Site number

—
—2

(a
.u

.)

(a)

(b) (c)

(d)

-5 0 5
-0.5

0

0.5

-5 0 5

0 100 200 300 400 500 600
Site number

—
—

——
2

(a
.u

.)
——

(a)

(b) (c)

(d)

-5 0 5
-0.5

0

0.5

-5 0 5

-0.3

-0.15

0

0.15

0.3

FIG. 2. (a) Topological phase diagram of the coupled-wires
model as a function of the SC phase differences θ = (φ1 − φ2)/2
and φ = (φ1 + φ2)/2 (we set φ3 = 0). The color scale shows the
Z2 invariant Q, which is +1 (−1) in the trivial (topological) phase,
multiplied by the energy gap (normalized by �). The dark blue re-
gions correspond to a robust large-gap topological phase. The phase
boundaries (dashed lines) and Brillouin zone boundaries (solid lines)
are marked. The inset shows a cut at φ = π . The parameters are
t⊥ = 1, � = 0.1, μ = 0.995, λ = 0.033 (on the optimal manifold),
m = 0.01, u = 1. (b) At the C3-symmetric point θ = π

3 , φ = π , the
system becomes gapless at finite k‖. (c) The gap closing becomes
an avoided crossing when the C3 symmetry is broken, done here by
changing the phases away from the C3-symmetric point. (d) Wave
functions of (near) zero-energy Majorana states in the topological
phase, calculated for an open system discretized with L = 600 sites
per wire, at (θ = 5π

6 , φ = 0).

Quantum-well model. Having established the possibility of
realizing a 1D topological superconductor based on phase bias
alone, we now turn to exemplifying this concept in a realistic
system comprising readily available ingredients. Specifically,
our proposal relies on a spin-orbit-coupled 2D electron gas
(2DEG) proximitized by three thick SCs. As we have seen,
the topological transition requires an Aharonov-Casher phase,
and thus, our proposal does not easily lend itself to an all-
planar geometry. Instead, we propose to use a 2DEG with
two (or more) layers giving rise to several subbands [see
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FIG. 3. Quantum-well model for topological superconductivity
induced by only phase bias. (a) Schematic of the experimentally
available proposal: a spin-orbit-coupled two-layer 2DEG is contacted
by three SCs of width WSC, separated by normal regions of width
WN. The Rashba SOC parameter α is assumed to be opposite in the
two layers, and pairing is induced in only one layer. The dashed
gray line shows an example of a closed trajectory that encircles an
Aharonov-Casher phase and is affected by the SC phase winding.
(b) Topological phase diagram of the InSb quantum-well model as
a function of the SC phase differences θ = (φ1 − φ2)/2 and φ =
(φ1 + φ2)/2 (setting φ3 = 0). The color scale shows the product of
the Z2 invariant Q, which is +1 (−1) in the trivial (topological)
phase, and the energy gap (normalized by the SOC energy �SO).
Significant regions of Q = −1 with a large energy gap appear (dark
blue), implying a robust topological phase. The phase boundaries
(dashed black lines), Brillouin zone boundaries (solid black lines),
and optimal phase boundaries (gray lines) are marked. Parameters
used: μ = 108.9 meV, t⊥ = 0.4 meV, corresponding to a density of
n = 6.4 × 1011 cm−2 and a Fermi wavelength of λF = 31 nm.

Fig. 3(a)]. If the Rashba SOC parameter α is different in
the two subbands, there are closed loops in which electrons
acquire a nonzero Aharonov-Casher phase, mimicking the
periodic boundary conditions in the simplified model we pre-
viously studied.

The system is described by the continuum Hamiltonian

H =
[
− 1

2m∗
(
∂2

x + ∂2
y

) − t⊥ρx − μ

]
τz

+ iα(σx∂y − σy∂x )τzρz + [�(x)τ+ + �∗(x)τ−]ρ↑, (4)

where the Pauli matrices τ and ρ act in particle-hole and
layer space, respectively, t⊥ is the interlayer hopping ampli-
tude, τ± = (τx ± iτy)/2, and ρ↑ = (ρ0 + ρz )/2. We assume
that the Rashba SOC parameter is opposite in the two lay-
ers. To be specific, we consider an InSb 2DEG with m∗ =

0.014me and α = 15 meV nm [42], corresponding to a SOC
length �SO ≈ 360 nm. We take an induced SC gap of � =
1 meV, appropriate for, e.g., Nb and Pb [43], in only one
layer. The widths of the SCs (normal regions between them)
are chosen to be WSC = 70 nm (WN = 40 nm.) The typi-
cal length W is chosen roughly according to the relation
�SO�SO = W �. This rule of thumb, which is derived in
the Supplemental Material [34], provides a way to approxi-
mate favorable dimensions of the system given the material’s
parameters [44].

The Hamiltonian (4) was investigated by discretizing it
on a lattice of spacing a = 10 nm. The topological phase
diagram, calculated by the Pfaffian formula (3) (now with
k‖ =̂ ky), is shown in Fig. 3(b). The system indeed becomes
a topological superconductor in the relevant region of phases.
The topological phase constitutes 17% of the displayed θ -φ
section, compared to 25% on the optimal manifold of the
coupled-wires model [see Fig. 1(b)], implying that further
optimization is possible. The maximal topological gap is of
order �SO, which is reasonable: for the chosen materials �SO

is the smallest energy scale. Using materials with larger �SO

will lead to a larger topological gap.
As seen in Fig. 3(b), the gap is small compared to �SO

in some parts of the topological region. By inspecting the
Bogoliubov–de Gennes spectrum, we find that the small gap
originates from the presence of low-energy high-k‖ modes.
Semiclassically, these modes result from long trajectories that
hardly encounter the SCs, which is a common problem in such
systems [29]. Perturbations that eliminate these trajectories,
such as nonstandard geometries [28,29] or disorder [45], lead
to an increased topological gap. We have verified that adding
a chemical potential modulation along the x and y directions
may significantly increase the topological gap. Furthermore,
in the Supplemental Material [34] we show that the topolog-
ical phase is robust to various perturbations in the model’s
parameters.

Discussion. In contrast to the vast majority of previous
schemes, the topological phase in our proposal is induced
solely by phase winding in the SC, which is proximity coupled
to semiconductors with strong spin-orbit coupling such as
InAs, InSb, or HgTe. SC phases can be manipulated using
large external loops, through which magnetic flux is threaded,
or by application of supercurrent. The applied magnetic field
(or the supercurrent), being very small and removed from the
sample itself, should have only a mild effect on the parent
SC. Therefore in-gap states, which may mask the MZMs, are
unlikely to appear.

We illustrated our scheme by an analytically accessible
toy model and introduced a realistic setup in which these
ideas can be implemented. Beyond these settings, we ex-
pect that the concept presented here, relying exclusively on
SC phase bias and on the spin-dependent phase acquired
in closed loops (the Aharonov-Casher phase [31]), may be
harnessed in other systems as well. For example, it might
be possible to realize the wire model experimentally by con-
tacting three of the six facets of an InAs nanowire with
three thick phase-biased SCs. The role of disorder deserves
a separate treatment. Disorder eliminates trajectories that
do not encounter the superconductors [45–48] and there-
fore increases the topological gap. We expect that under
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the right conditions it also gives rise to nonretro Andreev
reflection, thereby facilitating the existence of the relevant
closed trajectories.

Finally, a desirable goal for all Majorana platforms is an
extension to networks to implement quantum information
processing or a two-dimensional chiral phase [49]. In our
proposal, the experimental challenge is to establish control
over a larger number of superconducting phases. At the same

time, engineering aspects may be significantly simplified by
the absence of a need for a Zeeman field, which requires
careful alignment and induces harmful in-gap states.
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