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Exceptional points (EPs) are degeneracy of non-Hermitian Hamiltonians, at which the eigenvalues, along with
their eigenvectors, coalesce. Their orders are given by the Jordan decomposition. Here, we focus on higher-order
EPs arising in fermionic systems with a sublattice symmetry, which restricts the eigenvalues of the Hamitlonian
to appear in pairs of {E ,−E}. Thus a naive prediction might lead to only even-order EPs at zero energy.
However, we show that odd-order EPs can exist and exhibit enhanced sensitivity in the behavior of eigenvector
coalescence in their neighborhood, depending on how we approach the degenerate point. The odd-order EPs can
be understood as a mixture of higher- and lower-valued even-order EPs. Such an anomalous behavior is related
to the irregular topology of the EPs as the subspace of the Hamiltonians in question, which is a unique feature
of the Jordan blocks. The enhanced eigenvector sensitivity can be described by observing how the quantum
distance to the target eigenvector converges to zero. In order to capture the eigenvector coalescence, we provide
an algebraic method to describe the conditions for the existence of these EPs. This complements previous studies
based on resultants and discriminants, and unveils heretofore unexplored structures of higher-order exceptional
degeneracy.
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I. INTRODUCTION

Exceptional degeneracy is a phenomenon where the eigen-
values of a matrix cross each other and their eigenvectors
collapse simultaneously, losing the linear independence [1–5].
The simplest example is when two eigenvalues and their
corresponding eigenvectors coalesce, leading to an excep-
tional point (EP) of second order. Such singularities can
arise in the context of a great variety of physical prob-
lems, such as dissipative processes captured by non-Hermitian
Hamiltonians [6–23] and topological phase transitions in chi-
ral Hamiltonians [24,25]. Their singular behavior manifests
itself in enhanced sensitivity and thus has potential applica-
tions in detection and sensors [26–32].

An nth-order exceptional point (EPn) [33–40] appears
when the Jordan decomposition of the matrix contains an
n-dimensional (with n > 1) Jordan block Jn(E ) along its diag-
onal, at the eigenvalue E . Near an EP2, the dispersion varies
as a square root, viz., δE ∼ √|δq|, where |δq| characterizes
the deviation from the EP in the momentum space spanned by
the vector q. The derivative of the dispersion diverges at the
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EP, implying that the change in eigenvalue becomes more and
more sensitive as we approach the EP. Such a sensitivity is
further enhanced at a higher-order EPn (n > 2), because now
an nth-order root sensitivity (i.e., δE ∼ |δq|1/n) can appear
in the vicinity of the EPn for generic situations [37,38,40].
The eigenvalue overlap at higher-order EPs can be captured
by equations involving discriminants [40] or resultants [38].
However, another important and unique property of an EP,
namely the coalescence of eigenstates, remains elusive under
this approach. Moreover, the space spanned by the exceptional
degeneracy is not a closed subspace of the parameter space of
the corresponding matrix [41]. In fact, this space has a finer
topological structure beyond the solutions captured by contin-
uous functions (such as the discriminants and resultants) of
the matrix.

In this paper, we use an algebraic method to classify
the higher-order EPs according to their eigenvector coa-
lescence. We focus on the nature of the higher-order EPs
that can appear in two-dimensional (2D) systems in the
presence of a sublattice symmetry [cf. Fig. 1(a)] and de-
termine how their eigenstates collapse. The main results
are summarized in Fig. 1(b) and Table I. Remarkably, ac-
cording to our classification, all EPn’s can be categorized
into two types. A regular EPn exhibits a typical n-fold
eigenvector coalescence, while a mixed-type EPn can ex-
hibit different types of eigenvector coalescence depending
on how our Hamiltonian is approaching it in the parameter
space.
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FIG. 1. (a) Decorated honeycomb lattice model of fermions with N = 3 flavors [45], also dubbed as the “Yao-Lee” model (see Appendix E).
The system has a sublattice symmetry when only nearest-neighbor hoppings are included in the Hamiltonian. The fermions are labeled by their
sublattice indices A and B, together with their flavor index α ∈ {1, 2, 3} on each sublattice site. (b) The coalescence of eigenvectors for a
four-band model near a regular EP3 (blue oval disk) and a mixed-type EP3 (red oval disk). Near the regular EP3, three eigenvectors out of
the four are collapsing to a single eigenvector at the EP. Near the mixed-type EP3, how the eigenvectors coalesce strongly depends on the
path chosen to approach the EP. There can be twofold, threefold, and fourfold eigenvector coalescence for the three different paths indicated
by the dash-dotted, solid, and dashed lines, respectively. When sublattice symmetry is imposed, the threefold eigenvector coalescence is
forbidden.

The model is implemented by considering N flavors of
fermions, living on a bipartite lattice, whose creation oper-
ators are given by cα

1
† and cα

2
†(α ∈ [1, N]). The degrees of

freedom for the two sublattices have been distinguished by the
subscripts 1 and 2. The sublattice symmetry ensures that the
Hamiltonian H obeys P H P = −H [42,43], with the operator

P acting as cα
1

P−→ cα
1 and cα

2
P−→ −cα

2 . This is a very natural
condition when the Hamiltonian contains only hoppings from
sublattice 1 to sublattice 2. Examples of such Hamiltonians
include solvable spin liquid models, such as the Kitaev spin
liquid [44] (corresponding to N = 1) and the Yao-Lee SU (2)
spin liquid [45] (corresponding to N = 3). In Hermitian sys-
tems, the sublattice symmetry can be viewed as the product of
time-reversal transformation and particle-hole transformation
of fermions, which translates to a chiral symmetry [42]. In

the momentum space, a generic non-Hermitian Hamiltonian
with the sublattice symmetry can be brought to the block
off-diagonal form:

H (q) =
(

0 i B(q)

−i B′(q) 0

)
, (1)

where B and B′ are N × N matrices. In order to demonstrate
our results in closed analytical forms, we will focus on the
N = 2 case, where the system can be described by 4 × 4
matrices.

We will characterize our EPs based on the nilpotency of
Jordan blocks in the generalized eigenspace. To explain the
terminologies, let us consider the example of an EP3. Near
an EP3, we have a three-dimensional Jordan block and the

TABLE I. Explanation of the conditions for the existence of different types of EPs when N = 2. The forms of the matrices B and
B′ at the degenerate point q = q∗ are shown. Since there is an obvious symmetry under the exchange B ↔ B′, every case displayed in
the table has a B ↔ B′ partner. The parameters in the bottom row need to further satisfy (1) b′ 	= 0 in the first column, (2) det(B′) 	=
0 and B 	= 0 in the second column, and (3) |u1|2 + |u2|2 	= 0, |p1|2 + |p2|2 	= 0, |p′

1|2 + |p′
2|2 	= 0, and p′

1 p2 − p′
2 p1 	= 0 in the third

column.

Different types of EPs for N = 2

SU (2) doublet of EP2 EP4 EP3

B = 0, B′ ∝ I dim(ker B) + dim(ker B′) = 1, dim(ker B) = dim(ker B′) = 1,
ker(B B′) = im(B B′) im (B′) = ker(B), im (B) 	= ker(B′)

H (q∗) = diag{J2(0), J2(0)} H (q∗) = J4(0) H (q∗) = diag{J3(0), 0}

B =
(

0 0
0 0

)
, B′ =

(
b′ 0
0 b′

)
B′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
b′

1 b′
2

b′
3 0

)
, when B =

(
0 0

0 b4

)

(
b′

1 b′
2

0 b′
4

)
, when B =

(
0 b2

0 0

)
B =

(
p1 u1 p1 u2

p2 u1 p2 u2

)

B′ =
(

u2 p′
2 − u2 p′

1

−u1 p′
2 u1 p′

1

)
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Hamiltonian can be expressed as

V H (q∗)V −1 = diag{J3(E1), E2, E3, . . . }

=

⎛
⎜⎜⎜⎜⎜⎜⎝

E1 1 0 0 0 . . .

0 E1 1 0 0 . . .

0 0 E1 0 0 . . .

0 0 0 E2 0 . . .

0 0 0 0 E3 . . .
...

...
... 0 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2)

where E1 is a threefold degenerate eigenvalue with only
one linearly independent eigenvector proportional to e1 =
V (1, 0, . . . )T . The generalized eigenspace LE1 of E1 in-
cludes two other vectors, viz., e2 = V (0, 1, 0, . . . )T and
e3 = V (0, 0, 1, 0, . . . )T , such that (H − E1) is nilpotent in
LE1 . In other words, (H − E1) e3 = e2, (H − E1) e2 = e1, and
(H − E1) e1 = 0. Intuitively, this EP3 is interpreted as the
singular point where the three eigenvectors of E1 collapse into
one. According to the Jordan decomposition, we denote the
point q = q∗ as a simple EP3, if all the Jordan blocks belong-
ing to the other eigenvalues E2, E3, . . . are trivial (i.e., one di-
mensional). If the Hamiltonian has more than one eigenvalue
whose Jordan block is nontrivial (i.e., has dimension greater
than unity), we denote the point q = q∗ as a compound EP.

The paper is organized as follows. In Sec. II, we discuss the
sublattice symmetry and the nature of the EPs, which are the
main results of this paper. Section III focuses on the properties
of various types of EPs and the analytical solutions of eigen-
vectors in their neighborhoods. In Sec. IV, we use a quantum
distance to characterize the eigenvector folding near an EP
and explain the enhanced eigenvector sensitivity in terms of
the unique subspace topology for non-Hermitian matrices.
Section V deals with some explicit realizations of the systems
discussed and also touches upon the predictions for generic
N values. We conclude with a summary and outlook
in Sec. VI. Appendices A–E show the details of the
mathematical derivations of various results mentioned in
the main text.

II. SUBLATTICE SYMMETRY AND THE EP
PARAMETER SPACE

The sublattice symmetry makes the characteristic polyno-
mial of the Hamiltonian even in the eigenvalue E , as captured
by the relation det(E − H ) = det[P (E − H ) P] = det(E +
H ), where we use the fact that the dimension of H is even.
The eigenvalues of H thus always come in pairs of {E ,−E}.
A natural choice of basis under the sublattice symmetry is to
group the upper and lower components of the eigenstates as ψ

and χ , respectively. With this choice, the eigenvalue problem
is reduced to the following equations:

E2 ψ (q) = B(q) · B′(q) ψ (q), E χ (q) = −i B′(q) ψ (q),

E2 χ (q) = B′(q) · B(q) χ (q), E ψ (q) = i B(q) χ (q).
(3)

The above indicates that if (ψT , χT )T is an eigenvector for
the eigenvalue E , (ψT , −χT )T is an eigenvector for −E .
Besides eigenvalues, the sublattice symmetry also imposes the

constraint that nondegenerate eigenvectors should appear in
pairs.

The above pairing relation for eigenvectors at E and −E
also applies to generalized eigenvectors, which include other
linearly independent vectors in the generalized eigenspaces
LE and L−E , apart from the eigenvectors. If we take two
generalized eigenvectors (ψ1, χ1) and (ψ2, χ2), correspond-
ing to an eigenvalue E having a nontrivial Jordan block, then
(H − E ) (ψT

2 , χT
2 )T = (ψT

1 , χT
1 )T is also in the generalized

eigenspace of E . By applying P to this equation, one can
verify that (H + E ) (−ψT

2 , χT
2 )T = (ψT

1 , −χT
1 )T . Therefore,

if {(ψT
1 , χT

1 )T , (ψT
2 , χT

2 )T , (ψT
3 , χT

3 )T , . . . } generate the
generalized eigenspace LE , the eigenvectors {(ψT

1 , −χT
1 )T ,

(−ψT
2 , χT

2 )T , (ψT
3 , −χT

3 )T , . . . } generate the generalized
eigenspace L−E .

According to the above analysis, the degeneracy of the sys-
tem should be distinguished depending on whether it involves
a zero or nonzero eigenvalue E as follows.

(1) If all the eigenvalues are nonzero (i.e., E 	= 0), the
lower component is linearly related to the upper component
as χ = −i B′(q) ψ (q)/E . The problem is then entirely deter-
mined by the 2 × 2 matrix B(q) · B′(q). If E is an eigenvalue
where two eigenvectors coalesce at the momentum q = q∗,
then −E shows an identical behavior. Hence the exceptional
degeneracy for E 	= 0 must be a compound EP, always ap-
pearing as a doublet of EP2’s.

(2) If E = 0 is an eigenvalue with algebraic multiplicity l ,
the corresponding eigenvector is obtained from the kernels of
the two matrices, i.e., those ψ and χ which satisfy B(q) χ = 0
and B′(q) ψ = 0. The eigenvectors are given by (ψT , 0)T and
(0, χT )T . Assuming that the numbers of solutions to the two
equations are dim(ker B) = m and dim(ker B′) = n, respec-
tively, we can construct (m + n) distinct eigenvectors. Hence
the order of the EP can range from 2 to (l + 1 − m − n).

From the two possible cases, we find that the E = 0 situ-
ation gives us the richest EP structure and hence this will be
the focus of the rest of this paper. Denoting the eigenvalues of
B(q) · B′(q) for N = 2 as λ, the dispersion can be generically
written as λ ∼ |δq| or λ ∼ |δq|1/2, in the vicinity of the EP,
where δq = q − q∗. According to Eq. (3), the dispersion then
takes the form E ∼ |δq|1/2 or E ∼ |δq|1/4.

After defining the model, our goal is to work out the
Hamiltonian along with the eigenvectors at E = 0, as well
as the nontrivial generalized eigenspace L0. At an nth-order
EP, a series of vectors {e0, e1, e2, . . . , en} satisfies the chain
equations H ej = e j−1, with e0 denoting the null vector and
e1 the eigenvector (for E = 0). When there is no symmetry,
the corresponding parameter space of the Hamiltonian, de-
noted by EPn, can be figured out easily using the standard
methods [41] (cf. Appendix C). However, in the presence
of sublattice symmetry, employing the standard formalism
usually becomes complicated, because it is difficult to find
out all the matrices that commute with both the Jordan de-
composition and the symmetry transformation. To avoid this
issue, we instead employ the decomposition of each eigenstate
as e j = (ψT

j , χT
j )T , such that the condition for the exis-

tence of a higher-order EP simplifies to (i B χ j,−i B′ ψ j ) =
(ψ j−1, χ j−1). As we have already shown that e1 is related to
the kernels of B and B′, the chain equations can be solved step
by step. The condition for the existence of an EP requires a
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FIG. 2. Real parts of the eigenvalues E for the cases of different
types EPs when N = 2. (a) Re[E ] for a doublet of EP2’s, where each
eigenvalue is doubly degenerate. (b) Re[E ] for an EP4, where all
different energy eigenvalues coalesce at one singular point. (c) Re[E ]
for an EP3, for which the eigenvectors are sensitive to how the point
of singularity is approached in the Brillouin zone. We choose the EP
to be anisotropic. The scaling of E around the EP can take different
forms along different directions.

series of relations between the images {im(B), im(B′)} and
the kernels {ker(B), ker(B′)}. From these algebraic relations,
we can explicitly work out EPn. The results are summarized
in Table I (with the derivation shown in Appendix A). We
can clearly infer that the results in Table I cannot be obtained
from solutions of some simple continuous equations derived
from the Hamiltonian. Hence a non-Hermitian system ex-
hibits a much richer structure for degeneracies, compared to a
Hermitian degeneracy, as observed in the case of no symmetry
[41].

III. EIGENVECTOR STRUCTURES OF DIFFERENT TYPES
OF EPS FOR SU (2)

In the following subsections, we discuss the properties of
various possible EPn’s in great detail, especially focusing on
the analytic solutions for the eigenvectors. The system with
N � 2 can host both EP2’s and higher-order EPs, which we
discuss below on a case-by-case basis for N = 2. We denote
the location of an EP by q = q∗ and use δq = q − q∗ to
parametrize the momentum coordinates in the vicinity of this
point. The angle between δq and the qx axis is denoted by
θ . In other words, near the degenerate point, we parametrize
the momentum by δq = |δq|(cos θ x̂ + sin θ ŷ). The real parts
of the eigenvalues around various kinds of EPs are shown
schematically in Fig. 2. The explicit derivations for the eigen-
vectors of the higher-order EPs have been worked out in
Appendix B.

A. Lowest-order EPs

EP2’s are obtained where there is an SU (2) symmetry
relating the two flavors of fermions. Hence there must be a

2 × 2 sub-Hamiltonian that describes a single fermion flavor
and is similar to a 2D Jordan block at the EP. The full Hamil-
tonian in Eq. (1) at q = q∗ is therefore similar to a matrix
with two J2(0) Jordan blocks in the diagonal: V H (q∗)V −1 =
diag{J2(0), J2(0)}. On the other hand, the SU (2) symme-
try among the two fermion flavors requires the off-diagonal
blocks, B(q) and B′(q), to be proportional to the identity
matrix. Hence, at q = q∗, B(q∗) = 0 (also see the first column
of Table I). This is a doublet of EP2’s and, to leading powers
in δq, the off-diagonal matrices can then be approximated as

B(q) � v(θ ) |δq| I2, −i B′(q) � c I2, (4)

where c is a constant. Without any loss of generality, we
can parametrize v(θ ) = vx cos θ + i vy sin θ ,1 with vx and vy

being its real and imaginary parts, respectively. The eigen-
values of the resulting Hamiltonian are ±√

c v(θ ) |δq|, each
having a twofold degeneracy. The four eigenvectors around a
doublet of EP2’s are given by (±√|δq|/v(θ ), 0, 1, 0)T and
(0, ±√|δq|/v(θ ), 0, 1)T . They coalesce into two linearly
independent vectors as |δq| → 0. This serves as a typical ex-
ample of a compound EP, with two EP2’s appearing at δq = 0,
because each fermion flavor corresponds to a 2D Jordan block
at q = q∗.

B. Highest-order EPs

The system supports higher-order EPs once we couple the
two different fermion flavors together and break the SU (2)
symmetry. EP4’s are the highest-order EPs that can appear,
because we have a four-band system.

Because of the sublattice symmetry, the eigenvalues come
in pairs of {E ,−E}—this implies that the EP4 can only appear
at E = 0. Since we require all the eigenvectors to collapse
into one at the EP4, with E = 0 being a fourfold degener-
ate eigenvalue, this brings about several restrictions. First of
all, λ = 0 must be a twofold degenerate eigenvalue of the
2 × 2 matrix B(q∗) · B′(q∗). Secondly, this matrix product
can have only one linearly independent eigenvector. Follow-
ing the discussion in Sec. II, the zero-energy eigenvectors
of the Hamiltonian are given by the kernels of B and B′.
The single-eigenvector condition thus requires that the total
dimension of the kernels, dim[ker B(q∗)] + dim[ker B′(q∗)],
be equal to 1. Without any loss of generality, we can as-
sume dim[ker B(q∗)] = 1 and dim[ker B′(q∗)] = 0. If we
denote the zero-energy eigenstate of B(q∗) as χ1, the four-
dimensional generalized eigenspace L0 of H (q∗) has the first
vector e1 proportional to (0, χT

1 )T . The details of sorting
out this generalized eigenspace have been explained in Ap-
pendix A.

The EP4 Hamiltonian at q∗ is similar to a four-dimensional
Jordan block, i.e., V H (q∗)V −1 = J4(0). We present a con-
crete example, which follows the forms shown in the second
column of Table I, by turning on the minimal number of

1One can perform a linear coordinate transformation (δqx, δqy ) →
(δq′

x, δq′
y ), such that B(q) → B(q′) � I2 ⊗ v′ δq′ is holomorphic in

the complex coordinate defined as δq′ ≡ δq′
x + i δq′

y.
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non-Hermitian hoppings. To leading power in |δq|,

B(q∗ + δq) �
(

v1(θ ) |δq| b2

0 v4(θ ) |δq|
)

,

B′(q∗ + δq) �
(

b′
1 0

v′
3(θ ) |δq| b′

4

)
, (5)

where b j and b′
j are constants, and v j (θ ) and v′

j (θ ) are func-
tions of the angle arg(δqx + i δqy). More precisely, we assume
that these parameters contain O(|δq|) corrections, so that we
do not lose crucial terms when expanding our eigenvalues and
eigenvectors in powers of |δq|. Using Eq. (3), the eigenvalues
and the eigenstates are given by (more details can be found in
Appendix B)

E = O(
√

|δq|), e = (
O(|δq|1/2), O(|δq|3/2), 1, O(|δq|))T

,

(6)

respectively. The eigenvalues vanish as
√|δq| [cf. Fig. 2(b)],

while the four eigenvectors converge to (0, 0, 1, 0)T , right at
the EP. Although the dispersions scale as square roots (rather
than quartic roots) around the EP4, the typical behavior of an
EP4 involving the eigenvector coalescence into a single one is
observed.

We would like to emphasize that the EP4 here does not
exhibit a quartic-root dispersion. This is expected as an EPn

can exhibit arbitrary mth-order root singularity, where m � n
[33,40], or even dispersions that cannot be expressed as root
functions [46]. In Appendix D, we show an example where a
singularity in the form of a root of quartic order is realized in
our four-band sublattice-symmetric system.

C. Odd-order EPs

As we have shown in Sec. II, the sublattice symmetry
requires the dispersion near an EP at E = 0 to scale as δE ∼
|δq|1/(2p), with p ∈ Z+. In addition, the sublattice symmetry
also restricts the ways in which E 	= 0 eigenvectors coalesce.
These conditions seem to obstruct an odd-order EP. However,
through an explicit construction of an EP3 for the N = 2 four-
band model, we will show that a somewhat anomalous EP3

can exist. Although the generic case is expected to exhibit a
cube-root dispersion around the singularity, a sublattice sym-
metry forces it to have a square-root dispersion [37], which is
indeed found to be the case here. We also find that the way the
eigenvectors coalesce with one another depends on the path
chosen to approach the EP3 (while a regular EP3 has three
eigenvectors collapsing together for any path). The EP3 here
is anomalous and different from the usual scenarios.

Because of the sublattice symmetry, a zero eigenvalue can
appear only with an even algebraic multiplicity. Hence, for
the N = 2 case, the existence of an EP3 with E = 0 requires
that its algebraic multiplicity must be four. The degenerate
point is thus an EP3 plus an accidental zero-energy eigenstate.
According to our symmetry analysis, the total dimension of
the kernels for B(q∗) and B(q∗) is m + n = 2. If m = 2 and
n = 0, the matrix B(q∗) is identically zero and B′(q∗) can be
brought to a diagonal matrix via a transformation matrix V.
Applying the transformation matrix diag(V, V) to H (q∗) then
brings it explicitly to a form similar to Eq. (4). Hence either

(m = 2, n = 0) or (m = 0, n = 2) gives a doublet of EP2’s.
An EP3 can emerge only when m = n = 1.

Now we look at a specific example. According to Table I,
an EP3 appears when V H (q∗)V −1 = diag{J3(0), 0} and

B(q∗) =
(

0 b2

0 0

)
, B′(q∗) =

(
b′

1 b′
2

0 0

)
. (7)

There are two linearly independent eigenvectors at E =
0, which are proportional to e1 = (0, 0, 1, 0)T and e2 =
(b′

2, −b′
1, 0, 0)T , proving that it is not an EP4. From the

Jordan decomposition, we find that e1 belongs to a general-
ized eigenspace of dimension three, such that e1 = H (q∗) ẽ2

and ẽ2 = H (q∗) ẽ3, with ẽ2 = (1/b′
1, 0, 0, 0)T and ẽ3 =

(0, 0, 0, 1/(b2 b′
1))T . Hence this is an EP3 accidentally co-

inciding with a zero-energy eigenvector.
To investigate how the symmetry constraints play out in

this case, we explicitly show how the eigenvectors behave
in the vicinity of this EP3. As the sublattice symmetry for-
bids the three eigenvectors folding together, they show an
anomalous behavior, which is in between the coaslescence
features of the eigenvectors of EP2 and EP4. This is the reason
why the eigenvector coalescence depends on the path chosen
while approaching q∗. Whenever an EP is anisotropic [47],
the eigenvectors indeed exhibit an enhanced path-dependent
sensitivity.

1. Path 1

We approach the EP along the qx direction (i.e., qy = 0
along this path), assuming that all deviations are linear, in
which case the expansion looks like

B(q∗ + δqx x̂) �
(

v1(0) |δqx| b2

v3(0) |δqx| v4(0) |δqx|
)

,

B′(q∗ + δqx x̂) �
(

b′
1 b′

2
v′

3(0) |δqx| v′
4(0) |δqx|

)
. (8)

As before, we implicitly assume that the variables {b j, b′
j} and

{v j (0), v′
j (0)} can contain O(|δqx|) corrections. The product

B′(q∗ + δqx x̂) · B(q∗ + δqx x̂)

�
(

[b′
1 v1(0) + b′

2 v3(0)] |δqx| b2 b′
1

[v1(0) v′
3(0) + v3(0) v′

4(0)] |δqx|2 b2 v′
3(0) |δqx|

)

(9)

determines the eigenvalue E2 and χ [cf. Eq. (3)]. The
two eigenvalues of the above matrix vanish as O(|δqx|),
while its two eigenvectors approach (1, 0)T as (1, O(|δqx|))T

(the intermediate steps are shown in Appendix B). Hence
the deviation in dispersion scales as δE ∼ √|δqx|. Since the
upper component is given by ψ = i B χ/E , it vanishes as
(O(

√|δqx|), O(
√|δqx|))T . Therefore, all the four eigenvec-

tors coalesce to e1 = (0, 0, 1, 0)T at q = q∗. In comparison,
there is no eigenvector converging to the eigenvector e2 at q∗.
Although this EP is of order three, its singular behavior along
the qx path is similar to a typical EP4.
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2. Path 2

The eigenvectors exhibit a typical EP2 behavior if v′
3(θ )

and v′
4(θ ) vanish for some angle θ , which can be obtained

by imposing an additional symmetry to these parameters. For
convenience, we choose the direction of approach to the EP
in this case to be along the qy direction and set v′

3(π/2) =
v′

4(π/2) = 0. The off-diagonal matrices take the forms

B(q∗ + δqy ŷ) �
(

v1(π/2) |δqy| b2

v3(π/2) |δqy| v4(π/2) |δqy|
)

,

B′(q∗ + δqy ŷ) �
(

b′
1 b′

2
r′

3 |δqy|2 r′
4 |δqy|2

)
, (10)

and their product is given by

B′(q∗ + δqy ŷ) · B(q∗ + δqy ŷ)

�
(

[b′
1 v1(π/2) + b′

2 v3(π/2)]|δqy| b2 b′
1

[v1(π/2) r′
3 + v3(π/2) r′

4]|δqy|3 b2 r′
3 |δqy|2

)
.

(11)

One of its eigenvalues of the product matrix vanishes as
λ1 = O(|δqy|), while the other vanishes as λ2 = O(|δqy|2)
(the derivations are shown in Appendix B). Note that this
gives a different scaling for the dispersion around the EP,
compared to the Path 1. The two eigenvectors of B′ · B
behave as χ1 � (1, O(|δqy|2))T and χ2 � (1,O(|δqy|))T , re-
spectively. The corresponding upper components (obtained
from the relations ψa = i B χa/E , with a ∈ {1, 2}) thus scale
as ψ1 ∼ (O(

√|δqy|),O(
√|δqy|))T and ψ2 ∼ (O(1),O(1))T ,

respectively. In this situation, the two eigenvectors (±ψT
1 , χT

1 )
converge to eT

1 , while the other two eigenvectors (±ψT
2 , χT

2 )
go to two other linearly independent vectors, which we denote
as eT

3 and eT
4 . Hence, along this path, the eigenvectors behave

as a single eigenvector of an EP2 plus two linearly indepen-
dent accidental zero-energy eigenvectors.

IV. IRREGULAR SUBSPACE TOPOLOGY OF THE EPs

In this section, we will formulate a way to quantitatively
characterize the overlap of eigenvectors, following which we
will illustrate the origin of the anomalous behavior of the
odd-order EPs under sublattice symmetry. The conclusion
that comes out of this setup is that eigenvector coalescence
is not actually a pointlike property of the EP itself, but it
depends on how the Hamiltonian looks in its neighborhood.
In fact, we will see that. for our example of N = 2, the EP3

under sublattice symmetry can in fact be understood as the
point at which the parameter spaces of EP4 and EP2 intersect.
This feature comes from the subspace topology of EPn, as a
subspace of all 4 × 4 matrices M4(C).

When analyzing the coalescence of eigenvectors, it can
be ambiguous if we directly compare them, because eigen-
vectors are equivalent up to phases. In order to characterize
unambiguously how the states coalesce near regular EPs and
mixed-type EPs, it is most convenient to introduce the quan-
tum distance D [48], such that

D2(u, u′) = inf
{α,β}∈R

|| u ei α − u′ ei β ||2

= 2 − 2 |〈u | u′〉|. (12)

Clearly, D2(u, u′) is invariant under U (1) × U (1)
transformations, i.e., under the change of the phases of u
and u′. Here the states are normalized as 〈u | u〉 = 〈u′ | u′〉 = 1
and || · || is the usual norm

√〈·|·〉 of a quantum state. Using u′
to denote the eigenvectors at the EP at q = q∗ and u to denote
the states away from q∗, D is a function of (q − q∗). D2 is
positive definite and vanishes only when u and u′ differ by
a phase (i.e., when u and u′ denote the same quantum state).
Hence D2(u, e j ) can be used to describe unambiguously how
the eigenvectors are approaching their target eigenvectors at
the EP.

Since the eigenstates e j’s at the EP (i.e., at E = 0) are
invariant under the sublattice symmetry, the two nondegen-
erate eigenstates (±ψ, χ ), related by the sublattice symmetry,
have the same D2 value with e j . In Fig. 3, we show how the
eigenvectors approach the ones at the EPs, as q approaches
q∗. In all the cases, the four nondegenerate states fall into two
classes: each corresponding to a sublattice symmetry-related
pair. Let us denote the two pairs of eigenvectors as {u1, u2} and
{u3, u4}. For the EP4, D2 is computed from e1 (which is the
sole linearly independent eigenvector right at the EP) and each
of the four nondegenerate eigenvectors, and it goes to zero as
we approach the EP4. However, things are more complicated
for the EP3, and in fact the behavior of D2 corroborates the
results obtained in Sec. III C. Approaching the EP along the
Path 1 of Sec. III C (with qy = 0), for all i ∈ [1, 4], D2(ui, e1)
goes to zero, while D2(ui, e2) remains nonvanishing. On the
other hand, if one approaches the EP along the Path 2 (with
qx = 0), D2(u1, e1) and D2(u2, e1) go to zero, while D2(u3, e j )
and D2(u3, e j ) remain nonzero for both j = 1 and j = 2.

The anomalous behavior of the eigenvectors near the EP3

can be explained by its mixed nature. This is a very special
property of a Jordan decomposition when the diagonal of a
Jordan block coincides with some other eigenvalue(s). An EP
with such a Jordan block is qualitatively different from an EP
whose Jordan block has a nonzero gap with other eigenvalues.
We denote the latter as regular EPs. The space EP3 comprises
two sets, namely, the set U1 of regular EP3 and the set U2 of
mixed-nature EP3.

To illustrate the possible structures around an EP3, we
consider a 4 × 4 matrix M with no particular symmetry.
Such a matrix has a 16 (complex) dimensional parameter
space M4(C). The most common matrices in this space are
those which are the nonsingular ones featuring nondegenerate
eigenvalues. The EPs are represented by matrices with singu-
larity and they form lower-dimensional subspaces of M4(C).
The dimension of the parameter space EPn decreases as n
becomes larger (see Appendix C). For an EP3 with Jordan
decomposition M|EP3

= diag{J3(0), 0}, one can easily verify
that, within EP2, there is a sequence of points whose limit is
M|EP3

:

lim
ε→0

⎡
⎢⎢⎣M(ε)

∣∣
EP2

=

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 ε 0
0 0 0 2ε

⎞
⎟⎟⎠ ∈ EP2

⎤
⎥⎥⎦ = M

∣∣
EP3

=

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ∈ U2 ⊂ EP3. (13)
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(a) (b) (c)

FIG. 3. Square of the quantum distance (D2) describing how eigenstates coalesce into those at the exceptional points of different orders.
(a) D2(ui, e1) goes to zero at the EP4 for all i ∈ [1, 4]. (b) Approaching the EP3 along the Path 1 of Sec. III C (with qy = 0), for all i ∈
[1, 4]D2(ui, e1) goes to zero, while D2(ui, e2) goes to some nonzero values. (c) When one approaches the EP3 along the Path 2 of Sec. III C
(with qx = 0), D2(u1, e1) and D2(u2, e1) go to zero, while D2(u3, e j ) and D2(u3, e j ) remain nonzero for both j = 1, 2.

This implies that, in any neighborhood of M|EP3
, we can

always find points belonging to EP2. In particular, when
the matrices representing nondegenerate eigenvalues are close
enough to the matrices representing EP2’s, two of the four
eigenvectors of our non-Hermitian Hamiltonian should also
come close to each other (see Fig. 4).

In addition to the above limit, we can find another limit
by tuning the parameters of the matrix containing the Jordan
block of the EP3, such that the EP3 of M|EP3

is now a limiting
point of an EP4. This can be seen from

lim
ε→0

⎡
⎢⎢⎣M(ε)

∣∣
EP4

=

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 ε

0 0 0 0

⎞
⎟⎟⎠ ∈ EP4

⎤
⎥⎥⎦ = M

∣∣
EP3

=

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ∈ U2 ⊂ EP3. (14)

This result is much more counterintuitive than the coincidence
with the EP2 case, because EP4 has a lower dimension than
EP3, and the region M(ε)|EP4

in the neighborhood of M|EP3
is

usually very small. However, the neighborhood of EP4 com-
prising all matrices representing nondegenerate eigenvalues
is not small. These matrices then can have a large overlap
with the nondegenerate neighborhood of M|EP3

. As a result,
all paths through this intersecting region will show a behavior
characteristic of a fourfold eigenvector coalescence.

The arguments above show that a mixed-type EP can ap-
pear as a common limit point of lower- and higher-order EPs,
which implies that such an exceptional degeneracy cannot
form a closed subspace in M4(C) by simply combining certain
higher-order EPs. This anomalous behavior of the odd-order
EPs is absent in Hermitian systems. In the parameter space
of a Hermitian matrix HHerm, if we denote the space with
an n-fold degenerate eigenvalue E as HDn(E ), the space
∪n�mHDn(E ) is given by the zeros of the resultants (R) or
discriminants (D), i.e., by R(E ) = 0 [38] or D[HHerm(E )] = 0
[40]. These equations involve continuous functions in M4(C)

FIG. 4. Schematic depiction of the location of a mixed-type EP3 in the parameter space of a non-Hermitian matrix. The white (uncolored)
region in the parameter space represents matrices with nondegenerate eigenvalues. They are dense and their parameter space has the highest
dimensionality. In the absence of any symmetry, the dimension of the EPn space decreases as n increases. The mixed-type EP3 appears as
the intersection point of the EP2 (light blue cube), EP3 (gray surface), and EP4 (green line). When the sublattice symmetry is imposed, the
regular EP3 surface (gray region) is forbidden and the mixed-type EP3 can be approached only via the neighborhood of either EP4 (dotted
line) or EP2 (dashed line). This leads to two different ways of eigenvector coalescence, which are shown by the collapse of directed arrows
against “Path qx” and “Path qy” (corresponding to Path 1 and Path 2 of Sec. III C, respectively).
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and hence their solutions constitute a closed subspace of
M4(C). This means that the limit of a series Hermitian degen-
eracy HDn can only end in some HDm (m � n). As a result,
only higher-order degeneracy can be the limit of a lower-
order degeneracy, but not the other way around. Therefore, for
Hermitian matrices, there is no mixed-type degeneracy.

In summary, the enhanced eigenvector sensitivity can be
understood intuitively in the following way (see also Fig. 4).
The different directions of approaching q∗ in the Brillouin
zone can be mapped to approaching the EP3 through different
tracks in the space of matrices representing nondegenerate
eigenvalues. Due to the sublattice symmetry, it is forbidden
to approach the EP3 through the neighborhood of the matri-
ces representing a regular EP3. Consequently, the sublattice
symmetry-restricted EP3 can only be reached through the
neighborhoods of EP2 and EP4. Of course, in those neigh-
borhoods, either two or four eigenvectors coalesce together,
leading to the anomalous behavior of the eigenvectors of
the EP3.

V. LATTICE REALIZATIONS AND EXPECTATIONS FOR
GENERIC N VALUES

Examples of fermionic Hamiltonians with sublattice sym-
metry include solvable spin liquid models, such as the Kitaev
spin liquid [12,17,44] (corresponding to N = 1) and the
Yao-Lee SU (2) spin liquid [45] (corresponding to N = 3).
The N = 2 model studied in this paper can be embedded
in the Yao-Lee model. There, the low-energy physics is de-
scribed by N = 3 flavors of Majorana fermion operators, with
the Hamiltonian consisting of only nearest-neighbor hoppings
amongst fermions of the same flavor. In order to produce
the higher-order degeneracies discussed in this paper, we
need to introduce terms which couple different flavors [thus
breaking the SU (N ) symmetry]—these can be generated by
terms σα,i τ

x
i τ x

j σβ, j (with i 	= j) in terms of the original spin
operators. The details have been outlined in Appendix E.

Setting N = 3, one can get EPs up to sixth order, which is
then expected to display a richer eigenvector sensitivity. For
this case, an EP5 can exist where a five-dimensional Jordan
block becomes degenerate with another band. Near this EP5,
the coalescence of eigenvectors can be fourfold or sixfold.
Moreover, since twofold coalescence is also permitted by
the sublattice symmetry, there exists paths along which the
eigenvectors collapse like they do in the vicinity of an EP2.
Consequently, such an EP5 has a higher degree of eigenvector
sensitivity, making it possible to have more knobs to tune
quantum states.

For a generic value of N , in order to obtain an N-fold
compound EP2, or a highest-order simple EP2N , the algebraic
conditions are simply obtained by replacing the expressions
for N = 2 by the appropriate N value. More specifically, the
N-fold EP2 is SU (N ) invariant and is obtained by choosing
B as a diagonal matrix vanishing at q∗, while B′(q∗) remains
nonzero. As for EP2N , we need dim(ker B) + dim(ker B′) = 1
for generic N as well. Additionally, in order to ensure that
all the 2N linearly independent eigenvectors coalesce to a
single one, we need to impose the condition B · B′ ∼ J2N (0),
which can alternatively be represented as ker(B · B′)m =
im(B · B′)2N−m (with 0 < m < 2N). For EPs with orders

between 2 and 2N , the analysis becomes more complicated.
Mixed-type odd-order EPs will exist at E = 0, analogous to
the EP3 of the N = 2 case that we have explicitly studied.
Although the dimensions of the kernels can be worked out
in a way similar to that shown in Table I, the image and kernel
relations need to be figured out on a case-by-case basis and
closed-form expressions for the eigenvectors might involve
extremely complicated calculations. Nevertheless, the generic
topological relations between higher-order EPs remain valid.

VI. SUMMARY AND OUTLOOK

In this paper, we have explored the emergence of higher-
order EPs in two-dimensional four-band non-Hermitian sys-
tems, with a sublattice symmetry. Such systems are relevant to
non-Hermitian extensions of solvable spin liquid models. The
sublattice symmetry forces the eigenvalues to appear in pairs
of {E ,−E} and the dispersion around an EP is restricted to be
an even root of the deviation in the momentum space. We have
explicitly computed how the eigenvectors collapse at an EP
and found an anomalous behavior for odd-order EPs. Based
on the analytical solvability of a four-band system, we have
shown that the collapse of the eigenvectors depends on the
specific path of approaching an EP3. The behavior is anoma-
lous in the sense that it is in contradiction with the intuition
that n eigenvectors always coalesce together at an EPn. In
fact, the number of collapsing eigenvectors for a mixed-type
odd-order EP is an even number smaller or greater than n,
which is caused by the presence of the sublattice symme-
try. Intuitively, this unconventional feature can be understood
from the fact that there is a restriction in the parameter
space of EP3 due to the sublattice symmetry and this unusual
EP3 can be approached only via the neighborhoods of EP2’s
and EP4’s.

Using the notion of a quantum distance, we have further
explored the behavior of the eigenvectors near the mixed-type
EP3. We have found that the eigenvectors do not necessarily
converge to those of a regular EP3, especially when we are
approaching it from a neighborhood of EP2. The quantum
distance to the eigenvectors at the mixed-type EP3 can change
abruptly if we slightly perturb the approaching process. It
is already known that the nonunitary evolution under a non-
Hermitian Hamiltonian leads to a shorter quantum distance
[49,50], which can play a role in state preparation. Hence we
expect that the anomalous behavior near higher-order EPs will
significantly enhance this effect and lead to novel applica-
tions exploiting the features we have discovered through our
analysis.

The enhanced eigenvector sensitivity for the mixed-type
EP3s is a reminiscence of generic counterintuitive features
specific to non-Hermitian systems (i.e., these are absent in the
corresponding Hermitian counterparts). A very well-known
example is the non-Hermitian skin effect [51–59], where a
very small change in the boundary conditions brings about re-
markable modifications to the spectrum. The mixed nature of
the odd-order EPs also generalizes the notion of the recently
studied nondefective EPs [60], where a Hermitian degeneracy
mixes with the usual EP2.

A promising future research direction is to explore analo-
gous unconventional EPs in three-dimensional systems with
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appropriate symmetry constraints. The extended dimension-
ality is expected to provide a richer parameter space for
the characterization of generic EPs [61]. Another signifi-
cant direction is to investigate the role of the higher-order
EPs, especially the odd-order ones with anomalous behav-
ior, in designing non-Hermitian topological sensors [32]. Due
to higher-order singular behavior near a regularly behaved
higher-order EP, the sensors based on such EPs are expected
to show greater sensitivity than an EP2 and the existence of
mixed-type EPs may enable us to tune the sensitivity by tuning
the parameter space [62].
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APPENDIX A: EXCEPTIONAL DEGENERACY UNDER
SUBLATTICE SYMMETRY

When a symmetry is imposed, the standard method for
obtaining the EP parameter space (see Appendix C) can be
very complicated to employ in practice. Therefore, we adopt
a more direct way to find the EP parameter space under sub-
lattice symmetry, which employs the algebraic connections
between B and B′ as linear transformation operators. In this
Appendix, we demonstrate this method for the N = 2 case,
where we can obtain closed-form expressions. We use C×
to represent the set of all complex numbers z 	= 0. We also
introduce the notation Jn to denote the set of nondegenerate
matrices commuting with the Jordan block Jn. In fact, Jn is
given by all upper-triangular translational-invariant matrices
[41].2

To get the SU (2)-invariant doublet of EP2’s, the
Hamiltonian is determined by B or B′ with a second-order
EP. Hence the corresponding parameter space EP2 is given
by GL(2)/J2.

For EP4, we notice that dim(ker B) + dim(ker B′) = 1,
according to the discussions in the main text. Assuming that
dim(ker B) = 1, dim(ker B′) = 0, without any loss of gener-
ality, B′ is invertible. As we have shown in Sec. III C, the
matrix B · B′ must be similar to J2(0), which means B · B′ ·
B · B′ = B · B′ · B = 0. There can be two scenarios according
to whether B is diagonalizable or nondiagonalizable.

(1) When B is diagonalizable, let the eigenvectors of B be
χ1 and χ2. We choose χ1 ∈ ker B. In order to have B · B′ ·
B = 0, it is enough to have (B · B′ · B)χ2 = 0. Since χ2 is an
eigenvector with a nonzero eigenvalue, this is equivalent to
(B · B′)χ2 = 0, implying that B′ χ2 ∈ ker B. Switching to the
basis formed by χ1 and χ2, we get

B′ =
(

b′
1 b′

2
b′

3 0

)
when B =

(
0 0
0 b4

)
, (A1)

2Note that our Jn corresponds to C× × Jn in Ref. [41] and our
EPn includes the nth order EP of all energy spectra.

with b4 denoting the eigenvalue corresponding to χ2. In order
to ensure that B′ invertible, we need b′

2 b′
3 	= 0.

(2) When B is not diagonalizable, it is equal to J2(0) in
a basis formed by two linearly independent vectors χ1 and
χ2, still with χ1 ∈ ker B. Here also, we only need to have
(B · B′ · B)χ2 = 0, which is now equivalent to (B · B′)χ1 = 0.
This tells us that B′ χ1 ∝ χ1, i.e., χ1 is also an eigenvector of
B′. Switching to the basis formed by χ1 and χ2, we get

B′ =
(

b′
1 b′

2
0 b′

4

)
when B =

(
0 1
0 0

)
. (A2)

The invertibility of B′ requires that b′
1 b′

4 	= 0. Therefore,
we find that the parameter space EP4 comprises two sets:
Z2 × C × (C×)3 × GL(2)/(C×)2 and Z2 × C × (C×)2 ×
GL(2)/J2. The Z2 part in either set comes from the symmetry
under B ↔ B′.

The space EP3, as shown in Sec. III C, is restricted to obey
dim(ker B) = dim(ker B′) = 1. Basic linear algebra then tells
us that their corresponding image dimensions are also equal to
one, i.e., dim(im B) = dim(im B′) = 1. Let the corresponding
eigenvectors be χ1 and ψ1, such that B χ1 = 0 and B′ ψ1 = 0.
It is straightforward to verify that (0, χT

1 )T and (ψT
1 , 0)T are

eigenvectors of H . We assume that (0, χT
1 )T belongs to a

generalized eigenspace of dimension three. Hence there exists
a vector (ψ2, χ2) such that H (ψT

2 , χT
2 )T = (0, χT

1 )T . This im-
plies χ2 ∈ ker B and −i B′ψ2 = χ1, requiring im B′ = ker B.
We can choose ψ2 to be in the subspace complementary to
that of ψ1 [i.e., ψ2 ∈ {C2 − (ker B′)}] and set χ2 = 0. In or-
der to form a three-dimensional generalized eigenspace, we
need a third linearly independent vector (ψ3, χ3), such that
H (ψT

3 , χT
3 )T = (ψT

2 , 0)T . From this relation, we have ψ3 ∈
ker B′ and im B 	= ker B′, which enforces the condition ψ2 ∈
im B—therefore, we can choose ψ3 = 0 and χ3 ∈ (ker B)⊥.
One can verify that the four vectors—(0, χT

1 )T , (ψT
1 , 0)T ,

(ψT
2 , 0)T , and (0, χT

3 )T —that we have just constructed are
linearly independent. To summarize, once the matrix B is
fixed, the image of B′ also gets fixed and ker B′ must be
different from im B. Since dim(ker B′) = 1, the matrix B′ is
determined by B up to a nonzero vector (characterizing the
ratio between the first and second columns of B′). The matrix
B can be built from two linearly dependent row vectors:

B =
(

p1 u1 p1 u2

p2 u1 p2 u2

)
, (A3)

because its kernel is one dimensional. Here at least one of
p1 and p2 is nonzero and so are u1, u2. The kernel of B is
generated by the vector (u2, −u1)T and its image is generated
by (p1, p2)T . According to the relations between B and B′,
we have

B′ =
(

p′
2 u2 −p′

1 u2

−p′
2 u1 p′

1 u1

)
, (A4)

where (p′
1, p′

2) is not collinear with (p1, p2). We observe that
all the pairs (u1, u2), (p1, p2), and (p′

1, p′
2) exclude the origin

(0,0). Since B is invariant under the transformations ui → z ui,
pi → p′

i/z, and p′
i → p′

i/z, its parameter space is represented
by C2× × C2× × (C2 − C)/C×. This leads to the final result
that EP3 is given by Z2 × C2× × C2× × (C2 − C)/C×.
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APPENDIX B: SOLUTIONS FOR EIGENVECTORS
NEAR AN EP

In this Appendix, we work out the explicit expressions for
the eigenvalues and eigenvectors near the EP4 and EP3 studied
in Sec. III. Near the EP4, the off-diagonal submatrices of the
Hamiltonian take the forms

B(q∗ + δq) �
(

v1(θ ) |δq| b2

0 v4(θ ) |δq|
)

,

B′(q∗ + δq) �
(

b′
1 0

v′
3(θ ) |δq| b′

4

)
(B1)

to leading order in the powers of |δq|. Their product matrix is
given by

B′(q∗ + δq) · B(q∗ + δq)

�
(

b′
1 v1(θ ) |δq| b2 b′

1

v1(θ ) v′
3(θ ) |δq|2 [b2 v′

3(θ ) + v4(θ ) b′
4]|δq|

)
,

(B2)

with eigenvalues

λa = 1
2 [b′

1 v1 + b2 v′
3 + b′

4 v4 + (−1)a+1
√

(b′
1 v1 + b2 v′

3 + b′
4 v4)2 − 4 b′

4 v4 b′
1 v1]|δq|, with a ∈ {1, 2}. (B3)

The four eigenvalues E of the Hamiltonian are therefore given by ±√
λ1 and ±√

λ2. The (unnormalized) eigenvectors of
B′ · B are

χT
a =

(
1,− 2 v1 v′

3 |δq|
b2 v′

3 + b′
4 v4 − b′

1 v1 + (−1)a
√

(b2 v′
3 + b′

4 v4 − b′
1 v1)2 + 4 b′

1 v1 b2 v′
3

)
� (1, O(|δq|)) (B4)

and hence are seen to converge to (1,0) at the EP. Using the relation ψa = i B χa/E for E 	= 0, we deduce that ψT
a �

(O(|δq|1/2),O(|δq|3/2)), giving the four eigenvectors of the Hamiltonian as (±ψT
a , χT

a )T . Clearly, these four vectors collapse to
e1 = (0, 0, 1, 0)T , as described in the main text.

As for the EP3, since the exact expression is quite com-
plicated, we only show leading order terms. For the Path 1,
where all deviations from the EP are linear, we have

B(q∗ + δq) �
(

v1(0) |δqx| b2

v3(0) |δqx| v4(0) |δqx|
)

,

B′(q∗ + δq) �
(

b′
1 b′

2
v′

3(0) |δqx| v′
4(0) |δqx|

)
, (B5)

leading to

B′(q∗ + δq) · B(q∗ + δq)

�
(

[b′
1v1(0) + b′

2v3(0)] |δqx| b2 b′
1

[v1(0) v′
3(0) + v3(0) v′

4(0)] |δqx|2 b2 v′
3(0) |δqx|

)

= p2

(
p1 |δqx| 1
p3 |δqx|2 p4 |δqx|

)
. (B6)

Since the eigenvalues of the product matrix are

λa � p2

2
[p1 + p4 + (−1)a

√
(p1 − p2)2 + 4 p3]|δqx|

+ O(|δqx|2) with a ∈ {1, 2}, (B7)

the eigenvalues of the Hamiltonian are of O(
√|δqx|). The

corresponding eigenvectors are given by

χa �
(

1,
2 p3 |δqx|

p1 − p4 + (−1)a
√

(p1 − p2)2 + 4 p3

)T

�(
1, O(|δqx|)

)T
. (B8)

According to the relation ψa = i B χa/E (with i B χa �
(O(|δqx|), O(|δqx|))T ), each ψa vanishes as |δqx| → 0. Over-
all, the four eigenvectors (±ψT

a , χT
a )T are seen to collapse to

e1 = (0, 0, 1, 0)T , resulting in the EP3 behaving as a typical
EP4, as far as the eigenvector coalescence concerned.

When we consider Path 2 for approaching the EP3, the off-
diagonal matrices are given by

B(q∗ + δq) �
(

v1 |δqy| b2

v3 |δqy| v4 |δqy|
)

,

B′(q∗ + δq) �
(

b′
1 b′

2
r′

3 |δqy|2 r′
4 |δqy|2

)
, (B9)

leading to

B′(q∗ + δq) · B(q∗ + δq)

�
(

(b′
1 v1 + b′

2 v3) |δqy| b2 b′
1

(v1 r′
3 + v3 r′

4) |δqy|3 b2 r′
3 |δqy|2

)

= p′
2

(
p′

1 |δqy| 1
p′

3 |δqy|3 p′
4 |δqy|2

)
. (B10)

Unlike the results for Path 1, the two eigenvalues of the above
matrix are given by

λ1 � p′
2 p′

1 |δqy|, λ2 � p′
2

p′
1

(
p′

1 p′
4 − p′

3

)|δqy|2, (B11)

with their corresponding eigenvectors

χ1 =
(

1,
p′

3 |δqy|2
p′

1

)T

, χ2 =
(

1, − 2 p′
1 p′

3 |δqy|
2 p′

4 p′
1 + 2 p′

3

)T

,

(B12)

showing distinct scalings. Noting that ψ1 �
(O(

√|δqy|), O(
√|δqy|))T and ψ2 � (O(1), O(1))T , the

eigenvectors (±ψT
1 , χT

1 )T go to e1 at the EP, while
(±ψT

2 , χT
2 )T do not collapse to any of the eigenvectors

e1 and e2 of the EP3.
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APPENDIX C: EXCEPTIONAL DEGENERACY IN THE
ABSENCE OF SUBLATTICE SYMMETRY

In order to figure out the eigenspace of an n × n matrix D,
it boils down to finding a nondegenerate matrix V ∈ GLn(C),
such that V DV −1 is equal to a block diagonal matrix Md =
diag{Ji1 (E1), Ji2 (E2), . . . }. All information about exceptional
degeneracy is encoded in Md . Let us denote the matrices
commuting with Md as Sd , which may also be called the
stabilizer of Md under the action of GLn(C). The possible
distinct matrices sharing the same exceptional structure are
then given by the orbit GLn(C)/Sd . Thus, for a given Md ,
GLn(C)/Sd is the parameter space of the EP at the energy
(E1, E2, . . . ).

Let us now demonstrate how the parameter space of an EP
looks by focusing on the case of n = 4. All 4 × 4 complex ma-
trices form a 16-dimensional complex space M4(C) = C16.
The parameter space of an EP is thus a (topological) sub-
space of this C16 and, compared to Hermitian degeneracies,
the space of an exceptional degeneracy has a much richer
structure. The constructions for the various possible cases are
shown below.

(1) We first consider the scenario when all eigenvalues are
degenerate, which consists of the highest-order EP, with the
corresponding parameter space denoted as EP4 [41]. Using
the notations introduced in Appendix A, the Jordan block for
the exceptional degeneracy is given by J4(E ) and the EP4 is
described by C × GL4(C)/J4 [where the first C corresponds
to the complex eigenvalue E of J4(E )]; its complex dimen-
sion is 42 + 1 − 4 = 13. The stabilizer J4 is composed of
polynomials of Jn(0), with the condition that the coefficient
of I4 is nonzero. The space EP4 is not simply connected
and is homotopically equivalent to SU (4)/Zn, where Z4 is
the cyclic group formed by all fourth-order roots of unity
[41]—this implies that EP4 has a nontrivial topology. A major
difference from the degeneracies of Hermitian matrices stems
from the fact that the transformation group GL4(C), unlike
the unitary group, is neither a closed subspace of C16 [it is an
open subspace as the preimage of det(M4) 	= 0] nor compact.
Additionally, the parameter space of an EP at a given energy
is not closed, as we have already shown in the main text. This
is in sharp contrast with the parameter space of highest-order
Hermitian degeneracy. The latter is given by C, which is con-
tractible, simply connected, and closed in C16. It is described
by matrices of the from E × I4. The degeneracy parameter
space at a given energy is simply a point.

(2) An EP3 is of intermediate order and the space EP3

in C16 is represented by V diag{J3(E1), E2}V −1, with V ∈
GL4(C). The parameters E1 and E2 form the space C2. In
order to work out EP3, we need to quotient out those V
commuting with diag{J3(E1), E2}. To do so, first we rewrite
diag{J3(E1), E2} as E1 I4 + diag{J3(0), E2 − E1}. Since I4

commutes with any matrix, the problem is now reduced to
finding the matrices commuting with diag{J3(0), E2 − E1},
which we denote as S̄. The block form of S̄ should satisfy

S̄ =
(

S1 S2

S3 S4

)
, S1 J3(0) = J3(0) S1,

J3(0)S2 = (E2 − E1) S2, S3 J3(0) = (E2 − E1) S3, (C1)

with S1 representing a 3 × 3 matrix and S4 denoting a com-
plex number. When E1 	= E2, we must have S2 = 0 and S3 =
0. For E1 = E2, they can be nonvanishing. The results are
summarized as

if E1 	= E2, S̄ = diag

{
m=2∑
m=0

s(m)
1 Jm

3 (0), s4

}
, s(0)

1 s4 	= 0,

if E1 = E2, S1 =
m=2∑
m=0

s(m)
1 Jm

3 (0), S2 = (s2, 0, 0)T ,

S3 = (0, 0, s3), S4 = s4, s(0)
1 s4 	= 0. (C2)

Thus EP3 = U1 ∪ U2, where U1 and U2 are two disjoint
sets, with complex dimensions 14 and 11, respectively.
The space U1 consists of all matrices with E1 	= E2, i.e.,
U1 = Conf2(C) × GL4(C)/(C× × J3) [where Conf2(C) is
the second configuration space comprising all pairs {E1 ∈
C, E2 ∈ C} with E1 	= E2]. U1 characterizes all regular EP3’s,
where they exhibit the typical eigenvector-coalescence fea-
tures, since there is a gap between the Jordan block and
other levels. On the other hand, the space U2 accounts for
the case E1 = E2 in the set {E1, E2} and is given by C ×
GL4(C)/[C2 × C× × J3].

(3) The remaining exceptional degeneracy relevant to our
discussions is EP2. The space EP2 also contains those EPs
that are of a mixed nature. But for the sake of simplicity, we
neglect them, focusing only on regular EP2’s. In this case,
the Hamiltonian matrix takes the form diag[J2(E1), E2, E3],
with distinct eigenvalues E1, E2, and E3. The correspond-
ing stabilizer turns out to be diag[S1, s2, s3], with S1 ∈ J2.
As a result, the regular part of EP2 is given by GL4(C) ×
Conf3(C)/[(C×)2 × J2 × Z2], which is of complex dimen-
sion 15, where the last Z2 comes from the general linear
transformations that merely exchange E2 and E3.

APPENDIX D: EP4 WITH QUARTIC-ROOT SINGULARITY
AROUND IT

The EP4 example provided in the main text has a square-
root dispersion near the degeneracy. Here, we provide an
example of a different EP4which features a branch cut with
quartic-root singularity.

As shown in Table I, the requirement for the existence of
an EP4 is to have B · B′ proportional to a 2 × 2 Jordan block,
with at least one of the individual matrices (i.e., B or B′) being
noninvertible. To get a fourth-order root for the dispersion
of the Hamiltonian, the eigenvalues of B · B′ should have a
square-root dispersion. The typical form of B · B′ then needs
to be a Jordan matrix with a linear term ∼|δq| for the lower-
left component. According to this logic, we can consider the
forms

B(q∗ + δq) �
(

0 b2

v3(θ ) |δq| 0

)
,

B′(q∗ + δq) �
(

b′
1 0

0 b′
4

)
. (D1)

In each position where the matrix element is put to zero, we
have neglected possible O(|δq|) terms, as they give a higher-
order dispersion as explained in the main text. The product
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matrix is then given by

B′(q∗ + δq) · B(q∗ + δq) �
(

0 b2 b′
4

b′
1 v3(θ ) |δq| 0

)
. (D2)

The leading order expansion for an eigenvalue λ of B · B′ goes
as λ � √

b2 b′
1 b′

4 v3(θ ) |δq|. As the energy goes as
√

λ, we
obtain a quartic-root behavior in the vicinity of the EP4.

APPENDIX E: LATTICE REALIZATIONS FOR N = 2
THROUGH THE YAO-LEE MODEL

An example of N = 3 flavors of fermions with sublattice
symmetry is provided by the SU (2) spin liquid model by Yao
and Lee [45]. We use two of its flavors to realize the excep-
tional points discussed in the main text. The Hamiltonian in
this decorated honeycomb lattice [cf. Fig. 1(a)] is given by

ĤY L = J
∑

i

S2
i +

∑
λ-link 〈i j〉

Jλ

(
τλ

i τλ
j

)(
Si · S j

)
with λ ∈ {1, 2, 3},

τ 1
i = 1/2 + 2 σ i,1 · σ i,2,

τ 2
i = 2(σ i,1 · σ i,3 − σ i,2 · σ i,3)/

√
3,

τ 3
i = 4 σ i,1 · (Si,2 × Si,3)/

√
3, (E1)

where the indices i and j label the triangles and σ i,α denotes
the vector spin-1/2 operator at site α ∈ {1, 2, 3} of the ith
triangle. Furthermore, Si = σ i,1 + σ i,2 + σ i,3 is the total spin
operator of the ith triangle. The coupling constant J is the
strength of the intratriangle spin exchange, while Jλ describes
the intertriangle couplings on the λ-type link. There are three
different types of links, x, y, and z links, represented by red,
green, and blue ones in Fig. 1, respectively. Since [S2

i , S j] =
0 and [S2

i , τ
λ
j ] = 0, the operator S2

i commutes with the
Hamiltonian for all i. Hence the total spin of each triangle
is a good quantum number, which we can use to subdivide the
Hilbert space.

Just like the case of Kitaev’s model on the honeycomb
lattice [44], we first introduce the Majorana fermion repre-
sentations for the Pauli matrices σi,α and τ

β
i as follows:

σi,α τ
β
i = i ηα

i dβ
i , σα,i = − i

2
εαβγ η

β
i η

γ
i ,

τ α
i = − i

2
εαβγ dβ

i dγ
i , with α, β ∈ {1, 2, 3}, (E2)

where ηα
i and dα

i are Majorana fermion operators (i.e., ηα
i

† =
ηα

i and dα
i

† = dα
i ). The Hilbert space is enlarged in the

Majorana representation and the physical states are those
invariant under a Z2 gauge transformation. Using the above
notation, we can reexpress the Hamiltonian ĤY L as

ĤY L = Q ĤeY L Q,

ĤeY L =
∑
〈i j〉

Ji j ui j
[
i η1

i η1
j + i η2

i η2
j + i η3

i η3
j

]
, (E3)

where ui j = −i dλ
i dλ

j , Ji j = Jλ/4 on the λ-type link 〈i j〉, and
Q is the projection operator on the physical states. Because
[ui j, Ĥ] = 0 and [ui j, ui′ j′] = 0, the eigenvalues (which take
the values ±1) of the ui j’s are good quantum numbers. From

its form, it is clear that ĤeY L describes three flavors of Majo-
rana fermions, coupled with the background Z2 gauge fields
denoted by ui j . One can verify that ĤeY L is invariant under the
local Z2 gauge transformation, which takes ηα

i → �i η
α
i and

ui j → �i ui j � j , with �i = ±1. In addition to the Z2 gauge
symmetry, the system has a global SO(3) symmetry, which
rotates among the three flavors of Majorana fermions and is
a consequence of the SU (2) symmetry of the original spin
model.

Each Majorana flavor cα has a Hamiltonian identical to the
single Majorana flavor in Kitaev’s honeycomb model [44],
and hence the Yao-Lee model effectively gives us three copies
of the Kitaev model. The spectrum of the Majorana fermions
is gapless, while the Z2 gauge field has a finite gap from
the fluxfree configuration given by ui j = 1. The low-energy
theory of the SU (2) model is thus captured by setting ui j = 1,
leading to the momentum-space Majorana Hamiltonian

Ĥm = cT Hm c,

c = (
c1

1(q) c2
1(q) c3

1(q) c1
2(q) c2

2(q) c3
2(q)

)T
,

(E4)

where

Hm =
(

0 i A(q)
−i AT (−q) 0

)
, A(q) = I3 ⊗ Ã(q),

Ã(q) = 2(J1 ei q·r1 + J2 ei q·r2 + J3). (E5)

Here, cα denotes the Fourier transform of a real-space ηα

operator and the subscripts 1 and 2 refer to the two sublat-
tice sites A and B of the honeycomb lattice. Furthermore,
the unit cell vectors of the triangular lattice, generating the
honeycomb lattice, have been labeled by r1 and r2. For nota-
tional convenience, we also introduce a third vector defined
by r3 = r1 − r2.

Before constructing lattice Hamiltonians harboring higher-
order EPs, let us first review the second-order EPs obtained
in a non-Hermitian extension of the Kitaev model, studied in
Ref. [12]. The momentum-space Hamiltonian takes the form

HK =
(

0 i Ã(q)
−i Ã(−q) 0

)
, (E6)

where the spin-spin coupling constants are tuned to com-
plex values, parametrized as J1 = |J1| exp(i φ1) and J2 =
|J2| exp(i φ2), and J3 (with φ1, φ2, and J3 constrained to be
real numbers). The Dirac points of the Majorana fermion
dispersion for φ1 = φ2 = 0 morph into EPs, as nonzero values
of φ1 and φ2 are turned on [12], and are located at

q̃1(2) = ± cos−1

( |J2(1)|2−|J1(2)|2−|J3|2
2 |J1(2)| |J3|

)
−φ1(2),

|J1| sin(q̃1 + φ1) = −|J2| sin(q̃2 + φ2), (E7)

where q̃ = (q̃1, q̃2) are the coordinates of the momentum vec-
tor in the reciprocal lattice space, in the basis of the reciprocal
lattice vectors. The second equation fixes the signs in the first.
The exceptional nature stems from complex Jα’s due to the
fact that Ã∗(q) 	= Ã(−q). There are pairs of EPs connected by
Fermi arcs and are thus robust against perturbations.
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The SO(3) extension of Eq. (E6), as shown in Eq. (E5),
has six bands, and thus has the possibility to host higher-order
EPs. To start with, we can tune the Jα’s into complex numbers,
as illustrated above. However, this results only in a triplet of
EP2’s, each arising from one flavor of the Majorana fermions.
In order to obtain higher-order EPs, we need to break the
SO(3) symmetry by introducing couplings between the three
flavors in various ways and/or using different values of the
Jλ’s for the three flavors. For instance, for nearest-neighbor
couplings between different flavors, the relevant spin oper-
ators take the form σα

i . . . τ
β
i . . . σ

γ

j . . . τ λ
j . . . , with i and j

here denoting the indices of the nearest-neighbor sites. As
a concrete example, the operator i exp(i q · r1) cα (−q) cβ (q)
(with α 	= β) translates into σα,i τ

1
i τ 1

j σβ, j .
In order to have a non-Hermitian behavior, we choose

J1 = J̃ exp(i φ) and J2 = J3 = J̃ , where J̃ and φ are real
parameters. The EPs are assumed to appear at q = q∗, as be-
fore. We introduce the functions g(q) = exp(i q · r1 + i φ) +
exp(q∗ · r2) + 1 and h(q) = exp(i q∗ · r1 − i φ) + exp(i q ·
r2) + 1. One can verify that g(q∗) = h(−q∗) = 0. Since both
of these represent nearest-neighbor hoppings, they can be
constructed via the spin operators as described in the earlier
paragraph.

To realize an EP4, one way is to consider the form

Hm =
(

0 i A(q)
−i AT (−q) 0

)
,

A(q) = diag{B(q), Ã0(q)},

B(q) =
(

Ã(q) z1 g(−q) + z2 h(q)
0 Ã′(q)

)
, (E8)

which affects only the couplings among the operators c1
1(q),

c2
1(q), c1

2(q), and c2
2(q). Here, z1 and z2 are the coupling con-

stants for the h(q) and g(−q) hoppings. For the flavor α = 2,
we have used a different coupling Ã′(q), which is obtained by
adding Ã(q) to h(q) or g(−q). Note that, in the low-energy
Majorana fermion model, we have B′(−q) = BT (q) due to

the particle-hole symmetry. The coupling Ã0 = 2(J (0)
1 ei q·r1 +

J (0)
2 ei q·r2 + J (0)

3 ) corresponds to the flavor α = 3 and can be
composed of a real set of values for the J (0)

λ ’s (as in the
Hermitian case), as the 2 × 2 block of this flavor does not
take part in the exceptional physics corresponding to the 4 × 4
block that we are tying to construct.

In order to realize an EP3, we need to make the cou-
plings c2

1 c1
2 and c2

1 c2
2 anisotropic around the EP. This can be

done by combining functions related by some type of crystal
symmetry. Let us assume that the function f (q) vanishes
linearly in δq near q∗. Then, we can find another function
f (qx, 2q∗y − qy), which is the mirror reflection of f (qx, qy )
with respect to q∗. Near q∗, the combined function f (qx, qy) +
f (qx, 2q∗y − qy) has a vanishing first-order derivative along
the qy direction, while its leading order Taylor expansion
along the qx direction is still linear, resulting in the desired
anisotropy. Using these functions, we can now construct the
Hamiltonian of the Majoranas as

Hm =
(

0 i A(q)
−i AT (−q) 0

)
,

A(q) = diag{B(q), Ã0(q)},
B(q) =

(
Ã(q) f1(q) + f1(qx, 2q∗y − qy)

z′
1 g(q) + z′

2 h(−q) Ã′(q) + Ã′(qx, 2q∗y − qy)

)
,

(E9)

where f1 = z1 g(−q) + z2 h(q) and B′(−q) = BT (q). The
coupling Ã0 can be constructed from real J (0)

λ ’s, similar to the
EP4 case. However, we immediately realize that the mirror-
symmetric part of Ã′(q) [i.e., Ã′(qx, 2q∗y − qy)], added to
the original Hermitian spin Hamiltonian, is not perturbatively
small. Hence the above construction may create flux excita-
tions in the corresponding spin model (so that we are no longer
in the zero flux state). Nevertheless, for a purely fermionic
model, this construction will work without involving such
issues.
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[28] W. Chen, Ş. Kaya Özdemir, G. Zhao, J. Wiersig, and L. Yang,
Exceptional points enhance sensing in an optical microcavity,
Nature (London) 548, 192 (2017).

[29] W. Langbein, No exceptional precision of exceptional-point
sensors, Phys. Rev. A 98, 023805 (2018).

[30] H. Wang, Y.-H. Lai, Z. Yuan, M.-G. Suh, and K. Vahala,
Petermann-factor sensitivity limit near an exceptional point in a
Brillouin ring laser gyroscope, Nat. Commun. 11, 1610 (2020).

[31] J.-H. Park, A. Ndao, W. Cai, L. Hsu, A. Kodigala, T. Lepetit,
Y.-H. Lo, and B. Kanté, Symmetry-breaking-induced plasmonic
exceptional points and nanoscale sensing, Nat. Phys. 16, 462
(2020).

[32] J. C. Budich and E. J. Bergholtz, Non-Hermitian Topological
Sensors, Phys. Rev. Lett. 125, 180403 (2020).

[33] G. Demange and E.-M. Graefe, Signatures of three coalesc-
ing eigenfunctions, J. Phys. A: Math. Theor. 45, 025303
(2012).
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