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Magnetic adatoms on a superconducting substrate undergo a quantum phase transition as their exchange
coupling to the conduction electrons increases. For quantum spins, this transition is accompanied by screening
of the adatom spin. Here, we explore the consequences of this screening for the phase diagrams and subgap
excitation spectra of dimers of magnetic adatoms coupled by hybridization of their Yu-Shiba-Rusinov states and
spin-spin interactions. We specifically account for higher spins, single-ion anisotropy, Ruderman-Kittel-Kasuya-
Yosida coupling, and Dzyaloshinsky-Moriya interactions relevant in transition-metal and rare-earth systems.
Our flexible approach based on a zero-bandwidth approximation provides detailed physical insight and is in
excellent qualitative agreement with available numerical-renormalization group calculations on monomers and
dimers. Remarkably, we find that even in the limit of large impurity spins or strong single-ion anisotropy, the
phase diagrams for dimers of quantum spins remain qualitatively distinct from phase diagrams based on classical
spins, highlighting the need for a theory of quantum Yu-Shiba-Rusinov dimers.
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I. INTRODUCTION

Assemblies of magnetic adatoms on superconductors are
currently attracting much attention as platforms for topolog-
ical superconductivity [1–3] and correlated electron physics
[4]. The adatoms induce Yu-Shiba-Rusinov (YSR) states
within the excitation gap of the substrate superconductor
[5–12], which hybridize between adjacent sites of the assem-
bly. Several recent experiments [13–21] probe adatom dimers,
which constitute the minimal example of such an assembly. If
the adatoms of the dimer are spaced such that their atomic d
orbitals do not overlap, the coupling is entirely mediated by
the superconducting substrate. The familiar Ruderman-Kittel-
Kasuya-Yosida (RKKY) [22–25] and Dzyaloshinsky-Moriya
(DM) [26,27] interactions between the adatom spins are com-
plemented by hybridization of their YSR states.

So far, dimer experiments have been largely interpreted
assuming classical impurity spins. In this framework, the
impurity spin acts as a local Zeeman field on the substrate
superconductor and the coupling in the dimer depends on the
relative orientation of the adatom spins [7,13,17,28–34]. In
the absence of spin-orbit coupling, the YSR states split for
ferromagnetic alignment, but remain unsplit for antiferromag-
netic spins. There is also an overall shift of the YSR levels of
the dimer relative to the monomer, which tends to be small
compared to the splitting for the ferromagnetic dimer [7,20].

Experiments on individual adatoms on superconductors
suggest, however, that their spins are quantum. In particu-
lar, this is implied by the observation of Kondo resonances,
both on normal-metal [35,36] and superconducting substrates
[10,18,37–41], and of discrete spin excitations in the presence
of single-ion anisotropy [42–45]. Dimers of quantum spins
on a superconducting substrate were discussed by Zitko et al.

[46,47] and Yao et al. [48], based on the numerical renormal-
ization group (NRG). While these calculations were limited to
spin-1/2 and spin-1 dimers with isotropic exchange coupling
to the conduction electrons, recent experimental work empha-
sizes the importance of higher spins, single-ion anisotropy,
anisotropic exchange and RKKY coupling as well as DM
interactions [13–17,19,20,40].

Here, we present a simple yet flexible approach to discuss
dimers of quantum spins on superconductors. Sidestepping
the substantial and rapidly forbidding numerical effort of
full-scale NRG calculations, our approach focuses on the
subgap excitations by limiting the substrate superconductor
to a single site per adatom and conduction electron chan-
nel (zero-bandwidth model [49–54]). While this approach
neglects Kondo renormalizations and effects associated with
the spatial wave-function pattern of the YSR excitations, it
is remarkably successful [54] in qualitatively reproducing the
phase diagrams and excitation spectra of individual higher-
spin adatoms, which were previously obtained by NRG [47].
We find that this remains true for adatom dimers. As detailed
below, the approach qualitatively reproduces the phase dia-
grams and excitation spectra of spin-1/2 and spin-1 dimers as
obtained from NRG calculation in Refs. [47,48]. This encour-
ages us to apply the approach to models of the transition-metal
and rare-earth systems used in the experiments on YSR dimers
[13–17,19,20,40].

There are important qualitative differences between the
physics of classical and quantum spins on superconducting
substrates. First, Kondo-like screening of the adatom spin is
limited to quantum spins. Both classical and quantum adatom
spins induce a quantum phase transition as their exchange
coupling K to the conduction electrons increases [55]. At
weak coupling, the ground state of the superconductor is fully
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paired (even fermion parity). Beyond a critical coupling, the
adatom binds a quasiparticle (odd fermion parity). However,
only for quantum spins, this binding of a quasiparticle is asso-
ciated with a change in the ground-state multiplicity and thus
with Kondo-like screening of the adatom spin. In dimers, this
screening abruptly alters the RKKY energy at the quantum
phase transition [4,20], leading to rich physics of quantum
YSR dimers. Second, half-integer and integer quantum spins
can behave in qualitatively different ways due to the presence
or absence of Kramers degeneracies. This leads to characteris-
tic differences in their Kondo effects [56] and we find related
distinctions for quantum YSR dimers.

This paper is organized as follows. Section II discusses
YSR spin-1/2 dimers, contrasting classical and quantum
spins. Motivated by transition-metal and rare-earth sys-
tems, Sec. III extends the discussion to dimers of higher-
spin adatoms, accounting for single-ion anisotropy and
Dzyaloshinsky-Moriya interactions. We conclude in Sec. IV.
In an effort to focus the main text on the principal physical
arguments, we delegate some technical details as well as some
additional considerations to appendices.

II. SPIN-1/2 DIMERS

A. Monomers and screening

The qualitatively different screening behavior of classical
and quantum adatom spins can be understood by considering
a spin-1/2 monomer within the zero-bandwidth model

H = �(c†
↑c†

↓ + H.c.) + c†
σ [V δσσ ′ + S · K̂ · sσσ ′]cσ ′ (1)

(see Appendix A 1 and Ref. [54] for further discussion). Here,
� is the pairing amplitude of the superconducting site coupled
to the adatom spin S through potential scattering V and an-
tiferromagnetic exchange interaction K̂ = diag(K⊥, K⊥, Kz ).
On the superconducting site, conduction electrons of spin σ

are annihilated by cσ , and s = 1
2σ in terms of the vector of

Pauli matrices σ. Summation over repeated spin indices is
implied.

Within models of classical spins, one assumes that the
adatom spin S is aligned along, say, the z direction, so that it
couples only to a single component of the conduction-electron
spin (density) c†

σ sσσ ′cσ ′ and there are no transverse spin cou-
plings. Within the model of Eq. (1), this corresponds to Ising
exchange coupling K̂ = diag(0, 0, Kz ). In contrast, the quan-
tum nature of the adatom spin plays a role as soon as the
transverse spin couplings are nonzero, K⊥ �= 0, as is the case,
for instance, for Heisenberg coupling K̂ = diag(K, K, K ).

Regardless of K⊥, the monomer ground state exhibits a
quantum phase transition with increasing exchange coupling.
It is fully paired with a free adatom spin at weak exchange
coupling and binds a quasiparticle at strong coupling. The
weak-coupling state |⇑ / ⇓, BCS〉 is a direct product of a free
impurity spin (|⇑ / ⇓〉) and a paired electronic ground state
(|BCS〉) with even fermion parity, and takes the same form for
classical and quantum spins. In contrast, the strong-coupling
states of classical and quantum spins differ in their screening
properties. In the classical case, the monomer continues to
have two degenerate ground states, namely the odd-fermion-
parity states |⇑,↓〉 and |⇓,↑〉. Consequently, the quantum
phase transition leaves the impurity-spin state unaffected and

thus unscreened. For quantum spins, the nonzero transverse
exchange coupling K⊥ lifts the degeneracy between |⇑,↓〉
and |⇓,↑〉 and the singlet state |s〉 = |⇑,↓〉 − |⇓,↑〉 becomes
the unique strong-coupling ground state. Now, the impurity
spin no longer points along a preferred direction and is thus
screened by the conduction electrons (see also Appendix A 1).

The different phases of the monomer can in general be
labeled by the fermion parity P = (−1)

∑
σ c†

σ cσ as well as the
magnitude and/or projection of the effective spin

Seff = S + c†
σ sσσ ′cσ ′ , (2)

depending on the degree of spin rotation symmetry [54]. The
excitation energy

EYSR = Eo − Ee. (3)

of the YSR state is the energy difference of the lowest
monomer states in the odd and even-fermion-parity sec-
tors (Eo and Ee, respectively). With this definition, EYSR

is positive in the weak-coupling phase and negative in the
strong-coupling phase, and takes on the value

EYSR =
√

�2 + V 2 − 1
4 (Kz + 2K⊥) (4)

for a spin-1/2 monomer.
The zero-bandwidth approximation fails to account for the

quasiparticle continuum and can thus only be expected to
describe deep subgap states. We account for this limitation by
assuming large �, K , and V in such a way that the YSR energy
EYSR and the dimer couplings remain small by comparison.
In particular, this assures that EYSR is well within the gap.
This assumption will be made throughout this paper, in both
the numerical and the analytical calculations. We note that
these assumptions are consistent with typical experimental
situations. In particular, one expects the dimer couplings to
decrease rapidly with the adatom distance. Thus our consider-
ations apply as long as the dimer adatoms are not too closely
spaced. Moreover, in many cases, a finite value of the gap
largely limits the number of excited states, which can still be
resolved as subgap excitations.

B. Dimer phase diagrams

The distinctly different screening properties of classical
and quantum spins have important ramifications for the phase
diagram of dimers. This can already be illustrated for a spin-
1/2 dimer within the zero-bandwidth model

H =
2∑

j=1

�(c†
j↑c†

j↓ + H.c.) − t[c†
1σ c2σ + H.c.]

+
2∑

j=1

c†
jσ [V δσσ ′ + S j · K̂ · sσσ ′]c jσ ′ + S1 · Ĵ · S2. (5)

Here, the adatom spins S j ( j = 1, 2) are coupled to separate
superconducting sites (c jσ ). Hybridization of the YSR states
due to their orbital overlap is incorporated through intersite
hopping of strength t . The effective RKKY interaction Ĵ =
diag(J⊥, J⊥, Jz ) is incorporated explicitly as it is mediated by
the quasiparticle continuum, which is not accounted for within
the zero-bandwidth model. Due to the oscillatory dependence
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FIG. 1. Phase diagrams of a spin-1/2 YSR dimer as a function of RKKY coupling Jz and YSR energy EYSR for different anisotropies of the
exchange coupling K⊥/Kz. The anisotropy of the RKKY interaction is chosen to match the exchange anistropy, K⊥/Kz = J⊥/Jz. Phase diagrams
are obtained from the zero-bandwidth Hamiltonian in Eq. (5). The color scale (see scale bar) indicates the expectation value of the number of
bound quasiparticles F as defined in Eq. (9). Black dashed lines indicate phase boundaries, at which the spin and/or fermion parity quantum
numbers of the ground state change discontinuously. (a) Ising exchange with nonzero Kz and K⊥ = 0, corresponding to a classical-spin model
of the adatom. Phase boundaries and crossovers essentially depend only on the sign of the RKKY coupling, reflecting the absence of screening
of the adatom spin in the classical model. (b) Heisenberg exchange K = K⊥ = Kz. Phase boundaries and crossovers depend on the magnitude
of the RKKY coupling. This phase diagram qualitatively reproduces the results of NRG simulations in Ref. [48]. (c) Dominant longitudinal
and (d) dominant transverse anisotropic couplings as indicated in the panel. The singly screened phase (white) reduces in extent as K⊥/Kz

increases. Parameters: (Kz, K⊥) = 100t (cos θ, sin θ ), (a) θ = 0, (b) θ = π

4 , (c) θ = 0.05, and (d) θ = π

2 − 0.1, V = 0.9(Kz + 2K⊥)/4.

of the RKKY interaction, strength and sign of Ĵ depend on the
distance between the adatoms.

To characterize the phases of the model in Eq. (5), we
exploit the symmetries of the system. The superconducting
pairing breaks particle-number conservation but conserves the
overall fermion parity

Ptot = (−1)
∑

σ (c†
1σ c1σ +c†

2σ c2σ ). (6)

Provided that the model retains spin rotation symmetry about
the z axis, the projection Sz

tot of the total spin

Stot = S1 + S2 +
∑

j

c†
jσ sσσ ′c jσ ′ (7)

is also a conserved quantity. For the special case of Heisenberg
exchange and RKKY interactions, the model has full spin ro-
tation symmetry and we can further classify phases according
to Stot. Finally, we can label the dimer phases by their spatial
parity � (with �2 = 1), which interchanges the monomers as
defined by

�c†
1,σ � = c†

2,σ , �S1� = S2. (8)

Note that this operation also exchanges the fermions, which
gives rise to an additional minus sign when both adatom spins
are screened.

The quantum numbers Ptot, Sz
tot, and � can be used to

classify the model’s phases. We also find it useful to consider
the expectation value of

F =
∑
j=1,2

(c†
j↑c j↑ − c†

j↓c j↓)2, (9)

which is a proxy for the number of bound quasiparticles. It
should be noted, however, that for nonzero YSR hybridization
t , this is not a conserved quantum number due to the presence
of pairing correlations in the model. While ground states with
different quantum numbers define phases of the quantum YSR
dimer, we refer to the unscreened (F 
 0) or doubly screened
(F 
 2) parts of the phase diagram as regions.

Figures 1(a) and 1(b) show dimer phase diagrams as a
function of the RKKY interaction Jz and the YSR energy EYSR

for Ising coupling (classical spins) and Heisenberg coupling
(quantum spins), respectively. The most striking difference is
that phase boundaries and crossovers in the classical phase di-
agram [Fig. 1(a)] essentially depend only on the sign, but not
on the magnitude of the RKKY interaction J . In contrast, the
magnitude of the RKKY coupling is an important parameter
in the quantum phase diagram [Fig. 1(b)].

This difference arises as follows. The phase boundaries
correspond to lines in the phase diagram, along which states
with different total spin are degenerate. For a classical im-
purity spin, the quantum phase transition does not affect the
impurity-spin state. Consequently, it leaves the RKKY energy
of the dimer unchanged, which will then cancel from the
energy balance governing phase boundaries and crossovers.
In contrast, for quantum spins, the impurity spin is fully
screened in the strong-coupling state. Thus only the un-
screened phases benefit from the RKKY interaction, while the
RKKY interaction energy vanishes for the phases in which
one or both spins are screened. Now, the RKKY interaction
enters into the energy balance governing phase boundaries and
crossovers.

The phase diagram of a quantum spin-1/2 dimer with
Heisenberg interactions was also computed in Ref. [48], using
the numerical renormalization group (NRG) including the
full quasiparticle continuum of the substrate superconduc-
tor. Remarkably, the phase diagram of the zero-bandwidth
model of Eq. (5) in Fig. 1(b) qualitatively reproduces the
NRG phase diagram. We now discuss the phase diagram in
Fig. 1(b) for isotropic (Heisenberg) exchange and RKKY
coupling in more detail (see also Appendix A 2). For suffi-
ciently large EYSR, both adatom spins are unscreened (F 

0). For ferromagnetic RKKY coupling (J < 0), the ground
state is a molecular triplet, e.g., |⇑, BCS〉1 ⊗ |⇑, BCS〉2, with
quantum numbers (Ptot, Stot ) = (+, 1). For antiferromagnetic
RKKY interactions (J > 0), the unscreened impurity spins
couple into a molecular singlet |⇑, BCS〉1 ⊗ |⇓, BCS〉2 −
|⇓, BCS〉1 ⊗ |⇑, BCS〉2, so that (Ptot, Stot ) = (+, 0). For large
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FIG. 2. Illustrative level scheme of spin-1/2 dimers with
isotropic exchange and ferromagnetic RKKY coupling (J < 0). The
low-energy spectrum of the uncoupled dimer (left) is labeled by
the fermion parities Pj and effective spins Seff, j of the monomers
as (P1, Seff,1)(P2, Seff,2). For EYSR < 0 the local singlet state (F 
 2,
blue) is the ground state. Nonzero RKKY interaction (center) couples
the monomer states into states of total parity and spin (Ptot, Stot ).
This affects only the unscreened state (F 
 0, red), which splits into
molecular singlet and triplet. For sufficiently large |J|, the molecular
triplet becomes the ground state. Finally, hybridization of the YSR
states splits the odd-fermion-parity states (F = 1, black) into sym-
metric and antisymmetric states. For sufficiently large hybridization
t̃ this leads to the singly screened ground state.

and negative EYSR, the adatom spins are individually screened
(F 
 2) and the dimer has a local-singlet ground state, |s〉1 ⊗
|s〉2. This state also has (Ptot, Stot ) = (+, 0), so that the molec-
ular singlet evolves continuously into the local singlet phase
as EYSR is reduced. The absence of a sharp phase transition
between these ground states reflects that the pairing term in
the model in Eq. (5) breaks particle-number conservation. At

large and negative RKKY coupling, there is a direct transition
between the molecular triplet and the local-singlet phases,
with a corresponding change in Stot.

For weak RKKY coupling and small |EYSR|, there is
an odd-fermion-parity phase with half-integer total spin,
(Ptot, Stot ) = (−, 1

2 ). The doublet ground state of this phase,
|s〉1 ⊗ |⇑ / ⇓, BCS〉2 + |⇑ / ⇓, BCS〉1 ⊗ |s〉2, emerges when
the hybridization splitting of the dimer states with one
screened adatom is large enough to offset the cost in YSR
energy.

Figure 2 shows level diagrams for the RKKY and hy-
bridization splittings, illustrating the mechanisms governing
the phase diagram in Fig. 1(b). While the ferromagnetic
RKKY coupling favors the molecular triplet, a sufficiently
large YSR hybridization t can lower the energy of the doublet
with half-integer spin to become the ground state. Note that
we use 2t̃ to denote the actual energy splitting of the singly
screened states due to the hybridization t .

The phase diagrams in Figs. 1(c) and 1(d) for, respec-
tively, predominantly longitudinal and transverse exchange
and RKKY couplings deviate qualitatively from the isotropic
Heisenberg case. Here, we take both the exchange coupling
K̂ and the RKKY interaction Ĵ to have the same anisotropy
(i.e., K⊥/Kz = J⊥/Jz). For dominant longitudinal coupling,
K⊥ � Kz, Fig. 1(c), the doublet phase continues to form a
stripe as in the Ising case, albeit with boundaries that depend
on the RKKY coupling. Beyond a critical value of K⊥, the
doublet phase forms an island as in the Heisenberg case. We
note that classical behavior with phase boundaries approx-
imately independent of J is recovered only for K⊥ � J, t .
For dominant transverse couplings, K⊥ 
 Kz, Fig. 1(d), the
doublet phase remains limited to small RKKY couplings as in
the isotropic Heisenberg case.

C. Dimer excitation spectra

Figure 3 shows representative excitation spectra for
Heisenberg couplings along the dashed lines in Fig. 1(b).
These provide further confirmation that the dashed lines cross

FIG. 3. Excitation spectra of a spin-1/2 dimer as a function of YSR energy EYSR for isotropic (a) ferromagnetic (FM) and (b) anti-
ferromagnetic (AFM) RKKY coupling J . Tunneling excitations (purple arrows) flip fermion parity and change total spin by ±1/2. In the
even-fermion-parity phases, tunneling is possible into the symmetric and antisymmetric doublets. In the doublet phase, all (low-energy) even
parity states are in principle accessible by tunneling, resulting in three peaks (or more for anisotropic RKKY interaction, see Fig. 4). Parameters
as in Fig. 1(b) with fixed RKKY coupling J = −2t (a) and J = 2t (b), as indicated by gray dashed lines in Fig. 1(b).
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FIG. 4. Tunneling spectroscopy of spin-1/2 dimers in the dou-
blet phase with isotropic exchange and ferromagnetic RKKY
coupling. (a) Spectral functions for different symmetries of the
RKKY coupling (see legend; offset for clarity). (b) Level schemes
(not to scale) for Heisenberg, XXZ and XYZ RKKY coupling,
emphasizing the increase in the number of resonances as the spin
rotation symmetry is reduced. Parameters: EYSR = −0.2t , � = 106t ,
V = 3�, J = −0.3t , Heisenberg: Ĵ = J diag(1, 1, 1), XXZ: Ĵ =
J
√

3/2 diag(1, 1, 0), and XYZ: Ĵ = J diag(
√

2, 1, 0).

true quantum phase transitions on the ferromagnetic side,
as indicated by the level crossings, while there are only
anticrossings indicative of crossovers on the antiferromag-
netic side. The excitation spectra are in excellent qualitative
agreement with corresponding results of NRG calculations
in Ref. [48], further supporting the usefulness of the zero-
bandwidth model.1

To connect to tunneling experiments, we also consider the
spectral function

A(E ) =
2∑

j=1

∑
σλ

[|〈λ|c†
j,σ |gs〉|2 δ(E − Eλ + Egs)

+ |〈λ|c j,σ |gs〉|2 δ(E + Eλ − Egs)], (10)

where |gs〉 denotes the ground state and |λ〉 the excited states
with opposite fermion parity. Spin rotation symmetries give
rise to selection rules for the matrix elements. In Fig. 4, we
show A(E ) for the doublet phase. For full spin rotation sym-
metry, there are three peaks, corresponding to transitions into
the molecular singlet and triplet as well as the local singlet.
Considering RKKY couplings with XXZ and XYZ symmetry,
the triplet peak splits into two and then three resonances.
Thus, depending on the degree of symmetry, there are between
three and five peaks in the doublet phase. For even-parity
ground states, there are only two peaks in A(E ), regardless
of the degree of spin rotation symmetry. These correspond to
the symmetric and antisymmetric doublets, which do not split
further due to Kramers degeneracy. Thus quantum phase tran-
sitions generically change the number of resonances observed
in tunneling experiments.

1Yao et al. [48] assumed a particle-hole symmetric substrate which
gives rise to a level crossing between the local-singlet and molecular-
singlet states. As we do not assume this additional symmetry, we
observe the more generic avoided crossing.

III. HIGHER SPINS

A. Isotropic RKKY coupling

YSR dimers based on transition-metal and rare-earth sys-
tems typically involve higher-spin adatoms. In many cases,
higher spins effectively behave more classically. For a fixed
magnitude S of the spin, this follows directly from the com-
mutation relations of angular momentum. Remarkably, in the
present problem, the phase diagrams for classical and quan-
tum spins remain qualitatively distinct even as S → ∞. This
is a consequence of the fact that classical and quantum spins
have sharply distinct screening properties. For quantum spins,
where screening is effective, we are considering energy dif-
ferences between states with different effective adatom spins,
which do not necessarily approach the classical value in the
limit of large S. In fact, although a single conduction-electron
channel screens higher quantum spins merely from S to S −
1/2, we find that the change in RKKY energy associated with
a quantum phase transition to the screened state approaches a
nonzero constant and thus remains relevant even for large S.
This is in contrast to the classical spin model, where the spin
remains uncreened and the RKKY energy unaffected, when
one of the adatoms binds a quasiparticle.

Figure 5 shows representative phase diagrams for larger
adatom spins as a function of the RKKY coupling J and the
YSR energy EYSR. Both the exchange coupling K and the
RKKY coupling J are assumed isotropic, so that for general
impurity spin S, the YSR energy of the monomer is given by
(see Appendix B 1)

EYSR =
√

�2 + V 2 − S + 1

2
K. (11)

As appropriate for isotropic couplings, we label phases by
their total spin Stot. The phase diagrams for adatom spins S =
1 and 3/2 in Fig. 5 exhibit four phases, one more than for the
spin-1/2 dimer. For a single conduction-electron channel per
adatom, higher adatom spins can only be partially screened.
Thus, even in the doubly screened region, they will couple
to different total spins for ferromagnetic and antiferromag-
netic RKKY coupling. This introduces a phase boundary at
J = 0 and negative EYSR, which is absent for a dimer of fully
screened S = 1/2 adatoms.

Apart from this additional phase boundary, the phase dia-
grams for higher spins are similar in appearance to the phase
diagram for S = 1/2. In particular, nonzero RKKY coupling
of either sign favors the unscreened phases. At the same time,
the half-integer spin phase [white region in Figs. 5(a) and
5(b)] has not only a different ground-state multiplicity (dou-
blet for S = 1/2, quartet for S = 1, and sextet for S = 3/2),
but also appears in a differently shaped parameter region.
While the lower boundary is only weakly dependent on J
for S = 1/2 [Fig. 1(b)], it exhibits a pronounced linear J
dependence for higher spins. For S = 1/2, both the singly
screened and the doubly screened regions have zero RKKY
energy and J does not enter the energy balance determining
their phase boundary. In contrast, singly and doubly screened
regions have nonzero—and different—RKKY energies for
higher spins [see Fig. 5(c)], leading to a J-dependent phase
boundary.
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FIG. 5. Effect of Heisenberg RKKY coupling on YSR dimers with higher spins S. (a),(b) Phase diagrams as a function of isotropic RKKY
coupling J and YSR energy EYSR for S as indicated in the panel. As for spin-1/2 dimers, RKKY coupling stabilizes unscreened dimers with
F 
 0 (red). Unlike spin-1/2 dimers, the phase boundary between the approximately doubly screened Stot = 2S − 1 (blue, F 
 2) and singly
screened Stot = 2S − 1/2 phases (white, F = 1) is no longer approximately constant as partially screened dimers gain RKKY energy, see (c).
As S increases, the phase boundaries on the ferromagnetic side become more and more parallel. Gray dashed lines indicate value of the RKKY
coupling in Fig. 6. (c) Level scheme for higher spins. RKKY coupling shifts the energies not only of the unscreened dimer, but also of the
singly and doubly screened dimer. Parameters: V = 2�, � = 106t .

We note in passing that Fig. 5 shows phase diagrams for
V ∼ �. At small |J|, the detailed structure of the phase di-
agram actually depends in some detail on the ratio V/�, see
Appendix B 2 for further discussion. In particular, there can be
additional spin transitions which have no analog for classical
adatom spins.

We can obtain additional insights into the phase bound-
aries by explicitly computing the RKKY energy ERKKY in the
various phases as a function of S. This also allows us to ask
about the limit of large impurity spins, S → ∞. In general,
the RKKY coupling JS1 · S2 between spins of magnitude S1

and S2 coupling into a total spin of Stot has the magnitude

ERKKY = J

2
[Stot (Stot + 1) − S1(S1 + 1) − S2(S2 + 1)]. (12)

Assuming, say, ferromagnetic coupling (Stot = S1 + S2), one
might then naively expect that the difference in RKKY en-
ergies of the fully unscreened phase (S1 = S2 = S) and the
singly screened phase (S1 = S and S2 = S − 1/2) is JS/2 and
thus proportional to S. A more careful treatment accounting
for changes in the effective RKKY coupling J between the
different phases shows that the difference in RKKY energies
approaches a constant independent of S for S → ∞.

Given that the exchange coupling K is large compared to
the RKKY coupling, the projection theorem implies that the
impurity spins S1 and S2 can be replaced by the effective
screened spin of the adatom, Seff , albeit only up to an overall
prefactor, which can be absorbed into a renormalization of
the RKKY coupling J (see Appendix B 3 for details). One
finds that for each screened spin, the RKKY coupling is
renormalized by a factor 1 + 1/(2S + 1). Focusing first on
ferromagnetic RKKY coupling, J < 0, this gives the RKKY
energies

ERKKY =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

JS2 Stot = 2S,

JS
(
S − 1

2S+1

)
Stot = 2S − 1

2 ,

J
(
S − 1

2S+1

)2
Stot = 2S − 1.

(13)

The phase boundary EYSR = EYSR(J ) between the unscreened
(Stot = 2S) and the singly screened (Stot = 2S − 1/2) phases
follows from the energy balance:

JS2 = EYSR + JS

(
S − 1

2S + 1

)
− t̃ . (14)

Here, t̃ again denotes the energy gain of the singly screened
phase due to the hybridization t of the YSR states. Thus we
find

EYSR = t̃ + JS

2S + 1
(15)

for the phase boundary on the ferromagnetic side J < 0. An
analogous consideration for the phase boundary between the
singly screened phase and the fully screened (Stot = 2S − 1)
phase yields

EYSR = −t̃ + JS

2S + 1
− J

(2S + 1)2
. (16)

As advertised above, the slope of these phase boundaries
EYSR = EYSR(J ) approaches 1/2 in the limit of S → ∞,
which is distinctly different from the purely classical result of
zero slope. Thus the distinction between classical and quan-
tum spins persists to arbitrarily large spins.

The phase boundaries in Eqs. (15) and (16) also imply that
the singly screened phase terminates at J = −2t̃ (2S + 1)2.
For stronger ferromagnetic RKKY coupling J , there is a direct
transition between the unscreened and the doubly screened
phase with

EYSR = JS

2S + 1

(
1 − 1

2S(2S + 1)

)
. (17)

describing the phase boundary.
Antiferromagnetic RKKY interaction couples the impu-

rity spins to Stot = 0 (see Appendix B 2 for an exception).
At large and positive EYSR, this results from a coupling of
the unscreened impurity spins. As EYSR is reduced and be-
comes negative, this eventually crosses over to coupling of
the screened impurity spins. As for spin-1/2 dimers, this is
a crossover rather than a phase boundary. We can deduce the
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FIG. 6. Excitation spectra of YSR dimers for adatom spins (a) S = 1 and (b) S = 3/2 with isotropic ferromagnetic RKKY coupling.
Allowed tunneling excitations (purple arrows) are determined by the selection rules PtotP′

tot = −1 and Sz
tot − (Sz

tot )
′ = ±1/2. (a) For S = 1, the

selection rules permit four possible tunneling excitations from the (approximately) doubly screened ground state (blue, F 
 2), three from the
singly screened (black), while only two survive when the ground state is unscreened (red, F = 0). (b) S = 3/2 shows corresponding behavior.
Parameters: K = 100t , V = 70t , J = −2t , as indicated by gray dashed lines in Fig. 5(a) and 5(b).

crossover line by equating the energies of the Stot = 0 states
for unscreened and screened spins,

−JS(S + 1) = 2EYSR − 2J

(
S − 1

2

)
(S + 1)2

2S + 1
, (18)

which yields

EYSR = −J
S + 1

4S + 2
. (19)

Thus the slope of the crossover line for antiferromagnetic
RKKY coupling approaches − 1

4 for large S.
We note that the zero-bandwidth model not only provides

detailed insight into the physics of YSR dimers, but that the
corresponding phase diagram for the spin-1 dimer in Fig. 5(a)
is also in excellent qualitative agreement with full NRG cal-
culations in Ref. [47].

In Fig. 6, we show excitation spectra for adatom spins
S = 1 and S = 3/2 along the dashed lines shown in Fig. 5.
In particular, these spectra identify the transitions that are
observable in tunneling experiments (see purple arrows in
the figure). Single-electron tunneling flips the fermion parity
and changes the total spin by ±1/2. For spin-1/2 dimers, the
number of resonances of the tunneling spectra depends only
on the fermion parity (Fig. 3). For higher spins, we find that it
also varies with the total spin. If the ground state of the dimer
has minimal (Stot = 0) or maximal (Stot = 2S) total spin, it
is only coupled to the symmetric and antisymmetric states
with Stot = 1/2 or Stot = 2S − 1/2, respectively. This results
in two tunneling resonances. If the total spin of the ground
state differs from the minimal or maximal spin, as for ferro-
magnetic coupling of screened spins or in the half-integer-spin
phases, tunneling couples to additional states and thus leads to
further resonances as shown in Fig. 6. Corresponding spectral
functions and spectra are illustrated in Fig. 7.

B. Single-ion anisotropy

For strictly isotropic spin interactions, the ground and ex-
cited states are degenerate multiplets associated with different
spin projections of Stot. These degeneracies are lifted by
anisotropic couplings as illustrated in Figs. 7(a) and 7(b). This
leads to splitting of tunneling resonances and affects phase
diagrams. We illustrate the effects of magnetic anisotropy by

FIG. 7. Tunneling spectroscopy of spin-1 dimers in the doubly
screened region with isotropic exchange and ferromagnetic RKKY
coupling. (a) Spectral functions for different symmetries of the
RKKY coupling (offset for clarity). For Heisenberg RKKY coupling
(purple), the resonances originate from tunneling into the symmetric
and antisymmetric quartet states (+, 3

2 ). Tunneling into the symmet-
ric and antisymmetric doublet states (−, 1

2 ) is allowed, but beyond
the energy range shown here (see Fig. 6). Upon breaking spin rotation
symmetry, the symmetric and antisymmetric quartets split into two
peaks each. The odd-parity states remain degenerate even for XYZ
coupling as they are protected by time reversal symmetry. (b) Cor-
responding level schemes (not to scale). Parameters: EYSR = −t ,
� = 106t , V = 2�, Heisenberg: Ĵ = −diag(t, t, t )/

√
3, XXZ: Ĵ =

− diag(t/2, t/2, t/
√

2), and XYZ: Ĵ = − diag(0.4t, 0.58t, t/
√

2).
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FIG. 8. Phase diagrams for YSR dimers with higher spins S (see panels) including single-ion anisotropy. The phases are labeled by
(Ptot, Sz

tot, �), with � indicating the spatial parity of the dimer. Note that EYSR = Eo − Ee contains single-ion anisotropy, as defined in
Appendix B 1. [(a)–(c)] Easy-axis anisotropy D < 0. For ferromagnetic RKKY coupling, the phase diagrams are unchanged compared to
Fig. 5 for isotropic couplings. For antiferromagnetic RKKY coupling, the phase boundaries are affected for J � |D|. [(d) and (e)] Easy-plane
anisotropy D > 0. The phase diagrams are strongly modified for |J| � D with significant difference between integer and half-integer spins.
For integer spins, weak RKKY coupling favors the screened phase, while for half-integer spins it strongly favors the unscreened phase. Integer
spins have different spatial parity for the doubly screened phase, but equal parity in the unscreened phase. For half-integer spins, the roles are
reversed. Parameters: V = 2�, � = 106t , [(a)–(c)] D = −10t , and [(d)–(f)] D = 5t .

studying uniaxial single-ion anisotropy,

Hani = D
∑

j

(
Sz

j

)2
. (20)

For simplicity, we retain fully isotropic exchange coupling K
and RKKY interaction J . The results are only weakly affected
by moderate anisotropy of K̂ and Ĵ , in particular if the type of
anisotropy is consistent with the sign of D.

1. Easy-axis anisotropy

For D < 0 (easy-axis anisotropy), Hani favors the maximal
spin projections Sz

eff = ±S (unscreened monomer) and Sz
eff =

±(S − 1/2) (screened monomer) of the monomer spins. Large
and negative D frustrates the transverse part of the RKKY
interaction, so that the monomers act as effective Ising spins.
However, it is important to note that the magnitude of these
effective Ising degrees of freedom depends on the screening
state of the adatom spin. For this reason, easy-axis anisotropy
does not induce classical behavior of the dimer. (Classical be-
havior requires longitudinal exchange coupling K in addition.)

Figures 8(a)–8(c) shows corresponding phase diagrams,
which exhibit four distinct phases as for the fully isotropic
model. The YSR energy EYSR is now taken to include the

single-anisotropy, see Appendix B 1 for details. We observe
that the phase diagrams remain essentially unaffected by
the single-ion anisotropy D as long as the RKKY cou-
pling is ferromagnetic. In this case, the easy-axis anisotropy
merely selects the states with maximal spin projection Sz

tot
from the degenerate ground-state multiplets for isotropic
couplings. Thus the unscreened phase has Sz

tot = ±2S, the
singly screened phase has Sz

tot = ±(2S − 1/2), and the doubly
screened phase has Sz

tot = ±(2S − 1).
In contrast, easy-axis anisotropy changes the phase dia-

grams qualitatively for antiferromagnetic RKKY coupling.
We observe a change in slope of the crossover line, when the
anisotropy and RKKY energies become comparable. For large
RKKY coupling, J 
 |D|, the anisotropy is a small perturba-
tion. Then, the ground state has Stot = 0 and the crossover line
is given by Eq. (19) obtained in the absence of the anisotropy.
In the opposite limit of small RKKY coupling, J � |D|, the
monomers behave like Ising degrees of freedom, which min-
imize the total spin projection by antialigning, Sz

tot = 0. The
crossover line in this regime follows from the energy balance:

−JS2 = 2EYSR − J

(
1 + 1

2S + 1

)2(
S − 1

2

)2

, (21)
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where the last term on the right-hand side accounts for the
renormalization of the RKKY coupling for screened spins.
This yields a crossover line

EYSR = − JS

2S + 1

(
1 − 1

2S(2S + 1)

)
, (22)

with a steeper slope than at large J .
The monomer spin of S = 1 is a special case. While

the unscreened monomers act like Ising spins, the screened
monomers are effective spin-1/2 degrees of freedom and gain
energy through the transverse part of the RKKY interac-
tion regardless of the magnitude of J . For antiferromagnetic
RKKY interaction, the screened monomer spins couple into
a singlet. Accounting for the renormalization of the RKKY
coupling for screened spins, the gain in RKKY energy due
to singlet formation is ERKKY = −4J/3. Thus, for weak
RKKY coupling, the crossover line follows from the energy
balance

−J = 2EYSR − 4J

3
, (23)

which predicts a crossover line

EYSR = J

6
(24)

with a positive slope. Interestingly, in this regime, small
RKKY coupling favors the screened over the unscreened state.
We finally observe that surprisingly, ferromagnetic RKKY
interaction couples the screened monomers into the triplet
state with Sz

tot = 0. The screened monomers have Seff = 1/2
and the easy-axis anisotropy does not affect them directly.
However, unlike the Sz

tot = ±1 states, the Sz
tot = 0 state gains

energy by admixing the antialigned state of the unscreened
dimer.

2. Easy-plane anisotropy

The phase diagrams for easy-plane anisotropy in
Figs. 8(d)–8(f) show more substantial differences compared
to fully isotropic couplings. First, there are qualitative
differences between integer and half-integer S. For
half-integer spins, RKKY coupling favors the unscreened
state as for isotropic couplings. In contrast, for integer
spins, RKKY coupling initially favors the screened over the
unscreened states and the conventional behavior is recovered
only once the RKKY coupling J exceeds the anisotropy D
in magnitude. Second, we find that unlike in the isotropic
and easy-axis cases, the phase diagrams display only three
distinct phases. This results from the different behavior of
the phase boundaries at J = 0, which separates ferromagnetic
and antiferromagnetic phases. For easy-plane anisotropy,
the extent of this phase boundary depends on the nature of
the adatom spins S. For integer adatom spins, there is no
such phase boundary for unscreened adatom spins, while for
half-integer adatom spins, the phase boundary is absent for
screened spins.

The different behaviors of integer and half-integer
monomer spins S at weak RKKY coupling, |J| � |D|, can
be understood as follows. The easy-plane anisotropy favors
small spin projections of the monomers. In the unscreened
state, anisotropy favors Sz

eff = 0 for integer S and Sz
eff =

±1/2 for half-integer spins. The situation is reversed in the
screened state. When the single-ion anisotropy favors Sz

eff =
±1/2, the adatom acts effectively as a spin-1/2 degree of
freedom.

We first consider integer-spin monomers. In the unscreened
state, the monomers are in Sz = 0 states and the RKKY cou-
pling is ineffective. Correspondingly, there is a single Sz

tot =
0 phase regardless of the sign of the RKKY coupling. In
contrast, the screened monomers effectively act as spin-1/2
degree of freedom. The effective RKKY coupling written
in terms of these spin-1/2 degrees of freedom has an easy-
plane anisotropy (S = 1 monomers are again an exception),
so that the ground state has Sz

tot = 0 even for ferromagnetic
RKKY interaction. Importantly, however, there is still a phase
boundary at J = 0. While the phases are not distinguished by
fermion parity or spin projection, the phases differ in their
spatial parity � as defined in Eq. (8). Under spatial parity,
the spin ground state is symmetric for ferromagnetic RKKY
coupling and antisymmetric for antiferromagnetic coupling.
As � also interchanges the fermions, it further distinguishes
the unscreened and doubly screened phases in the case of
ferromagnetic RKKY coupling. Figure 8 explicitly displays
� for all phases.

For half-integer spins, the behavior of unscreened and
screened monomers are essentially reversed. This explains
the difference in the phase boundaries at J = 0. The dif-
ference in the sign of the slope of the phase boundary at
weak RKKY coupling can be understood as follows. There
is a gain in RKKY energy only when there is a residual
spin-1/2 degree of freedom. For integer spin, this is the case
for screened monomers and consequently, RKKY coupling
favors the screened phases. In contrast, it is the unscreened
monomers which retain a residual spin-1/2 degree of freedom
for half-integer spins and the RKKY coupling favors the un-
screened phases.

We finally note that strong RKKY coupling, |J| 
 |D|,
couples the monomer spins into a total spin Stot. In view
of the projection theorem, the monomer spins are effectively
proportional to Stot, which is integer for both the unscreened
and the fully screened phases. Then, the single-ion anisotropy
favors the Sz

tot = 0 state regardless of the sign of the RKKY
coupling.

C. Anisotropy and Dzyaloshinsky-Moriya interactions

Anisotropy of the exchange coupling K strongly affects the
phase diagram. As we have seen above, purely longitudinal
(Ising-like) coupling with K⊥ = 0 effectively corresponds to
a classical-spin model, leading to qualitatively distinct phase
diagrams from quantum spins. For spin-1/2 adatoms, the
classical spin model remains adequate only as long as the
transverse exchange coupling K⊥ is small compared to the
hybridization and RKKY coupling between the adatom spins.
As we show in Appendix B 4, for higher spins and ferromag-
netic RKKY coupling, the condition for classical behavior
is K⊥ � Kz. For antiferromagnetic RKKY coupling, J⊥ � Jz

has to be satisfied, in addition. Since anisotropy of K̂ is a con-
sequence of spin-orbit coupling and diminishes under Kondo
scaling, this is a rather stringent condition. Note that the zero-
bandwidth model can be viewed as the result of integrating
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FIG. 9. Classical spin alignment for different screening scenar-
ios in the presence of anisotropic coupling, easy-axis single-ion
anisotropy, and DM interaction, as outlined in Sec. III C. (a) Un-
screened spins S1 and S2 align along the z direction due to easy-axis
single-ion anisotropy D. (b) A screened spin (here S2) aligns perpen-
dicular to the z direction due to transverse exchange coupling K⊥,
which dominates over the single-ion anisotropy. The singly screened
case is favored by DM interactions with M lying in the xy plane.
(c) Two screened spins align in the xy plane (here antiferromag-
netically), associated with a gain in energy due to the transverse
RKKY coupling. Quantum effects modify the classical picture, see
Fig. 10.

out the quasiparticle continuum, so that its exchange coupling
should effectively account for Kondo renormalizations down
to scales of order �.

For xy-like exchange coupling, i.e., when K⊥ dominates
over Kz, the exchange coupling forces the effective adatom
spin Seff of the screened state into the xy plane. When this
occurs along with easy-axis single-ion anisotropy, screening
of the adatom spin is accompanied by a reduction of Sz

eff from
its maximal value (Sz

eff = ±S) in the unscreened state to its
minimal value (Sz

eff = 0 or ±1/2) in the screened state (see
Fig. 9 for an illustration). It was recently argued [17] that
this situation is realized for gadolinium adatoms (S = 7/2) on
a bismuth surface with proximity-induced superconductivity.
Moreover, it was argued that the dimer spins interact via
RKKY coupling dominated by J⊥ as well as Dzyaloshinsky-
Moriya coupling.

Corresponding phase diagrams (with Kz = Jz = 0) are
shown in Fig. 10. First consider Figs. 10(a)–10(c) for van-
ishing DM coupling. Interestingly, the transverse RKKY
coupling strongly favors the screened states for integer spins,
with the phase boundary being cusp-like at J⊥ = 0. In con-
trast, RKKY coupling still favors the unscreened state for
half-integer spins, with a smooth phase boundary at J⊥ = 0.

This stark difference between integer and half-integer spins
can be understood as follows. For integer adatom spin, the
effective spin of the screened monomer is half-integer, so that
the transverse exchange coupling K⊥ favors Sz

eff = ±1/2 and
the adatom acts as an effective spin-1/2 degree of freedom.
Transverse RKKY interaction of either sign couples these
effective spins into Sz

tot = 0 states already at linear order in J⊥.
In contrast, the transverse RKKY coupling couples the ground
state of the unscreened dimer only to excited states, so that
the RKKY energy is quadratic in J⊥. As a result, the gain in
RKKY energy is parametrically larger for and thus favors the
doubly screened dimer.

For half-integer spins, the situation remains unchanged for
the unscreened dimer. In contrast, the screened monomers are
now in a Sz

eff = 0 state. As a result, the transverse RKKY
coupling couples only to excited states of the monomer, and
the gain in RKKY energy is also quadratic in J⊥, leading to a
smooth boundary between unscreened and doubly screened
regions. The curvature of the boundary at small J⊥ can be
deduced by noting that the excited states lead to energy de-
nominators of order D for the unscreened monomer and of
order K⊥ for the screened monomer. This implies a larger
gain in RKKY energy for the unscreened dimer, so that the
phase boundary in Fig. 10(b) bends downward.2 Some of
the phase boundaries are again associated with changes in
the spatial parity �. For integer spins, the spatial parity of
the doubly screened phases depends on the sign of J⊥ and
there is a phase boundary at J⊥ = 0. There is no correspond-
ing phase boundary for the unscreened dimer. The roles of
screened and unscreened phases are reversed for half-integer
spins.

It is also evident in Figs. 10(a)–10(c) that the extent of
the singly screened phase is strongly reduced as the adatom
spin S increases. In the present situation, the projections
of the effective spins of unscreened and screened monomer
differ by more than 1/2 (spin-1 monomers are an excep-
tion). Since the intermonomer hopping t transfers only spin
1/2, hybridization splittings require increasingly high-order
processes as the monomer spin S increases. For the same
reason, the crossover between molecular and local singlets
for antiferromagnetic RKKY coupling becomes sharper with
increasing S.

As shown in Figs. 10(d)–10(f), a robust partially
screened phase appears for integer spins once we include
Dzyaloshinsky-Moriya coupling

HDM = M · (S1 × S2) (25)

with M = Mŷ lying in the xy plane. DM of this form was
argued to be relevant in the above-mentioned experiment by
Ding et al. [17]. Evidently, this DM coupling leads to a sub-
stantial gain in energy of the singly screened phase, where the
spins of the two monomers are effectively at right angles, but
no corresponding gains in the unscreened and doubly screened
regions, where the monomer spins effectively align in par-
allel. As a result, the partially screened phase can become

2We note that the energy balance inverts, when K⊥ � |D|S4.
Corresponding phase diagrams are included and discussed in Ap-
pendix B 5.
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FIG. 10. Phase diagrams for YSR dimers with transverse (xy) couplings K⊥ and J⊥, easy-axis anisotropy D, and DM interaction M.
[(a)–(c)] For vanishing DM interaction, the fermion parity Ptot , the spin projection Sz

tot , and the spatial parity � are good quantum numbers. For
integer spin, small RKKY coupling J⊥ � |D| favors the screened spin phases as expected from classical considerations, see Fig. 9. In contrast,
for half-integer spins the screened phase is suppressed. Note also the alternation in phase boundaries associated with changes in spatial parity
�. The singly screened phase (white) is increasingly suppressed for higher spins due to the different spin alignments of unscreened and
screened monomers, see Fig. 9. [(d) and (e)] For nonzero DM interaction with M = Mŷ orthogonal to the single-ion anisotropy, only Ptot and
the discrete spin rotation 	 remain good symmetries. DM interaction drastically enhances the singly screened phase (white) for integer spins,
while it merely shifts the phase boundary/crossover for half-integer spins. Parameters: V = 2�, � = 106t , D = −15t , [(a)–(c)] M = 0, and
[(d)–(f)] M = 5t .

the ground state over an extended parameter range, showing
that DM coupling provides an alternative mechanism for the
emergence of a singly screened phase. While this semiclas-
sical picture rationalizes the results for integer spins, a more
quantum mechanical understanding of the emergence of the
singly screened phase is needed for half-integer spins, see
Appendix B 5.

In the presence of DM interactions, neither the spin pro-
jection Sz

tot nor the spatial parity � are conserved quantum
numbers. There is, however, a discrete spin rotation symmetry

	 = exp
(
iπSy

tot

)
, (26)

which leaves both the single-ion anisotropy and the DM in-
teraction invariant. For Ptot = 1, the dimer is an integer spin
system and 	2 = 1, so that 	 has eigenvalues ±1. For Ptot =
−1, in contrast, the dimer has half-integer spin and 	2 = −1,
so that 	 has eigenvalues ±i. Figures 10(d)–10(f) label the
phases by the quantum numbers Ptot and 	.

It is interesting to distinguish more explicitly between clas-
sical and quantum aspects of the phase diagrams in Fig. 10. In
a classical treatment, one minimizes the energy as a function
of the classical spin configuration. In the absence of the DM
interaction and the hybridization t , the unscreened dimer has

energy

Eee = −2|D|S2 cos2 α − |J⊥|S2 sin2 α, (27)

where α is the angle of the adatom spins relative to the z axis.
Minimizing with respect to α predicts an abrupt transition
between spin polarizations along the z axis at small |J⊥| and
in the xy plane at large |J⊥|. In contrast, the doubly screened
dimer has spins that lie in the xy plane regardless of J⊥, so that
its energy equals

Eoo = 2EYSR − |J⊥|S2. (28)

Then the phase boundary follows from Eoo = Eee, which
yields

EYSR = 1
2 (−2|D| + |J⊥|)S2 cos2 α, (29)

with an abrupt transition between cos α = 1 at small J⊥ and
cos α = 0 at large J⊥. This is consistent with the initial
cusplike behavior of the phase boundaries at small J⊥, which
we find for integer adatom spins in Figs. 10(a) and 10(c).
However, the phase boundary of the classical phase diagram
saturates to a J⊥-independent value of EYSR for J⊥ beyond the
abrupt transition, while the phase boundary bends downward
at large J⊥ in the quantum phase diagram. This bending is
therefore a quantum effect, originating in the reduction of
the effective spin by screening. Moreover, the alternation in
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the phase diagrams between integer and half-integer spins is
specific to quantum spins. Interestingly, the phase diagram
for half-integer spins is distinctly different from the classical
phase diagram.

IV. CONCLUSIONS

Motivated by recent experiments, we have discussed
Yu-Shiba-Rusinov dimers of quantum spins. Both Kondo res-
onances and spin excitations of individual adatom spins show
that magnetic adatoms on superconductors act as quantum
spins. This contrasts with theoretical discussions of YSR
dimers, which focus on a description in terms of classical
spins. Moreover, the existing works on quantum YSR dimers
are limited to small adatom spins and do not account for
single-ion anisotropy or DM interactions, which are relevant
for the transition-metal and rare-earth systems used in many
of the experiments.

At first sight, one may expect that the physics of quantum
YSR dimers becomes more classical for larger impurity spins
or stronger (easy-axis) single-ion anisotropy. Remarkably, we
find that this is not the case and the qualitative differences
between the phase diagrams for classical and quantum spins
persist even in the limit of S → ∞. These differences are
rooted in the distinct screening properties of classical and
quantum spins. While in both cases, binding of a quasiparticle
induces a quantum phase transition with increasing exchange
coupling between adatom spin and substrate electrons, this
transition is associated with Kondo-like screening for quan-
tum spins only.

The screening of the adatom spins by bound quasiparticles
directly modifies the RKKY energy of the dimer. Since the
RKKY energy is typically larger for higher adatom spins,
one frequently finds that RKKY coupling stabilizes the un-
screened phases. In some cases, however, the RKKY coupling
can also stabilize the screened phases, for instance when easy-
plane single-ion anisotropy frustrates the RKKY coupling of
the unscreened phases. This example also shows that even
such gross features of the phase diagrams can depend on
whether the adatoms have integer or half-integer spins.

In the present paper, we have focused on illustrating basic
phenomena in quantum YSR dimers. Evidently, this system
has an exceedingly rich parameter space, and several aspects
are left for future work. For instance, we have restricted at-
tention to a single conduction-electron channel per magnetic
adatom. More generally, higher spins couple to multiple con-
duction electron channels, admitting for multistage screening
of the adatom spins. While coupling to multiple conduction
electron channels can be addressed within the zero-bandwidth
model employed here, there are also interesting aspects which
are beyond the reach of this approach. Most notably, this
concerns the spatial structure of the hybridized YSR wave
functions which are readily resolved in state-of-the-art exper-
iments.

Recent works have made proposals for qubits based on
YSR dimers [57,58]. It seems likely that a thorough theo-
retical understanding of such qubits would have to rely on a
description of the magnetic impurities in terms of quantum
spins. Moreover, possible implementations in transition-metal
or rare-earth systems require one to account for magnetic

anisotropy or noncollinear spin coupling as we have done
here.
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APPENDIX A: SPIN-1/2 ADATOMS

This Appendix discusses the zero-bandwidth model (see
also Refs. [4,54]) for spin-1/2 adatoms, see Eq. (1) for the
monomer and Eq. (5) for the dimer. Conceptually, the zero-
bandwidth model can be obtained by integrating out the
quasiparticle continuum. The parameters of the model should
thus be considered as effective parameters, which already ac-
count for renormalizations due to virtual processes involving
the quasiparticle continuum.

1. Spin-1/2 monomer

The lowest-energy state for even fermion parity is a direct
product of a free impurity spin |⇑ / ⇓〉 and the paired BCS
state |BCS〉 = (u + vc†

↓c†
↑) |0〉 with amplitudes

u2 = 1

2

(
1 + V√

�2 + V 2

)
, (A1a)

v2 = 1

2

(
1 − V√

�2 + V 2

)
. (A1b)

This state has energy

Ee = V −
√

�2 + V 2 (A2)

independent of the exchange coupling K .
For odd fermion parity, the lowest-energy state binds a

quasiparticle and has energy

Eo = V − 1
4 (Kz + 2K⊥) (A3)

independent of the pairing strength �. For purely longitudinal
(Ising-like) exchange coupling, the state is a doublet |⇑,↓〉,
|⇓,↑〉. For nonzero transverse coupling, there is a unique
singlet ground state

|s〉 = 1√
2

(|⇑,↓〉 − |⇓,↑〉), (A4)

corresponding to a screened adatom spin.
The quantum phase transition between even-fermion-

parity (weak coupling) and odd-fermion-parity (strong cou-
pling) ground states occurs when Eo = Ee. The energy of the
subgap YSR excitation

EYSR = Eo − Ee =
√

�2 + V 2 − 1
4 (Kz + 2K⊥) (A5)

vanishes at the quantum phase transition.

2. Spin-1/2 dimer

For isotropic couplings K = Kz = K⊥ and J = Jz = J⊥,
states can be labeled by the total fermion parity Ptot as well
as the total spin Stot and its projection Sz

tot. Below, we measure
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dimer energies relative to the energy of two uncoupled and
unscreened monomers.

For ferromagnetic coupling, the unscreened phase (Ptot =
1, Stot = 1) has energy − 1

4 J due to RKKY coupling of the
adatom spins into a molecular triplet. The doubly screened
phase (Ptot = 1, Stot = 0) does not gain RKKY energy and has
energy 2EYSR. These energies are unaffected by the hybridiza-
tion t . Thus the phase boundary at large and negative RKKY
coupling follows EYSR = J/8.

For antiferromagnetic coupling, we first ignore the hy-
bridization t . Then, the unscreened ground state (Ptot =
1, Stot = 0) has energy − 3

4 J due to RKKY coupling into a
molecular singlet. The doubly screened state has the same
quantum numbers and energy 2EYSR independent of the
RKKY coupling. This leads to a crossover line at EYSR =
−3J/8. The width of the crossover is governed by the nonzero
matrix element of the hybridization t between these states,

�̃ =
√

2tuv, (A6)

which can be interpreted as an effective nonlocal singlet
pairing [4]. In the presence of t , the ground state for antiferro-
magnetic RKKY coupling is thus a superposition of the local
and molecular singlets with energy

EYSR − 3

8
J −

√
�̃2 +

(
EYSR + 3

8
J

)2

. (A7)

The odd-parity phase (Ptot = −1, Stot = 1/2) derives from
the hybridization of the two configurations with a screened
and an unscreened monomer into symmetric and antisymmet-
ric superpositions. The corresponding splitting is equal to [4]

2t̃ = t (u2 − v2). (A8)

Thus the lower-energy superposition has energy EYSR − t̃ .
The expressions for the ground-state energies of the vari-

ous phases can be used to find analytical results for the phase
boundaries seen in Fig. 1(b). We also note that these analytical
results can be readily extended to anisotropic exchange or
RKKY coupling. The condition mentioned in Sec. II B for the
applicability of the classical phase diagram follows from such
a calculation.

APPENDIX B: HIGHER-SPIN ADATOMS

1. Monomers

For isotropic exchange coupling and in the absence of
uniaxial anisotropy, the lowest-energy state with even fermion
parity has the same energy Ee as for the spin-1/2 dimer, see
Eq. (A2). The lowest-energy state with odd fermion parity has
energy

Eo = V − S + 1

2
K. (B1)

This yields Eq. (11) for the YSR energy EYSR = Eo − Ee.
For anisotropic exchange couplings K⊥ �= Kz or with uni-

axial anisotropy D, fermion parity and Sz
eff are conserved

quantities. The low-energy states of the unscreened monomer

have energy (assuming large � and K , as usual)

Ee
(
Sz

eff

) = V −
√

�2 + V 2 + D
(
Sz

eff

)2
. (B2)

For D < 0, the lowest-energy state has maximal spin pro-
jection Sz

eff = ±S, with energy Ee = Ee(±S). For D > 0, the
lowest-energy state has minimal spin projection, i.e., Sz

eff = 0
for integer S [lowest-energy state with energy Ee = Ee(0)]
and Sz

eff = ±1/2 for half-integer S [lowest-energy state with
energy Ee = Ee(1/2)]. For the screened monomer, the states
are spanned by the basis |S, Sz〉 ⊗ |σ 〉. By conservation of Sz

eff,
the Hamiltonian couples only states |∗〉 S, Sz

eff − 1
2 ⊗ |↑〉 and

|∗〉 S, Sz
eff + 1

2 ⊗ |↓〉 where −S + 1/2 � Sz
eff � S − 1/2. They

are coupled by

h
(
Sz

eff

) =V − Kz

4
+ D

[(
Sz

eff

)2 + 1

4

]

+ 1

2

[
(Kz − 2D)Sz

effρ3 + K⊥α
(
Sz

eff

)
ρ1

]
, (B3)

where ρi are Pauli matrices acting in this subspace and
we define α(Sz

eff ) = √
S(S + 1) − (Sz

eff )
2 + 1/4. Diagonaliz-

ing h(Sz
eff ) yields the low-energy eigenstates∣∣Sz

eff

〉 = d− |∗〉 S, Sz
eff − 1

2 ⊗ |↑〉 − d+ |∗〉 S, Sz
eff + 1

2 ⊗ |↓〉 ,

(B4)
with energy

Eo
(
Sz

eff

) =V − Kz

4
+ D

((
Sz

eff

)2 + 1

4

)

− 1

2

√
(Kz − 2D)2

(
Sz

eff

)2 + K2
⊥α2

(
Sz

eff

)
(B5)

and amplitudes

d2
±
(
Sz

eff

) = 1

2
± (Kz − 2D)Sz

eff

2
√

(Kz − 2D)2
(
Sz

eff

)2 + K2
⊥α2

(
Sz

eff

) . (B6)

We ignore extremal Sz
eff, i.e., states |S, S〉 ⊗ |↑〉 and |S,−S〉 ⊗

|↓〉, as they do not contribute at low energy. The lowest-
energy state is Eo = minSz

eff
Eo(Sz

eff ). We again define EYSR =
Eo − Ee.

2. Phase diagrams at small |J|
There are subtleties for weak RKKY coupling J , which

are briefly mentioned in the main text. In general, both the
hybridization t̃ and the pairing �̃ depend on Stot. For instance,
in the unscreened phases, �̃ will vanish for sufficiently strong
ferromagnetic RKKY coupling (maximal Stot), but is gener-
ally nonzero for antiferromagnetic coupling (minimal Stot).
Close to J = 0, however, it is not a priori clear which Stot

minimizes the total energy. t̃ favors a partially screened phase,
J favors ferromagnetic or antiferromagnetic coupling depend-
ing on its sign, and the singlet pairing �̃ favors a singlet phase.
The results of this competition are illustrated in Fig. 11 for
S = 2. Note that these phase diagrams show a considerably
smaller J interval than the phase diagrams in the main text.

The phase diagram depends sensitively on the relative mag-
nitude of t̃ and �̃ as controlled by the ratio V/�. As we have
seen in the main text, the available spin is typically maximized
(minimized) for ferromagnetic (antiferromagnetic) RKKY
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FIG. 11. Phases of a S = 2 YSR dimer with isotropic exchange coupling and weak isotropic RKKY interaction J . (a) and (c) show number
of bound quasiparticles F and (b) and (d) show total spin Stot as a function of J and EYSR. Parameters: � = 106t , [(a) and (b)] V = 20�, and
[(c) and (d)] V = 0.5�.

coupling for � ∼ V (so that t̃ ∼ �̃) and the phase boundaries
between ferromagnetic and antiferromagnetic phases occur at
J 
 0.

In contrast, for V 
 � and thus t̃ 
 �̃ [Figs. 11(a) and
11(b)], the singly screened phase extends into the region of
antiferromagnetic coupling J (up to J ∼ t̃). In this region,
there is a cascade of transitions from Stot = 2S − 1/2 all the
way down to Stot = 1/2 in steps of one. (Some steps would
only be apparent with higher resolution.)

For � 
 V and thus �̃ 
 t̃ [Figs. 11(c) and 11(d)], the
doubly screened phase Stot = 2S − 1 as well as the antiferro-
magnetic phase gain energy via �̃, reducing the extent of the
singly screened phase.

3. Effective RKKY coupling

Unlike for spin-1/2 adatoms, the RKKY coupling of higher
spins is also nonzero for the (partially) screened states, in
which the monomers now have a nonzero effective spin. To
calculate the RKKY energy, we note that in the screened state,
the matrix elements of the adatom spin S are proportional to
the matrix elements of the effective adatom spin Seff . As a
consequence of the projection theorem, the constant of pro-
portionality depends only on the magnitude of the effective
spin Seff defined in Eq. (2), so that we can replace

S → cSeff (B7)

in the RKKY interaction,

S1 · Ĵ · S2 → c1c2Seff,1 · Ĵ · Seff,2. (B8)

The constant c j is equal to unity if the monomer is in
the unscreened state with Seff = S and c j = 1 + 1

2S+1 if the
monomer is in the screened state with Seff = S − 1/2. In
computing the RKKY coupling, we can then work with the
effective adatom spin provided that we use the renormalized
RKKY coupling c1c2Ĵ .

It remains to compute c in the screened state. The projec-
tion theorem gives

〈
Sz

eff

∣∣ S
∣∣(Sz

eff

)′〉 =
〈
Sz

eff

∣∣ S · Seff

∣∣Sz
eff

〉
(
S − 1

2

)(
S + 1

2

) 〈
Sz

eff

∣∣ Seff

∣∣(Sz
eff

)′〉
, (B9)

where |Sz
eff〉 denotes the projections of the effective spin Seff

for Seff = S − 1/2. Since S · Seff = (S2
eff + S2 − s2)/2, the

prefactor can be evaluated to give

〈
Sz

eff

∣∣ S
∣∣(Sz

eff

)′〉 =
(

1 + 1

2S + 1

) 〈
Sz

eff

∣∣ Seff

∣∣(Sz
eff

)′〉
(B10)

as advertised above.

4. Crossover between Ising and Heisenberg exchange

As the ratio Kz/K⊥ increases, the phase diagrams should
become more and more classical. We probe this crossover in
the limit of large S by calculating how the phase boundaries
and crossover lines in Fig. 5 are modified when Kz/K⊥ is
different from unity. We focus on dominantly longitudinal ex-
change coupling, Kz/K⊥ > 1, so that the screened monomers
have maximal spin projection Sz

eff = ±(S − 1
2 ). For simplic-

ity, we assume Kz − K⊥ 
 t, |J| and work to leading order in
the limit S 
 1, which is expected to be most classical.

First consider ferromagnetic RKKY coupling, for which
we find the RKKY energies

ERKKY 
 J

⎧⎨
⎩

S2 Sz
tot = ±2S,

S(S − d2
−) Sz

tot = ±(2S − 1
2 ),

(S − d2
−)2

Sz
tot = ±(2S − 1).

(B11)

Here, d− = d−(S − 1
2 ) is given by Eq. (B6) with D = 0,

which gives d2
− 
 K2

⊥/(2SK2
z ) for large S. By equating

energies, we find that all three phase boundaries on the fer-
romagnetic side of the phase diagram follow

EYSR 
 JSd2
− 
 J

2

K2
⊥

K2
z

. (B12)

Thus the phase boundary becomes classical only in the limit
K⊥ � Kz. This is in contrast to spin−1/2 dimers, for which
the classical behavior requires the even stronger condition
K⊥ � t, J . For antiferromagnetic RKKY coupling, the un-
screened dimer gains RKKY energy −JS(S + 1), compared
to −J (S − d2

−)2 for the doubly screened dimer. This gives a
crossover line

EYSR 
 −JS
(

1
2 + d2

−
) 
 −JS/2 (B13)

in the limit of large S. Thus, for Heisenberg RKKY inter-
action, the slope of the crossover line is independent of the
anisotropy of the exchange coupling. One finds classical be-
havior only when Jz 
 J⊥ in addition to Kz 
 K⊥.
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FIG. 12. Phase diagrams for a spin-3/2 dimer with transverse (xy) couplings K⊥ and J⊥, easy-axis anisotropy D, and DM interaction M,
see Sec. III C, in the intermediate regime S|D| � K⊥ � 4S3|D|. (a) M = 0. Note that in contrast to Fig. 10(b) transverse RKKY coupling
stabilizes the doubly screened dimer as the energy balance inverts for K⊥ � 4S4|D|. (b) M = 3t . In contrast to Fig. 10(e) a singly screened
phase (white) arises. This requires K⊥ � 4S3|D|, see Appendix B 5. Parameters: � = 200t , V = 2�, and D = −15t .

5. DM interaction

We complement the semiclassical argument for the stabi-
lization of the singly screened phase due to DM interactions in
Sec. III C by a quantum-mechanical calculation. To this end,
we estimate the energy gain due to the DM interaction in the
various phases at small J⊥.

First consider integer S, so that unscreened monomers
have Sz

eff = ±S and screened monomers Sz
eff = ±1/2. In

the unscreened phase, the DM interaction M(Sz
1Sx

2 −
Sx

1Sz
2) lowers the energy only in quadratic order in

M. In the doubly screened phase, the DM interaction
M(Sz

1Sx
2 − Sx

1Sz
2) couples dimer states with Sz

tot = ±1 (par-
allel monomer spins) to states with Sz

tot = 0 (antiparal-
lel monomer spins). The corresponding matrix elements
involve

〈∗| 1
2 , 1

2 Sz
1Sx

2 |∗〉 1
2 ,− 1

2 = 1
4

√
S(S + 1) ∼ S. (B14)

These results should be contrasted with the fact that in the par-
tially screened phase, the DM interaction couples monomer
states with Sz

tot = ±(S + 1
2 ) to states with Sz

tot = ±(S − 1
2 ),

with corresponding matrix elements

〈∗| S, 1
2 Sz

1Sx
2 |∗〉 S,− 1

2 = 1
2 S

√
S(S + 1) ∼ S2. (B15)

Thus the gain in DM energy scales as MS2 in the singly
screened phase, compared to MS for the doubly screened
phase and a yet smaller result in the unscreened phase. This
explains the emergence of the odd-parity phase due to DM
interactions in Figs. 10(d) and 10(f) for integer spin.

The situation is more subtle for half-integer S. Now, the
screened monomers have Sz

eff = 0. Thus the DM interaction
only couples to excited states involving monomer energies
∼|D| (for unscreened monomers) or ∼K⊥ (for screened
monomers). Correspondingly, the gain in DM energy approx-
imately vanishes in the doubly screened phase and equals
−M2S2/2|D| in the unscreened phase. This should be com-
pared to a gain in DM energy of −2M2S5/K⊥ in the singly
screened phase. Thus there is no singly screened phase when
the exchange coupling K⊥ dominates over the other energy
scales, as is the case in Fig. 10(e). If, however, 4S3|D| �
K⊥ 
 S|D|, a singly screened phase forms at small J⊥, as
shown in Fig. 12(b).
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