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Twisted N-layer graphene (TNG) moiré structures have recently been shown to exhibit robust superconduc-
tivity similar to twisted bilayer graphene (TBG). In particular for N = 4 and N = 5, the phase diagram features
a superconducting pocket that extends beyond the nominal full filling of the flat band. These observations
are seemingly at odds with the canonical understanding of the low-energy theory of TNG, wherein the TNG
Hamiltonian consists of one flat-band sector and accompanying dispersive bands. Using a self-consistent
Hartree-Fock treatment, we explain how the phenomenology of TNG can be understood through an interplay of
in-plane Hartree and inhomogeneous layer potentials, which cause a reshuffling of electronic bands. We extend
our understanding beyond the case of N = 5 realized in experiment so far. We describe how the Hartree and layer
potentials control the phase diagram for devices with N > 5 and tend to preclude exchange-driven correlated
phenomena in this limit. To circumvent these electrostatic constraints, we propose a flat-band paradigm that
could be realized in large-N devices by taking advantage of two nearly flat sectors acting together to enhance the
importance of exchange effects.
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I. INTRODUCTION

As theoretically predicted in seminal papers [1,2],
magic-angle twisted bilayer graphene (TBG) comprises
eight flat bands near charge neutrality, two per each spin and
valley flavor. At specific “magic” twist angles, these bands
become maximally flat. The first experimental realization
of this system [3,4] revealed an intriguing phase diagram as
a function of filling, featuring superconducting domes and
correlated insulating behavior at integer filling reminiscent
of the cuprates. Further experiments confirmed and extended
these findings [5–13], but also pointed to a strong device
dependence of the phase diagram. An important feature
that emerged as rather robust is the presence of “resets”
near integer fillings, corresponding to Stoner-like flavor
polarization phase transitions [14,15].

In searching for other promising moiré systems beyond
TBG, Refs. [16,17] suggested to stack more than two
graphene layers with alternating twist angles, see Fig. 1(a).
For any number of layers, this procedure preserves the moiré
translation symmetry of TBG. The resulting band structure
consists of a set of twisted-bilayer-graphene-like bands, re-
ferred to as sectors, at different effective twist angles as
illustrated in Fig. 1(c) [16–18]. These sectors (labeled by
k) are characterized by different spatial charge distributions
over the layers as sketched in Fig. 1(b). At the magic
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angle of the multilayer system, one sector’s effective an-
gle is just the magic angle of twisted bilayer graphene.
Importantly, this procedure allows for the construction of
flat-band devices at larger physical twist angles than for
TBG, yielding a smaller unit cell and potentially more robust
devices.

The proposal of Refs. [16,17] was first realized for the
case of three layers [6,19,20], which host a set of flat bands
coexisting with a graphene-like Dirac cone. These twisted
trilayer graphene (TTG) devices exhibited strongly-coupled
superconductivity tunable by an out-of-plane displacement
field. More recently, twisted N-layer graphene (TNG) devices
have been successfully fabricated for up to N = 5 layers
[21,22]. As for twisted bilayer graphene, the phase diagrams
of the multilayer systems featured prominent superconducting
domes in the temperature-doping plane. However, while in
TBG superconductivity typically terminates at filling |ν| = 3,
Ref. [22] observed that for N = 5, superconductivity persists
up to a filling of five electrons per unit cell. Strikingly, such
an extended superconducting pocket is at odds with a picture
of decoupled sectors [16–18].

The extended superconducting pockets reported in
Refs. [21,22] motivate us to study TNG systems theoreti-
cally. We employ mean-field theory for analytical estimates
and perform fully self-consistent Hartree-Fock calculations.
While mean-field theory has inherent drawbacks and is an
approximate technique, it has proven remarkably successful
in the study of TBG [23–27], with certain models of TBG
exhibiting Slater-determinant ground states at integer filling
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FIG. 1. (a) Device schematics. We consider N-layer graphene
with alternating twist angles in a double-gated setup. Here θ is the
physical twist angle. (b) Schematics of layer charge distribution [see
Eq. (8)] for N = 11, showing the three sectors with lowest effective
twist angle, k = 1: red, k = 2: orange, k = 3: green. In experiment
to date, k = 1 is the flattest, “magic” sector. (c) Single-particle band
structure for N = 11. (d) Band filling of the magic sector at different
total gate densities. 25 × 1012 cm−2 is the threshold of dielectric
breakdown in current hBN-based samples [29].

[28]. For a larger number of layers, the Hartree-Fock approx-
imation accounts well for the screening of classical charge
distributions, which we will argue play a crucial role in the
physics of TNG.

We focus first on understanding and explaining the experi-
mental results of Refs. [21,22] for N = 3, 4, 5 layers, and then
apply the developed framework to study the twisted N-layer
problem for larger values of N , characterizing its electronic
properties. We will argue that both in- and out-of-plane elec-
trostatics play a crucial role in shaping the phase diagrams of
TNG systems, providing a simple picture in terms of sector
shifts in Sec. II. For larger layer numbers, we show that elec-
trostatically doping the moiré system requires a larger charge
density on the metallic gates. This behavior arises because it is
necessary for the metallic gates to compensate for the charge
redistribution due to interactions. This effect makes it increas-
ingly prohibitive to electrostatically dope N > 5 multilayer
structures into the regime where the magic flat band is opti-
mally filled for superconductivity. This is shown in Fig. 1(d),
where we also indicate estimates for the gate charge densities.

Interestingly, we find that while going beyond N = 5 layers to
study interaction effects of the k = 1 flat band presents little
advantage, focusing on the second-harmonic bands (k = 2) in
Fig. 1(b) for N � 5 overcomes the prohibitive electrostatic
barrier and yields very flat bands conducive to correlation
effects.

Our paper is structured as follows. Section II presents
a summary of our results focusing on physical under-
standing and experimental trends. Section III outlines the
formal description of the N-layer problem and introduces
the Hartree-Fock machinery, emphasizing the similarities and
differences with twisted bilayer graphene (TBG). In Sec. IV,
we combine physical understanding with Hartree-Fock calcu-
lations for N = 3, 4, 5, focusing on explaining experimental
trends. Section V discusses the electronic properties of N >

5 devices in more detail. We conclude with a summary
and discussion in Sec. VI. Readers uninterested in details
of the mathematical description can focus on Secs. II, V,
and VI.

II. PHYSICAL UNDERSTANDING AND SUMMARY
OF MAIN RESULTS

A. Experimental motivation

A key physical effect in twisted alternating-angle graphene
multilayers is the cascade of “resets” close to integer fillings
of the flat bands. The resets already occur at relatively high
temperatures, well above those required for the correlated
superconducting and insulating states, and are deduced from
measurements of the chemical potential [14,15] as well as the
Hall conductivity [13,19]. The cascade of transitions can be
explained in different ways [14,15,26,30–33], with Ref. [14]
interpreting it as Stoner-like flavor (spin and valley) polar-
ization. Within this picture, flat-band superconductivity is
unlikely to exist when three of the four flavors are fully occu-
pied and time-reversed partners at the Fermi level are absent.
In TBG, this happens beyond ν = ±3 (see further discussion
in Sec. III regarding intervalley coherent orders). Irrespective
of the detailed theoretical symmetry-breaking mechanism,
this expectation is in line with experimental trends. In TBG, a
cascade transition near ν = ±3 typically serves as an upper
filling bound for superconductivity [6,13,19,34]. Similarly,
a lower filling bound for superconductivity is the cascade
transition at ν = ±2.

Cascade phenomenology has also been reported for TNG
systems with N = 3, 4, 5 layers [6,19,21,22], c.f., Fig. 2(a).
The band structure of TNG decomposes into decoupled
sectors of TBG-like and (for N odd) monolayer-graphene
(MLG)-like bands. This is illustrated by the example band
structure for N = 11 in Fig. 1(c), which features five TBG-like
bands and a Dirac cone. When one of the TBG-like sectors
is effectively at the magic angle, the cascade features can be
understood as occurring in the magic sector, with the other
sectors being filled uniformly [21,22].

Startlingly, as shown in Fig. 2(b) and reported in
Refs. [21,22], superconductivity persists to higher total fill-
ings (νtotal) in TQG (twisted quadrilayer graphene, N = 4)
and TPG (twisted pentalayer graphene, N = 5), extending up
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FIG. 2. (a) Experimental data of the Hall density vs total filling showing the the cascade transitions (arrows) for N = 3, 4, 5, see Ref. [22]
for details on the samples and measurements. (b) Corresponding experimental data for TC domes for N = 3, 4, 5. (c) Colormap of νtotal needed
to reach filling νmagic = 3 of the magic sector in the ε‖-ε⊥ plane. (d) Interacting structures and densities of states for TPG at νmagic ≈ 4, including
in-plane Hartree and Fock (HFX) terms from Eq. (3). Shown are the k = 1 magic sector (red) and k = 2 nonmagic TBG-like sector (blue).
Dashed red lines denote the location of the Fermi level. (e) Same as (d) but with layer Hartree potentials and Fock (XFL). (f) Same as (d) but
including all terms, that is, HFL. (g) Total magic-sector filling (top) and flavor-resolved magic filling (bottom), showing the cascade with
in-plane Hartree and Fock (HFX) for N = 3, 4, 5. (h) Same as (g), but with out-plane Hartree and Fock (XFL) (i) Same as (g), but including
all the terms (HFL).

to νtotal = 5 for the N = 5 case of TPG. Simultaneously the
cascade “resets” also set in at higher filling fractions.

Assuming that doping of the magic sector (νmagic) is in
the optimal range for superconductivity, i.e., approximately
2–3 electrons per moiré cell, these observations would im-
ply substantial filling of the nonmagic sectors at odds with
a simple band-structure picture. The nonmagic sectors are
strongly dispersive, so that their noninteracting band structure
would predict almost no filling. Specifically, complete filling
of the magic bands (νmagic = 4) would be accompanied by
a filling of less than ≈0.06 electrons per moiré unit cell in
the nonmagic bands for TPG and less than ≈0.02 electrons
per moiré unit cell for TQG. (We measure fillings relative to
charge neutrality.)

To obtain these estimates, we note that the �N/2� TBG-like
electronic sectors (k = 1, 2, . . . , �N/2�) have effective twist

angles [16]

θ eff
k = θ

2 cos
[

πk
N+1

] , (1)

which differ from the physical twist angle θ , Fig. 1(a). This
formula reveals the advantage of multilayers—one can obtain
a sector effectively at the magic angle for devices at a larger
twist angle θ . This is best exploited by choosing the k = 1
sector to lie effectively at the magic angle, which maximizes
the physical twist angle. All the current experiments on mul-
tilayer alternating twist angle systems make this choice, and
we shall also make it our default choice for analysis. However,
we note that for large N , the choice kmagic = 2 also becomes
feasible. We will return to this possibility in Sec. V. Approx-
imating the nonmagic sectors as Dirac cones, their filling is
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(see Appendix A 4)

νnon-magic =
∑

k∈nonmagic

νk ≈
∑

k∈nonmagic

AucNf ck

4π (h̄v
(k)
D )2

μ2
k . (2)

Here, ck = 2 (ck = 1) if the sector k is TBG-like (MLG-like),
μk is the effective chemical potential in sector k, Nf = 4 is the
number of flavors, and v

(k)
D is the Dirac velocity in sector k. In

the absence of interactions, μk = μmagic with μmagic the magic
sector Fermi energy. A filled magic sector corresponds to
μmagic ≈ W/2, where W is the noninteracting bandwidth. This
bandwidth varies with strain, taking values W � 20 meV.
Even at the upper limit for W , we then find νnon-magic � 0.06
for TPG (using v

(k=2)
D ≈ 0.35vD). For TQG, the k = 2 sector

has an even larger detuning from the magic angle (θ eff
k=2 =

2.9◦), so that v
(k=2)
D ≈ 0.6vD and νnon-magic � 0.02. Therefore,

the enhanced nonmagic-sector filling [21,22] is an interaction
effect, motivating our Hartree-Fock study of TNG.

B. Physical understanding

Electron-electron interactions alter the above considera-
tions predominantly through two terms in the Hamiltonian, as
can be seen by examining the mean-field decomposition (see
Secs. III B and III C for details)

HMF = HSP + HHartree + HFock + Hlayer. (3)

First, interactions represented by the Hartree and Fock mean-
field terms broaden the noninteracting magic bands, promote
the onset of symmetry-breaking order, and, crucially for
our analysis, induce filling-dependent upward shifts of the
quasiparticle energies relative to nonmagic sectors. This
Hartree-dominated shift arises because the electron density of
the TBG-like sectors is spatially inhomogeneous in the 2D
plane, which is associated with a cost in Coulomb energy
[26,35–39]. Importantly, the inhomogeneity is particularly
strong in the magic sector and decreases with detuning from
the magic angle. Second, the contribution Hlayer is new to
N > 2 layers and arises because the sectors have different
vertical charge distributions across layers [21,22] as shown
in Fig. 1(b). These distributions are given by the layer de-
pendence of the wave functions, taking the form of standing
waves analogous to a particle-in-a-box problem. The sector
with lowest effective twist angle, k = 1, corresponds to the
first harmonic, which is singly peaked at the center of the
stack. The k = 2 sector is the second harmonic with a doubly-
peaked structure, and so on. The different layer-dependent
charge distributions imply that the sectors have different ener-
gies due to the electric potential produced by the gate charges.

For the devices investigated experimentally (magic sector
k = 1), both HHartree and Hlayer effects enhance the occupa-
tion of the nonmagic sectors relative to the noninteracting
band-structure scenario described above. The first mechanism
postpones the occupation of the magic sector as it is broad-
ened and shifted upward in energy as it is filled. A similar
shift in energy also occurs for the second mechanism. The
potential produced by the gate charges in combination with
the induced charges in TNG has a maximum in the central
layer. (Note that in the absence of a displacement field, the
electric field vanishes at the center by symmetry. Moreover,

TABLE I. Inverse capacitance (C−1)k,k′ for k, k′ ∈ {1, 2}, evalu-
ated for layer numbers N = 4, N = 5, and N → ∞.

N (C−1)1,1 (C−1)1,2 = (C−1)2,1 (C−1)2,2

4 0.262 0.1 0.0382
5 0.403 0.208 0.125
N → ∞ 0.147 N 0.115 N 0.099 N

the potential drops towards the, say, positively charged gate
electrodes above and below the TNG stack.) Due to this po-
tential maximum, the energy is higher for sectors, in which
charge is more localized near the central layer. Thus, this
mechanism also predicts that the magic sector is pushed up
in energy relative to the nonmagic sectors.

We can provide an estimate of this electrostatically induced
band shifting, which will be verified in later sections through
extensive Hartree-Fock calculations. First we assume that in
the presence of interactions, the overall band structure of each
sector remains fixed (i.e., given by the noninteracting band
structure) and only the chemical potential of each sector μk

shifts as

μk = μ − Uk − Gk . (4)

Here, Uk and Gk quantify the shifts due to Hlayer and HHartree,
and μ is the chemical potential of the whole system. We take
Gk = 0 for all sectors except the magic sector (k = 1) as it
has the largest in-plane inhomogeneity (see Appendix A 2). In
the magic sector [26,35,36,40], Gk ∼ e2/(4πε‖ε0LM ), where
LM is the moiré period. For TPG, depending on dielectric
constant, Gk can be as large as 30 meV, giving a filling of
up to νnon-magic ≈ 1.1 of the nonmagic sectors at full filling of
the magic sector, νmagic = 4. This should be compared to the
noninteracting estimate of νnon-magic ≈ 0.06 given above.

Inclusion of the shift Uk induced by Hlayer can further
increase the filling of νnon-magic. The term Hlayer contributes
nontrivially due to imperfect screening of the gate electrodes
by the layers and becomes increasingly important as N grows.
The energy shift Uk of a sector k can be approximated by (see
Appendix C 2)

Uk = e2 dl

Aucε0ε⊥

∑
k′

(C−1)k,k′νk′ (5)

for given sector fillings νk . Here, Auc is the unit-cell area, dl is
the layer distance, and ε⊥ the out-of-plane dielectric constant
of the graphene layers. The matrix C in sector space is a
dimensionless capacitance-like matrix, which we tabulate for
TQG, TPG, as well as large N in Table I (see Appendix C 2
for formulas for arbitrary N and derivations).

For TPG we obtain a shift of up to 45 meV, allowing for
a filling of up to νnon-magic ≈ 2.5 for full filling of the magic
sector, νmagic = 4 (see Sec. III B for further discussion).

Modifications of the quasiparticle dispersion by HFock

would tend to reduce the above estimates. However, we also
highlight that the effects of the layer potential Hlayer and the
Hartree correction HHartree mutually reinforce each other. To
illustrate this, consider U1 − U2 = 10 meV and G1 = 10 meV
and small bandwidth W/2 = 2 meV. Taken separately, each
term would only yield a tiny νnon-magic ≈ 0.07. On the other
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hand, taking μ2 = 22 meV in Eq. (2) yields a four times larger
νnon-magic ≈ 0.3. This highlights the importance of considering
both shift mechanisms simultaneously.

To conclude the qualitative analysis of this section, we
comment on the relative role the three interaction terms in
Eq. (3) play as the layer number N increases. The inverse
capacitance matrix (C−1)k,k′ is a decreasing function of k and
k′. Physically, larger-k sectors screen the gate field better,
therefore generating smaller layer potentials. This monotonic
decrease implies that Umagic − Uk > 0 for any (nonmagic) k >

1. Thus, the effective chemical potentials μk of the nonmagic
sectors increase, enhancing their occupations. Secondly, for
fixed k and k′, (C−1)k,k′ scales linearly with the vertical ex-
tent (as the inverse capacitance of a parallel-plate capacitor)
and thus with the number of layers N . This suggests that
the layer potential grows in importance with N , eventually
dominating over other contributions for large N . Indeed, other
contributions to the mean-field Hamiltonian do not grow with
the number of layers. This suggests that the layer potentials

become dominant at large N and doping of the central k = 1
sector by gating will be preempted by dielectric breakdown
[29], as shown in Fig. 1(d). We return to this analysis using
Hartree-Fock calculations in subsequent sections.

III. MODEL

In this section, we introduce the noninteracting model,
specify the interaction, and discuss the mean-field decoupling.
While we largely follow standard procedures for the mean-
field description of moiré graphene [24–27,41–43], we allow
for layer dependence of the interaction and include the layer
potential term that is usually ignored.

A. Twisted graphene multilayers

We consider N-layer alternating angle twisted graphene.
Focusing on the K-valley, the single-particle Bistritzer-
MacDonald Hamiltonian reads [16]

HK
sp =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

h−θ/2(k) T †(r) 0 · · · 0

T (r) hθ/2(k) T (r)

0 T †(r) h−θ/2(k)
...

. . .

0 h(−1)N θ/2(k)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

where hθ/2(k) = −ih̄vD(σ · k)eiθσz denotes the Dirac Hamil-
tonians of the layers (our numerics neglects the rotation
of the Dirac terms) and T (r) =∑2

j=0 Tjeiq j ·r is the in-
terlayer hopping with Tj = wAAσ0 + wAB[σx cos(2π j/3) +
σy sin(2π j/3)] and q j = (O3) j (K2 − K1) = 2|K| sin(θ/2)
(O3) j[0,−1] with Ki the Dirac-point positions in layer i and
O3 the matrix of a counterclockwise 120◦ rotation. Neglecting
possible layer dependence, we account for lattice relaxation
by choosing wAA = 80 meV,wAB = 110 meV [18]. Disper-
sion and Bloch wave functions of the K ′ valley follow by
time-reversal symmetry. The model of Eq. (6) is a mini-
mal description of N-layer systems, neglecting relative layer
displacements [16,44], next-nearest-layer hoppings [16], pe-
riodic strain [45], and layer dependence of lattice corrugation
[18]. While these additional ingredients modify the quantita-
tive details of the electronic spectrum, they do not alter the
two key features, namely the inhomogeneous charge distribu-
tion and the inhomogeneous distribution of electronic sectors
across layers. Both ingredients are crucial to capture the effect
of interactions on the properties of the N-layered structure.

The single-particle Hamiltonian Hsp transforms into block-
diagonal form under a basis transformation VTNG in layer
space [16]. For an even number N of layers, there are N/2 =
�N/2� blocks—or sectors. These blocks describe bands anal-
ogous to twisted bilayer graphene at twist angle θ with
interlayer hoppings rescaled by a coefficient �k . We can
equivalently think of the sectors as corresponding to TBG
with unscaled hoppings, but an effective twist angle

θ eff
k = θ/�k . (7)

In this picture, the sector Hamiltonian is multiplied by an
overall scale factor �k . For N odd, in addition to the �N/2�
TBG-like sectors, there is an additional sector, in which
the band derives from the underlying graphene Dirac cone
folded into the moiré Brillouin zone (BZ). We will denote
this sector as the monolayer-graphene (MLG)-like sector [see
Fig. 1(c)]. We will choose the physical angle θ such that
there is one TBG-like sector—termed magic sector—at the
magic angle, θ eff

k = θmagic ≈ 1.1◦. In experiments to date, this
would be the k = 1 sector, but in Sec. V we also consider
the possibility kmagic = 2. We refer to all other sectors as
the nonmagic sectors, including the MLG-like sector for N
odd [16]. Technically, the sector decomposition emerges by
solving an effective �N/2�-site open tight-binding chain on
the even layers, with �N/2� solutions (see Appendix A 1 for
a pedagogical derivation). The solution for the odd layers
proceeds analogously. The resulting weight distribution for
sector k is

W (k)
l = 2

N + 1
sin2

(
πkl

N + 1

)
, (8)

as plotted in Fig. 1(b), with corresponding eigenvalues

�k = 2 cos

(
πk

N + 1

)
. (9)

Combined with Eq. (7), this gives Eq. (1). With an increasing
number of layers, there is a continuum of twist angles [16],
with the largest density of twist angles close to the mini-
mal θ eff

k (attained for k = 1). If the physical twist angle θ

is such that the lowest effective angle sector is magic, there

195148-5
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will thus be other sectors very close to the magic angle.
Moreover, by slightly decreasing the physical twist angle, one
can alternatively tune the larger effective angles to be magic
(see Sec. V). The weight distribution in Eq. (8) quantifies
the charge distributions across layers for the various sectors,
see Fig. 1(b). As discussed above, this is important for the
electrostatic properties of the problem.

B. Coulomb interactions

We assume a symmetric double-gated setup [see Fig. 1(a)]
as typically employed in experiment. We work at gate charge
densities en/2 per gate, so that −en is the charge density in
TNG. We include Coulomb interactions through

Hint = 1

2

∫
drdr′V (r − r′) : ρ(r)ρ(r′) :, (10)

where the density ρ(r) includes free charges in both the
graphene system and on the gates with the positive back-
ground subtracted (: ... : denotes normal ordering). The
integration ranges over the full 3D space. Integrating out the
electronic degrees of freedom of the metallic gates, one arrives
at an effective screened interaction for the N layers for a
fixed electron density n (see Appendix B 1 for details). The
resulting interaction Hamiltonian takes the form

Hint = 1

2A

∑
q 
=0

∑
i, j

Vi j (q) : ρi,qρ j,−q :

+
N−1∑
i=1

Aε⊥ε0dl
(E⊥

i,i+1)2

2
. (11)

Here, ρi,q is the electron density in layer i at in-plane mo-
mentum q, E⊥

i,i+1 denotes the uniform component of the
perpendicular electric field between layers i and i + 1, A is
the system area, dl is the interlayer distance, and Vi j (q) is
the double-gate-screened layer-dependent Coulomb interac-
tion derived in Appendix B 2. We allow the dielectric constant
of the q = 0 term (ε⊥) to differ from the dielectric constant
entering Vi j (q) (ε‖). Physically, the out-of-plane interaction
reflects the out-of-plane response of graphene, while the q 
=
0 component is governed by the dielectric properties of the
substrate. For graphene layers, ε⊥ has been estimated to be
around 2 [46,47], while ε‖ is around 5 for hBN substrates
[28,36,48,49]. Larger values, accounting for remote band
screening, have also been investigated [23,25,36]. We treat the
dielectric constants as parameters. Without the second term,
Eq. (11) is the standard in-plane Coulomb interaction of a 2D
system with screening due to metallic gates. The second term
is not usually included, but is important for multilayer systems
as discussed in Sec. II.

C. Mean-field decoupling

We perform our numerical calculations by restricting the
full Hilbert space to a finite number of Nactive bands with Nflavor

spin/valley flavors and solving the mean-field Hartree-Fock
equations. Specific details of the numerical simulation are
provided in Appendix E. We search for the Nactive × Nactive

density matrix [Pf (k)]αβ = 〈c†
f ,k,α

c f ,k,β
〉. Here c f ,k,β anni-

hilates a flavor- f electron in the single-particle band β at

momentum k. The single-particle bands fall into sectors k ∈
{1, . . . , no}. We keep Nremote remote bands, which generate ad-
ditional Hartree and Fock interaction terms. In projecting onto
a finite set of bands, we are assuming frozen fully filled bands
below and empty bands above this set. To avoid overcounting
of interactions already present in monolayer graphene and
thus included in the BM model [23,24,43], we subtract a
mean-field Hamiltonian corresponding to a reference density
matrix P0

f (k). This is implemented in the mean-field equa-
tions by replacing every Pf (k) with

δPf (k) = Pf (k) − P0
f (k). (12)

We choose the subtraction scheme [23,24,27,43] in which
P0

f (k) is the ground density matrix at charge neutrality with
the interlayer hoppings switched off. For bands far below
the charge-neutrality point, interlayer hoppings are ineffective
and this density matrix approximates that of fully filled TNG
bands. It therefore cancels with the remote-band-interaction
term to a good approximation [24,28], justifying retaining
only a finite number Nremote of remote bands.

For the in-plane term, the mean-field decoupling extends
the usual procedure detailed in previous studies [16,23–
26,41,42] to include the layer dependence of Vi, j (q). The
resulting Hartree term reads

HHartree = 1

A

∑
i, j

∑
G

ρ̂i,GVi, j (G)〈̂ρ j,−G〉, (13)

where we introduce the projected layer density operator,
ρ̂i,G =∑ f k c†

f ,k�
f i
G (k)c f ,k, and denote the mean-field density

operator (with the appropriate subtraction) as

〈̂ρ j,−G〉 =
∑

f

∑
k

〈c†
f ,k�

f j
−G(k)c f ,k〉

=
∑

f

∑
k

tr
[
δPT

f (k)� f j
−G(k)

]
. (14)

Here, the trace runs over the space of active bands. Similarly,
the Fock term reads

HFock = − 1

A

∑
f

∑
i, j

∑
q,k

Vi j (q)

× c†
f ,k

[
� f i

q (k)δPT
f (k + q)� f j

−q(k + q)
]
c f ,k, (15)

where in contrast to the Hartree term, each flavor interacts
only with itself.

At the mean-field level, the charge distribution across the
layers enters the Hamiltonian through

Hlayer = −e
∑

l

ρ̂l,0Vl , (16)

where Vl is the potential and ρ̂l,0 the electron number (i.e., the
q = 0 Fourier component of the electron density ρ̂l,q) of layer
l . The term Hlayer contributes nontrivially due to imperfect
screening of the gate electrodes by the layers and becomes
increasingly important as N grows. Appendix B 3 details a
formal derivation of Hlayer in Eq. (16) by decoupling the out-
of-plane term in Eq. (11). The difference of layer potentials

Vi+1 − Vi = −dlE
⊥
i,i+1 (17)
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is related to the electric field, which is given by (Gauss law)

E⊥
i,i+1 = − e

ε0ε⊥

{
1

A

i∑
l=1

〈̂ρl,0〉 − n

2

}
. (18)

We fix the arbitrary constant of Vi by setting V1 + VN = 0.
We note in passing that Ref. [18] similarly considers inter-

action effects on the electronic spectrum of N > 3 systems.
The nonmagic sectors are described as a set of equal Dirac
cones with the chemical potential set by that of the flat bands.
Their role in the mean-field calculation is reduced to provid-
ing static RPA screening for the magic sector as given by
Refs. [50,51]. This procedure focuses solely on describing
interaction effects in the magic bands, but misses the impact of
the nonmagic sectors on hybridizing the sectors and shifting
their relative energies with the concomitant changes in filling.

Our analysis assumes that the symmetry breaking pre-
serves the flavor index, precluding intervalley coherent states
[24,27,49,52], which are likely the actual ground states
[53,54] of twisted bilayer graphene [55–57]. This limits our
analysis to qualitative features of the phase diagram of N-layer
alternating twisted bilayer graphene. This approach has been
shown to reproduce experimental trends [14,31]. As we will
see, the phase diagram of TNG is mainly controlled by the in-
terplay of the in-plane Hartree and layer potentials, which on
the moiré scale, are insensitive to the subtle details of flavor-
symmetry breaking [26]. We thus expect our results to apply
even when different candidate ground states [24,27,49,52]
(such as intervalley coherent states) are considered for the
magic sector.

Experimental samples are, to some extent, always strained
[20,58–62]. Strain increases the kinetic energy of the bands,
suppressing interaction effects, and breaks C3 symmetry,
preventing gap opening by C2T symmetry breaking. We
incorporate strain as a constant vector potential, which al-
ternates between layers (heterostrain [63]) as described in
Appendix A 3. This simplified description of strain is suffi-
cient to capture the broadening of the noninteracting bands as
well as the C3 symmetry breaking. Not considering intervalley
coherence, we also preclude the incommensurate-Kekulé-
spiral state [27,43], for which there is some experimental
support [53,64]. Again, this is justified since electrostatic ef-
fects have larger energy scales and contribute over a wider
temperature range.

IV. MEAN-FIELD RESULTS FOR N � 5

We now apply the mean-field approach detailed above
to alternating twisted N-layer structures with N = 3, 4, 5,
confirming the qualitative reasoning discussed in Sec. II. Fig-
ures 2(a) and 2(b) show experimental results for the filling
dependence of the Hall density and of the superconducting TC ,
respectively. Taken together, these data indicate a substantial
filling of the nonmagic sectors. As originally proposed in
Refs. [21,22], this enhanced filling can arise because of both,
Hlayer or HHartree.

To disentangle the effects of Hlayer and HHartree, we first
consider the total filling required for νmagic = 3 (taken here
as a tentative upper bound for superconductivity) for TPG as
a function of the dielectric constants ε‖ and ε⊥, see Fig. 2(c).

To focus on the cascade physics, we include moderate strain
(εstrain = 0.2%), which explicitly breaks C3 symmetry and
suppresses the appearance of correlated insulating states. For
strong interactions (small dielectric constants), the entire k =
2 nonmagic sector fills first before the magic sector starts
to fill, incompatible with the onset of superconductivity for
ν ≈ 2 in Fig. 2(b). In the opposite, weakly interacting limit,
only negligible filling of the nonmagic sectors is induced, pre-
cluding an extended superconducting pocket. Therefore, we
use moderate ε‖ = 14 and ε⊥ = 6 in this section, referring to
Appendix D for results for other parameter choices, including
results at vanishing strain.

To probe the interplay of Hlayer and HHartree, Figs. 2(d)
and 2(g) show numerical results retaining only the in-plane
Hartree and Fock terms (“HFX”) and Figs. 2(e) and 2(h)
display corresponding results retaining only the out-of-plane
(Hlayer) and Fock terms (“XFL”). Finally, Figs. 2(f) and 2(i) in-
clude all terms (“HFL”). We first consider the band structures
at full filling of the magic sector, plotted in Figs. 2(d)–2(f).
Excluding the Hartree or layer potentials [HFX, Fig. 2(d) and
XFL, Fig. 2(e)], we obtain only a minimal shift of the magic
(red) vs the nonmagic (blue) sectors. Interestingly, we find that
in these approximations, the shifts due to HHartree and Hlayer are
largely compensated by the effects of HFock. However, there is
a substantial shift when including all terms [HFL, Fig. 2(f)].
This highlights the importance of considering all of the terms
together.

These trends are also reflected in the cascade plots in
Figs. 2(g)–2(i) for N = 3, 4, 5, which exhibit the flavor-
resolved fillings as a function of νtotal. Figures 2(g) and 2(h)
show results for XFL and HFX, respectively, and exhibit little
effect of the nonmagic sectors on the cascade. This is con-
sistent with the absence of a shift in Figs. 2(d) and 2(e). In
contrast, Fig. 2(i) shows increasingly delayed cascade tran-
sitions as the number of layers N grows. This again reflects
the importance of incorporating the effects of both, Hlayer and
HHartree.

Numerically, for our choice of dielectric constants and
N = 5, the νmagic = 3 cascade is pushed to νtotal ≈ 5, while the
νmagic = 2 cascade happens at νtotal ≈ 3. While the νmagic = 3
cascade is consistent with experiment, the superconductivity
data [Fig. 2(b)] suggest that the νmagic = 2 cascade already
appears at νtotal ≈ 2. Fully reproducing the experimental data
may require more accurate modeling of the devices or more
accurate approximations, e.g., allowing for the appearance of
intervalley correlated ground states [24,27,49,52,53,64].

V. LARGE-N ANALYSIS

We now consider the interplay of the in-plane Hartree,
Fock, and layer potentials in the experimentally unexplored
cases of N > 5 and kmagic = 2 . The key question we would
like to explore is to what extent TNG reproduces the phe-
nomenology of TBG, when charge-inhomogeneity-induced
band shifts are included?

Figure 3 presents the main results of this section for
ε‖ = 10 and ε⊥ = 6. In Figs. 3(a) and 3(b), we consider the
νtotal needed to achieve complete filling of the magic sec-
tor, νmagic = 4. We compare the cases of kmagic = 1 [spectral
weight peaked in the central layers, Fig. 3(a)] and kmagic = 2
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FIG. 3. (a) νtotal as a function of layer number N at νmagic = 4
choosing k = 1 as the magic sector at ε‖ = 10, ε⊥ = 6, εstrain = 0%.
(b) Same as (a) for kmagic = 2. (c) Bandwidth at νmagic = 4 for the
choice of kmagic = 1 (red) and kmagic = 2 (blue). Dashed curves are
for finite strain εstrain = 0.2%. (d) Effective interaction parameter rs

at νmagic = 4 for kmagic = 1 (red) and kmagic = 2 (blue). Dashed lines
are at finite strain εstrain = 0.2%.

sector [spectral weight predominantly away from the central
layers, Fig. 3(b)]. Each figure shows plots including (i) the
in-plane Hartree and Fock (HFX), (ii) the layer potentials
and Fock (XFL), and (iii) all terms combined (HFL). For
kmagic = 1 [Fig. 3(a)], we see that the total filling required to
completely fill the magic sector increases dramatically with N .
This confirms our expectation that gating the kmagic = 1 sector
becomes prohibitively difficult as the layer number increases.

Interestingly, when choosing k = 2 as the magic sector
[Fig. 3(b)], the magic sector fills much more easily. This is
a result of the fact that the potential due to the gate charges is
maximal at the central layers, so that the k = 1 sector is more
strongly shifted than the k = 2 sector. As a result, kmagic = 2
circumvents the electrostatic barrier present for gating the k =
1 sector, providing a promising platform to study TBG-like
physics in TNG samples with larger N .

In Fig. 3(c), we consider the bandwidth of the magic sector.
We compute the interacting bandwidth of the completely filled
magic bands at νmagic = 4 (see Appendix D for other choices)
defined as

BW = max
k

E+
k − min

k
E−

k , (19)

where E+
k (E−

k ) are the band energies of the upper (lower)
magic-sector band. Choosing k = 1 (red) as the magic sector,
we observe a substantial increase in bandwidth due to the
in-plane Hartree and layer potentials. This suggests that even
if the bands could be filled, the increased bandwidth will sup-
press correlated physics associated with the flat-band regime.
Choosing k = 2 (blue) as the magic sector, the bandwidth also
increases with N , but less so than for kmagic = 1. This can be
partially explained by the fact that much of the bandwidth is
interaction driven and for a given N , kmagic = 1 has a smaller

unit cell than kmagic = 2. To accurately gauge the importance
of interactions in the magic bands, we need to compare the
bandwidth to the interaction scale. The effective interaction
scale depends on the vertical spread of charges in the sector
of interest. Using that the interaction between charge distribu-
tions with wave vector q in two layers separated by a distance
d is (e2/2ε‖ε0q)e−qd [cf. Eq. (B2)], the effective interaction
energy per flat-band electron can be estimated as

e2

4πε‖ε0LM
〈exp(−λG|z − z′|)〉

= e2

4πε‖ε0LM

∑
i, j

W (k)
i exp(−λGdl |i − j|)W (k)

j . (20)

Here, the average in the first line is over the pairs of layers
(located at z and z′) accounting for the charge distribution of
sector k over layers as described by W (k)

i . We also used that the
characteristic wave-vector scale G is given by the magnitude
of the shortest reciprocal lattice vector G = 4π/(

√
3LM ), i.e.,

the inverse of the moiré length LM . In the exponent, λ accounts
for the fact that the characteristic wave vector depends some-
what on the interaction effect of interest. We choose λ = 1 for
Hartree effects, and λ = 1

2 for correlation (Fock) effects.
We can now use the computed bandwidth to define a di-

mensionless measure of the interaction strength in the flat
bands,

rs = e2〈 exp
(

1
2 G|z − z′|)〉/(4πε‖ε0LMBW). (21)

While this is still an oversimplified measure of interaction
effects in flat bands [65], it serves as a useful metric in com-
parison to similar analysis for TBG [66]. In Fig. 3(d) we plot
the effective rs as a function of layer number N . For kmagic = 1
(red full line) and zero strain, rs decreases with increasing N ,
suggesting that devices with N < 5 are most likely to exhibit
correlation effects. Strained kmagic = 1 data (red dashed line)
highlight the advantage of N > 2. The importance of a given
nominal value of strain diminishes with N . For this reason,
rs is larger for strained N = 3 than N = 2. Interestingly, we
find that rs is larger for kmagic = 2 (blue) than for kmagic = 1.
This holds even for strained devices. For increasing N , again,
there is a decrease in rs, which nevertheless stays above the
kmagic = 1 value.

To understand this peculiar behavior of rs, we consider
N = 5 and kmagic = 2 at zero strain. For k = 2 at the magic an-
gle, the k = 1 sector is nominally below the magic angle, but
still very flat. This results in a cascade-like transition, at which
the k = 2 sector becomes almost completely filled, while the
k = 1 sector has negative (hole) filling. Consequently, we find
νtotal < 4 at νmagic = 4. This transition is encouraged by the
central charge distribution over layers, larger inhomogeneity
(see Appendix A 2), and larger bandwidth of the nonmagic,
k = 1 sector (with effective twist-angle below the magic an-
gle). After the cascade, the inhomogeneity of the holes from
k = 1 partially cancels against the inhomogeneity of the k =
2 electrons, yielding a filled magic band with anomalously
small Hartree broadening.

The behavior of rs, together with the required doping de-
pendence shown in Figs. 3(a) and 3(b), suggest that to realize
strongly interacting bands for large N multilayer devices, it
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is necessary to focus on sectors k 
= 1 such that the spectral
weight is not localized near the center of the device structure.
For example, for the k = 2 sector to be at the effective magic
angle of θ eff

2 = 1.1◦, this would correspond to physical twist
angles of 1.1◦, 1.37◦ for N = 5, 6-layer devices, respectively
(see Appendix E for further analysis).

Finally, we comment on the role of dielectric constants
in large-N multilayers. In the literature, these constants are
taken as fitting parameters and frequently vary between ex-
periments. Thus, it is helpful to discuss the behavior of Fig. 3
as a function of the dielectric constants. The effect of a de-
creasing interaction strength on Fig. 3(a) is to shift all the
curves downward. At zero strain, changing ε‖ from 10 to 14
leaves the cascade physics unchanged, since it comes from
two sets of very flat single-particle bands (k = 1 and k = 2).
At nonzero strain, decreasing interaction strength lowers rs,
as the strain-induced broadening becomes more relevant. De-
tailed parameter dependencies are in Appendix D.

VI. SUMMARY AND DISCUSSION

In our analysis, we demonstrate how in-plane Hartree and
layer potentials control the phase diagram of alternating-angle
twisted multilayer graphene. Compared with the experimental
results of Refs. [21,22], we showed that it is the interplay of
these two effects that accounts for the filling enlargement of
the superconducting pocket with layer number. In fact, we find
that small-N devices are the preferred layered structures to
study k = 1 flat-band physics. For N > 5, the magic sector
present in the decoupling introduced in Ref. [16] becomes
strongly modified by the presence of Hartree effects to the
extent that electrostatic doping of that sector becomes chal-
lenging. In addition, the interacting bandwidth is enlarged by
the in-plane and out-of-plane (layer) Hartree effects, likely
precluding Fock-driven correlated phenomena.

The suppression of exchange-driven correlated phenomena
by the Hartree effect relies on the mechanism of band shifting.
Indeed this mechanism has been observed in the context of
TTG, where shifting of the flat band with respect to the Dirac
cone can be seen spectroscopically [20]. However, to date
no scanning tunneling microscope (STM) experiments were
carried out on N > 3 devices. Such experiments may allow
one to verify the scenario developed here. This may also allow
one to assess whether alternative theoretical explanations of
the enlarged superconducting pocket, such as the more exotic
scenarios discussed in Ref. [22], are necessary. We caution,
however, that for STM measurements, one side of the sample
is typically left uncovered, so that there is only one gate on the
opposite side. In this single-gate setup, it is impossible to vary
displacement field and doping independently. Instead, varying
gate voltage traces out a line in the filling-displacement field
plane. Nonetheless, we expect the qualitative physics of band
shifting to persist as it is a robust consequence of charge inho-
mogeneity. However, quantitative predictions must be adapted
to the new device geometry.

Experiments on moiré graphene systems exhibit substan-
tial particle-hole asymmetry, unlike our theoretical analysis.
Specifically, in TBG correlated insulators appear to be more
robust on the electron side than on the hole side. Similarly,
superconductivity can also appear in a particle-hole asymmet-

ric manner [34]. In the TPG samples studied in Ref. [22],
superconductivity persists up to νtotal = 5 on the electron side,
but only down to νtotal = −4 on the hole side. Particle-hole
symmetry breaking can be incorporated into the BM model
[32,67,68]. However, we find this to be insufficient to re-
produce the observed experimental trends. The presence of
particle-hole symmetry is a common feature of theoretical
efforts to date and requires further investigation.

While our results suggest that correlated phenomena are
likely precluded for N > 5 samples with k = 1 magic sec-
tor, k = 2 flat bands appear more promising. We find that
kmagic = 2 is subject to much weaker band reshuffling and
thereby allows for effective electrostatic gating. Moreover, the
k = 2 band can become unexpectedly flat. This suggests a
resurgence of flat-band physics for large N in the k = 2 sector,
which could in principle differ from that seen in TBG, for
instance because the multiple nearly flat bands may conspire
to reduce the Hartree-driven renormalizations that suppress
the exchange effects.
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APPENDIX A: PROPERTIES OF THE SINGLE-PARTICLE
HAMILTONIAN

1. Sector decomposition

We review the derivation of the sector decomposition, fol-
lowing Ref. [16]. Labeling graphene layers by i ∈ {1, . . . , N},
we have ne = �N/2� even layers with twist θ relative to the
no = �N/2� odd layers. Interlayer hopping only couples be-
tween odd and even layers. Thus, there can be a vector in
layer space with support only in the odd layers, which maps
onto another vector with support only in the even layers under
interlayer hopping. This vector, in turn, maps back onto the
first. Mathematically, we are looking to find the singular-value
decomposition (SVD) of the adjacency matrix W in the space
of the layers (no, ne). This dimensionless matrix codifies be-
tween which layers there is hopping,

W =

⎛⎜⎜⎝
1 0 0 · · ·
1 1 0
0 1 1
...

. . .

⎞⎟⎟⎠, (A1)
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where Wi, j = 1 if layers 2 · i − 1 and 2 · j are adjacent. The
SVD procedure yields right singular vectors R(k)

j , left singu-

lar vectors L(k)
i , and eigenvalues �k satisfying W Rk = �kLk .

The eigenvalues �k are the coefficients introduced in Eq. (7)
rescaling the interlayer hopping. The ne dimensional right sin-
gular vector R(k) is the wave function on physical, even layers
for the kth twisted bilayer graphene-like sector. Accordingly,
the no dimensional left singular vector L(k) for k � ne gives the
wavefunction across odd physical layers for the k-th twisted
bilayer graphene-like sector. For N odd, there is one additional
left singular vector L(no), which spans the kernel of W T . This
vector gives the spectral weight across the odd layers of the
MLG sector. Further, in terms of the vectors R(k) and L(k), the
basis transformation matrix VTNG is given by

VTNG =

⎛⎜⎜⎜⎜⎜⎝
L(1)

1 0 L(2)
1 · · ·

0 R(1)
1 0 · · ·

L(1)
2 0 L(2)

2 · · ·
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎠. (A2)

The SVD procedure yields ne TBG-like sectors with hoppings
renormalized by �k (and for N odd, an extra Dirac cone corre-
sponding to the kernel of W T ). We use the equation W R(k) =
�kL(k), together with its transpose, to obtain W T W R(k) =
(�k )2R(k), which is a Hermitian eigenvalue problem. We
therefore need to find the eigenvalues and eigenvectors of the
ne × ne symmetric matrix,

W T W =

⎛⎜⎜⎝
2 1 0 0 · · ·
1 2 1 0
0 1 2 1
...

. . .

⎞⎟⎟⎠, (A3)

where for N odd (W T W )ne,ne = 1 
= 2. This matrix can be
physically interpreted as the Hamiltonian matrix of a tight-
binding chain with open boundary conditions, on-site mass
2 and hopping of magnitude 1. To find the eigenvalues and
eigenvectors, we start with solutions of the infinite chain
problem, which are plane waves eip j for some momentum p,
where j ∈ [−∞,∞] are the sites of the infinite chain. The
physical sites of our open chain, corresponding to the even
layers, on the other hand, go only from 1 to ne. eip j are eigen-
vectors of the infinite problem with eigenvalue 2 + 2 cos(p).
Note the degeneracy p → −p. Specific combinations of these
plane wave solutions for some p are in fact also solutions of
the open chain. Due to the absence of next-nearest-neighbor
hopping, the only point at which the infinite solutions could
fail to be solutions is at the edges of the open chain. For
example, take the j = 1 boundary site. exp(ip j) generally
does not satisfy the open boundary problem, as there is no
hopping from the (nonexistent) j = 0 site to j = 1 in the open
boundary problem. However, taking a linear combination of p
and −p to form Rj = sin(p j) has a zero at j = 0, so in the
infinite problem the hopping from j = 0 to j = 1 does not
contribute to the equation. Therefore, sin(p j) are the class
of wave functions that satisfy the open boundary condition
(BC) at the left end, j = 1. Now let us move to the boundary
condition at j = ne. For (W T W )ne,ne = 2 (N odd), we sim-
ply need to require that sin[p(ne + 1)] = 0, in order that the

hopping from the nonexistent ne + 1 site vanishes. This leads
to the quantization condition p(ne + 1) = kπ with k positive
integer.

For (W T W )ne,ne = 2, we need to analyze the equation at
site ne. The open BC equation reads

Rne−1 + Rne = ERne , (A4)

while the periodic infinite solution satisfies the following:

Rne−1 + 2Rne + Rne+1 = ERne . (A5)

This suggests that if we find an infinite solution with Rne +
Rne + 1 = 0, it will also satisfy the open boundary condition
at j = ne with on-site lower mass. To satisfy the left bound-
ary condition, we need to have Rj ∝ sin(p j), so we have a
condition on p: sin(pne) + sin[p(ne + 1)] = 0. This will be
satisfied precisely when p(ne + 1

2 ) = kπ . We can write the
condition for N odd and N even as one condition, using that
for N even, ne = N/2 and for N odd ne = (N − 1)/2,

p(N + 1) = 2πk. (A6)

From this, the full solution for R(k)
j reads

R(k)
j =

√
4

N + 1
sin (2πk j/(N + 1)). (A7)

The eigenvalues are

Ek = 2 + 2 cos [2πk/(N + 1)] = 4 cos2[πk/(N + 1)],

(A8)

from which the singular values are (since �2
k = Ek)

�k = 2 cos [πk/(N + 1)]. (A9)

We can also write down the L(k)
j using the condition for

k � neW R(k) = �kL(k), while for N odd there is an extra left
singular vector W T L(no) = 0. For k � ne, we get

L(k)
j =

√
4

N + 1
sin[πk(2 j − 1)/(N + 1)]. (A10)

Lastly, for N odd, we get an extra MLG-like sector with a
vector

L(no)
j = 1√

no
(−1) j . (A11)

Having obtained the layer wavefunctions for each sector k, we
consider the average occupation of each layer for an electron
in sector k. Considering an electron in a TBG-like sector k to
be half in the odd layers and half in the even layers, we obtain
the density distribution across the layers

W (k)
l ≡ 1

2

[(
Lk

1

)2
,
(
Rk

1

)2
,
(
Lk

2

)2
, . . . ,

({L/R}k
N

)2]
l

= 2

N + 1
sin2[πkl/(N + 1)] (A12)
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FIG. 4. Dependence of 〈uk+G,α|uk, α〉, a quantity that controls the in-plane Hartree correction, on twist angle for N = 2.

where the last entry in the definition is L for N odd and R for
N even, obtaining Eq. (8). The weights are plotted in Fig. 1(c).

2. Twist angle dependence of the in-plane charge inhomogeneity

In Fig. 4, we plot the dependence of the average wavefunc-
tion overlap

〈uk+G,α|uk, α〉 = 1

Nk

1

NG

∑
k,G

1

2

∑
α=1,2

|〈uk+G,α|uk,α〉| (A13)

on twist angle for N = 2 (this result applies to any TBG-like
sector) for the two central flat bands. Here the sum over G runs
over the NG = 6 shortest nonzero reciprocal lattice vectors
and k are in the first Brillouin zone, with Nk = 144 the num-
ber of k points in the numerical calculation grid. This average
overlap increases with decreasing twist angle. Its meaning can
be understood from Eq. (13). The larger the wavevector G
overlap, the more strongly a sector couples to the in-plane
inhomogeneity at wavevector −G. Conversely, sectors with
a larger overlap at wavevector G generate a larger mean-field
inhomogeneity at −G. This implies that for kmagic = 1, the
magic sector feels the in-plane potential most strongly and is
most effective at generating it.

3. Strain

In TBG, heterostrain drastically increases the single-
particle bandwidth [63], changes the nature of correlated
states [27,52], and can induce in-gap states [69]. The proce-
dure for implementing heterostrain in TBG involves adding
vector potentials due to the changes in graphene hoppings and
distorting the moiré Brillouin zone, altering the momentum
space distance between the two layers of Dirac cones and
the moiré reciprocal vectors. Since, for a bilayer, any layer-
dependent strain can be decomposed as the sum of hetero and
homostrain, and homostrain has negligible effect, including
heterostrain in this way is a generic procedure that captures
qualitative physical trends. In systems with more than two lay-
ers, there are more nongeneric layer dependencies possible.
As the purpose of our modeling is to introduce a mechanism
for broadening the single-particle bandwidth, we consider a
simple procedure and only add the vector potentials induced

by the graphene hoppings, choosing an antisymmetric layer
structure,

Al = (−1)lA0, (A14)

where the single-layer vector potential is given by

A0 =
√

3

2a
β(εxx − εyy,−2εxy), (A15)

with a being the monolayer graphene lattice constant and
β ≈ 3.12 the hopping modulus factor [63]. We choose εxx =
εstrain, εxy = 0 and εyy = −0.16 · εstrain (0.16 is the Poisson
ratio for graphene), varying εstrain from 0 to 0.2 × 10−2. This
layer structure is motivated by the fact that it acts just like
a heterostrain vector the potential within each bilayer-like
sector at zero-displacement field. The above-defined vector
potentials couple via minimal coupling to the momentum
operator [63].

4. Density of states for nonmagic sectors in the Dirac cone
approximation

In this section, we evaluate the numerical constants that
appear in the expression for density of states (DOS) for a
Dirac cone dispersion to obtain estimates for the DOS of the
nonmagic sectors, as used in Sec. II of the main text. To this
end, let us evaluate the prefactor of Eq. (2) with vD instead of
v

(k)
D ,

Auc

4π (h̄vD)2
=

√
3(0.246 nm)2/(8 sin2(θ/2))

4π (6.582 × 10−16 10Vs × 106 ms−1)2

= 31.6/θ2 10V −2
, (A16)

where in the last equality, the twist angle θ should be plugged
in degrees. For the k = 2 nonmagic sector in TPG, we
have Nf = 4, ck=2 = 2, θ = 1.9◦, v

(k=2)
D = 0.35vD. We note

in passing that Ref. [2] finds a smaller Dirac velocity. This
is because here we account for lattice corrugation by tak-
ing wAA/wAB = 8

11 , while in Ref. [2] the unrelaxed value,
wAA/wAB = 1, is taken. Plugging into Eq. (A16), we obtain

νTPG
k=2 = (5.71 × 10−4 meV−2)μ2

2. (A17)
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As an example, for μ2 = 10 meV, using Eq. (2) we obtain
filling ν2 � 0.06. As noted in the main text, for ν2 � 0.5, we
use the numerically computed full noninteracting density of
states, which involves a DOS peak at the van Hove singularity.

APPENDIX B: INTERACTING HAMILTONIAN

In this Appendix, we discuss various elements of the anal-
ysis that were carried out in going from the full interacting
Coulomb Hamiltonian for the 3D system to the Hamiltonian,
including only the layer indices. We also detail the mean-field
decoupling of the out-of-plane term.

1. Integrating out the gate electrons

Here we start from the full 3D Coulomb interaction
1
2

∫
dr dr′V (r − r′) : ρ(r)ρ(r′) : to obtain an effective inter-

action for TNG. We consider the charges to be constrained
in N + 2 layers labeled by an index I going from 0 to N + 1
at vertical positions zI . This corresponds to the physical sit-
uation of a sample with N graphene layers and two gate
layers I = 0, N + 1. In other words, we decompose ρ(r) =∑

I ρI (r)δ(z − zI ), where ρI (r) is the (two-dimensional) den-
sity in layer I . In Fourier space, we have

Hbare
int = 1

2A

∑
q,I,J

V bare
IJ (q) : ρI,qρJ,−q :, (B1)

where A is the two-dimensional area of the sample, we sum
also over layers 0 and N + 1 corresponding to the gates, and
V bare

IJ is the bare Fourier-transformed 2D Coulomb interaction
with vertical separation dIJ = |zI − zJ |, which reads

V bare
IJ (q) = e2

2εε0q
exp (−dIJq). (B2)

For q = 0, we separate the divergent and finite parts as fol-
lows:

V bare
IJ (q → 0) = e2

2εε0

[
O

(
1

q

)
− dIJ

]
. (B3)

The divergent part is canceled if the total charge adds up to
zero

∑
I ρI,q=0 = 0, and what remains of the q = 0 term is

− e2

2εε0
dIJ . Therefore we obtain, separating q = 0,

Hbare
int = 1

2A

⎡⎣ ∑
q 
=0,I,J

V bare
IJ (q) : ρI,qρJ,−q :

−
∑
I,J

e2

2εε0
dIJ : ρI,q=0ρJ,q=0 :

⎤⎦, (B4)

which still includes the gate charges. We can simplify the
second term by working at the fixed gate and sample charge,

allowing us to replace ρ0,0

A = − n
2

ρN+1,0

A = − n
2 , and

∑N
i=1 ρi,0

A =
n. Then it can be (up to a n-dependent constant) more physi-
cally rewritten as the electrostatic energy of the perpendicular
electric field between the layers, which is given by Gauss’ law
as

E⊥
i,i+1 = − e

ε0ε

{
1

A

i∑
l=1

〈̂ρl,0〉 − n

2

}
. (B5)

With this identification, Hbare
int reads

Hbare
int = 1

2A

⎡⎣ ∑
q 
=0,I,J

V bare
IJ (q) : ρI,qρJ,−q :

+
N−1∑
i=1

εε0dl
(E⊥

i,i+1)2

2

]
. (B6)

For the q 
= 0 term, we integrate out the gate electrons and
end up with an effective screened interaction for the N layers,
whose form is obtained in the next section using the method of
images. Above, it was assumed that there is a single dielectric
constant for the medium between the graphene layers and
between the sample and the gates. Here we consider the more
realistic possibility of having different dielectric constants in
between the graphene layers and around the gates. This leads
to two modifications in Eq. (B7): Firstly, the perpendicular
electric field term should have its own dielectric constant ε⊥,
related to the out-of-plane dielectric properties of graphene.
Secondly, Vi j (q) has a more complicated dependence than in
Eq. (B2), since interaction at different scales sees different
dielectric environments. We will include the first effect, but
for the sake of simplicity, we will model Vi j (q) as if there was
a single dielectric constant, deriving its form in Appendix B 2
below. However, we will allow the dielectric constant of Vi j (q)
(ε‖) to differ from ε⊥. With this we obtain the effective system
interaction Hamiltonian from the main text,

Hint = 1

2A

∑
q 
=0,i, j

Vi j (q) : ρi,qρ j,−q : +
N−1∑
i=1

Aε⊥ε0dl
(E⊥

i,i+1)2

2
.

(B7)

2. Layer-dependent in-plane Coulomb interaction

The interaction between two electrons depends on which
layer each electron is in. In free space, this simply adds a
factor e−q|z−z0| in the Fourier transform of the interaction. Here
we calculate the layer-dependent interaction in Fourier space
in the presence of two gates at positions z = ±ds, where ds

is the screening length. We use the method of images, which
solves the Poisson equation in the region zin(−ds, ds) with the
boundary condition ∂⊥V |±ds = 0 by placing image charges
above and below the gates. First, we consider the positions
of image charges when a positive unit charge is placed at z0.
Due to the presence of two gates, there will be infinitely many
image charges in the regions above ds and below −ds. We
denote the z coordinate of the position of the nth image charge
in the top gate (z > ds) as d top

n , while the z coordinate of the
position of the mth image charge in the bottom gate will be
dbottom

m . The first image charge in the top gate will be at d top
1 =

2ds − z0, while the first image charge in the bottom gate
at dbottom

1 = −2ds − z0, and they have negative unit charge.
Next, the bottom gate is affected by the image charge in the
top gate and vice versa, implying we need to place more and
more charges. We, therefore, obtain the intertwined recurrence
relation for the positions of the (n + 1)th image charges

d top
n+1 = 2ds − dbottom

n , (B8)

dbottom
n+1 = −2ds − d top

n , (B9)
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where the charge of the nth charge is (−1)n. This recurrence is solved by

d top
n = 2nds + (−1)nz0, (B10)

dbottom
n = −2nds + (−1)nz0. (B11)

The potential at vertical position z and an in-plane distance r away from the unit test charge is given by the sum of the potentials
of the charge and all the image charges generated. We have

V (r, z, z0) = 1

4πεε0

⎡⎣ 1√
r2 + (z − z0)2

+
∞∑
j=1

(−1) j√
r2 + (2 jds + (−1) j z0 − z)2

+ (−1) j√
r2 + (2 jds + z − (−1) j z0)2

⎤⎦. (B12)

In Fourier space, we obtain

V (q, z, z0) = 1

2εε0

1

q

⎧⎨⎩exp(−q|z − z0|) +
∞∑
j=1

(−1) j exp[−q(2 jds + (−1) j z0 − z)] + (−1) j exp[−q(2 jds − (−1) j z0 + z)],

⎫⎬⎭
(B13)

where we removed the absolute value in the image charge potentials since we are interested in the potential inside the sample,
assuming |z| < ds, |z0| < ds. The sum over j can be easily performed by separating into j odd and even, leading to the result

V (q, z, z0) = 1

2εε0

1

q
·
(

e−q(z+z0 )
(−e2q(d+z+z0 ) − e2dq + e2qz + e2qz0

)
e4dq − 1

+ e−q|z−z0|
)

. (B14)

For z = z0 = 0, V (q, z, z0) reduces to the tanh(qds)/q form
usually used for double-gate screened interaction. On the
other hand, with no screening (ds → ∞) we recover the bare
interaction in Eq. (B2).

3. Mean-field decoupling of out-of-plane electric field term

Here we detail the mean-field decoupling the out-of-plane
(q = 0) term. For notational simplicity, we work out the gen-
eral form before projecting onto a fixed number of active
bands. We perform the mean-field decoupling of H(q=0)

int ,

H(q=0)
int = − 1

2A

∑
I,J

e2

2ε⊥ε0
dIJρI,q=0ρJ,q=0

=
N−1∑
i=1

Aε⊥ε0dl
(E⊥

i,i+1)2

2
+ Const, (B15)

which was derived assuming a fixed amount of charge on the
gates, but still includes it explicitly (by summing I, J from 0 to
N + 1). We dropped the normal ordering symbol since it only
matters for I = J , for which the vertical distance dIJ vanishes.
Let us recall the three constraints:

(i) ρ0,0 = −A n
2

(ii) ρN+1,0 = −A n
2

(iii)
∑N

i=1 ρi,0 = An
For the mean-field decoupling, we use the q = 0 layer den-

sity form of the interaction. Following standard procedures,
there will be the Hartree term, which corresponds to classical
electrostatics

HHartree
layer = −

∑
I 
=J

e2

2ε⊥ε0A
dIJρI,q=0〈ρJ,q=0〉 =

N∑
i=1

ρi,0(−eVi ),

(B16)

where we changed sum over I (from 0 to N + 1, including
gates) to a sum over i (from 1 to N) since the gates have a
fixed charge. Therefore the potentials are given by

Vi = e

2ε⊥ε0A

∑
J

diJ〈ρJ,q=0〉. (B17)

It is insightful to consider the potential difference between two
neighboring layers

Vi+1 − Vi = e

2ε⊥ε0A

∑
J

(di+1,J − di,J )〈ρJ,q=0〉, (B18)

where

di+1,J − di,J =
{

dl for i � J
−dl for i < J.

(B19)

With this relation, we can rewrite Eq. (B18)

Vi+1 − Vi = dl
e

2ε⊥ε0A

⎡⎣∑
J�i

〈ρJ,q=0〉 −
∑
J>i

〈ρJ,q=0〉
⎤⎦. (B20)

Since ρ0 = ρN+1 = −nA/2, the gate charge terms cancel. Fur-
ther, since the total charge on the sample is fixed, we also have

−
∑

i<J�N

〈ρJ,q=0〉 =
∑

1�J�i

〈ρJ,q=0〉 − nA, (B21)

which yields

Vi+1 − Vi = dl
e

ε0ε

{
1

A

i∑
l=1

〈̂ρl,0〉 − n

2

}
= −dl E

⊥
i,i+1. (B22)

In the above expression, we identified that the interlayer elec-
tric field is given by Gauss’ law, Eq. (18).

Next we consider the q = 0 Fock term. As the Fock term
involves an integral over a range momenta and is intensive,
if we fix a single momentum term q = 0 (as we do for the
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interlayer potential term), it will vanish in the thermodynamic
limit. Therefore we only need to keep the q = 0 Hartree term.
Finally, in our numerics, we project on a finite number of
bands replacing ρl,0 by ρ̂l,0.

APPENDIX C: ANALYTICAL RESULTS ON THE LAYER
POTENTIALS

1. Layer potentials in sector basis

In this Appendix, we consider the mean-field layer po-
tential term, and rewrite it in the sector basis. We use the
unprojected form of the layer Hamiltonian

Hunprojected
layer =

∑
l

ρl,0(−eVl ), (C1)

but the conclusions will also hold after projection. To proceed,
we need to write ρl,0 =∑ f ,k,z d†

f ,l,k,zd f ,l,k,z, where d†
f ,l,k,z

creates an electron in flavor f , layer l , momentum k, and a
joint sublattice/spin index z. Since the transformation into
sectors does not affect flavor, momentum, or sublattice and
spin, we will in the following omit their labels. Using the SVD
procedure, we can go from layer basis to sector basis using the
unitary basis transformation VTNG as follows:

f †
s =

∑
l

d†
l (VTNG)ls, (C2)

where f †
s , s ∈ {1, . . . , N} creates an electron in the effective

layer s, which can either have support in the odd physical
layers or even. As shown in Eq. (A2), the orthogonal matrix
VTNG is closely related to the singular vectors R(k), L(k). We
therefore rewrite∑

l

ρl,0(−eVl ) =
∑
s,s′

f †
s fs′

∑
l

(VTNG)ls(VTNG)ls′ (−eVl ).

(C3)

To emphasize the sector (recall for N layers there are
�N/2� sectors labeled by index k) diagonal and off-diagonal
terms, we now switch s for a multi-index k, i, where k ∈
{1, . . . , �N/2�} labels the sector, and i labels the effective odd
or even layer of that sector. For an MLG-like sector, this index
is trivial. With this rewriting, we write suggestively∑

l

ρl,0(−eVl )

=
∑
k,i

f †
k,i fk,i

∑
l

(VTNG)l,ki(VTNG)l,ki(−eVl )

+
∑

k 
=k′,i

f †
k,i fk′,i

∑
l

(VTNG)l,ki(VTNG)l,k′i(−eVl ), (C4)

where we used the fact that (VTNG)l,ki(VTNG)l,k′i′ ∝ δi,i′ , so that
there are no layer index (i, i′) off-diagonal terms. On the other
hand, odd and even layer index preserving terms are allowed.

a. Sector diagonal terms

In this section, we focus on the sector diagonal
terms, which correspond to the first term in Eq. (C4).
For a TBG-like sector k, this term is a potential V1 =∑

l (VTNG)l,k1(VTNG)l,k1(−eVl ) on the effective odd layer
and V2 =∑l (VTNG)l,k2(VTNG)l,k2(−eVl ) on the effective even

layer. Decomposing the effective layer potential matrix
(V1 0

0 V2
) into layer-even and layer-odd components, we obtain

that the effect of layer potentials within a sector is twofold. It
causes a shift of the whole sector by Uk = V1+V2

2 and an inter-
layer potential difference Dk = V1 − V2 between the effective
odd and even layers. We can obtain an analytical formula for
the sector shift in terms of the matrix (VTNG)l,ki and therefore
also in terms of the vectors R(k), L(k),

Uk = 1

2

∑
l,i

(VTNG)l,ki(VTNG)l,ki(−eVl ). (C5)

In the above, we identify

1

2

∑
i

(VTNG)l,ki(VTNG)l,ki = 1

2

[(
Lk

1

)2
,
(
Rk

1

)2
, . . . ,

({L/R}k
N

)2]
l

= W (k)
l (C6)

as the layer distribution weights W (k)
l , plotted in Fig. 1(c). The

final formula for the shift of the sector Uk therefore reads

Uk =
∑

l

W (k)
l (−eVl ). (C7)

The derivation of the interlayer potential difference proceeds
analogously, so we only give the expression, which differs by
an extra (−1)l in the sum over layers

Dk = 2
∑

l

(−1)l W (k)
l (−eVl ). (C8)

This (−1)l leads to a cancellation when compared to Uk .

b. Sector off-diagonal terms

We now turn to the sector mixing terms, which correspond
to the k 
= k′ term in Eq. (C4). Given that the potential dif-
ference between layers can become quite sizable for large
dopings, sector mixing will become important for large N . If
sector mixing is small, one can directly relate the physics to
the TBG physics. On the other hand, for large sector mixing,
such direct mapping is no longer possible, and the bands
become rather different from bare TBG-like bands. However,
these bands may still favor superconductivity and strong cor-
relation physics, as seen in TTG under a displacement field.
One advantage arises for N odd. In that case, opposite mirror
symmetry eigenvalues forbid mixing between adjacent sectors
(k and k + 1, say).

2. Evaluation of sector shifts

Given the layer structure of the sectors, we can obtain an
mean-field layer Hartree shift �Uk analytically. We start with
the layer vectors for sector k, obtained from the singular value
decomposition from Appendix A 1. For a general TBG-like
sector, this corresponds to two vectors, L(k) giving the wave
function of the effective odd layer across the odd physical
layers, and R(k) giving the wavefunction of the effective even
layer across the even physical layers. Using the results derived
above in Appendix C 1 a, we can obtain the sector shift Uk

in terms of the weights W (k)
l and the layer potentials Vl . We

obtain the layer potentials by using that a sector with filling νk
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TABLE II. Inverse capacitance ( 1
C )k,k′ for N = 4, 5 layers and large N for k, k′ ∈ {1, 2} in expression form.

N ( 1
C )1,1 ( 1

C )1,2 = ( 1
C )2,1 ( 1

C )2,2

4 2ϕ4/(2 + 2ϕ2)2 2ϕ2/(2 + 2ϕ2)2 2/(2 + 2ϕ2)2

5 29/72 15/72 9/72
N → ∞ N (1/12 + 5/(8π 2)) N (1/12 + 5/(16π 2)) N (1/12 + 5/(32π 2))

has on average the following layer number density distribution

〈̂ρl,0〉 = 1

Auc
W (k)

l νk . (C9)

Knowing this, and using Eq. (18) the electric field between
two layers caused by sector filling νk [which causes an elec-

tron density eνk/(2Auc) on the gates] becomes

E⊥
i,i+1 = −e

−1/2 +∑i
l=1 W (k)

l

AUCε0ε⊥
νk . (C10)

Using the formula Eq. (A12) for W (k)
l , we evaluate the sum of

the weights

i∑
l=1

W (k)
l = 1

N + 1

[
i + 1/2 − sin [πk(2i + 1)/(N + 1)]

2 sin [πk/(N + 1)]

]
. (C11)

As a check, for i = N , we obtain
∑N

l=1 W (k)
l = 1, while for N even, i = N/2, we get

∑N
l=1 W (k)

l = 1/2, so that Ei,i+1 = 0 in the
middle spacing. Using that Vl+1 − Vl = −dl El,l+1, we can now integrate the electric field to calculate the electron energy shift
−eV (k)

l in layer l due to the filling of sector k,

−eV (k)
l+1 = νk

e2dl

ε0ε⊥

{
l ·
[

N − l − 1

2(N + 1)

]
+ cos [2πk/(N + 1)] − cos [2πk(l + 1)/(N + 1)]

4(N + 1) sin2 [πk/(N + 1)]

}
. (C12)

We note that the maximal potential magnitude is in the middle of the sample, which is intuitive, given that charge of a single
sign is being distributed across the layers.

Having obtained the layer shifts due to the filling of a single sector k, we can now add the contributions due to all the sectors
and obtain −eVl . Using this, we get the sector shifts Uk , and therefore also the numerical coefficients ( 1

C )k,k′ giving the shifts of
sectors in terms of the sector fillings

Uk =
∑

l

W (k)
l (−eVl ) =

∑
lk′

W (k)
l νk′

e2dl

ε0ε⊥

{
l ·
[

N − l − 1

2(N + 1)

]
+ cos [2πk′/(N + 1)] − cos [2πk′(l + 1)/(N + 1)]

4(N + 1) sin2 [πk′/(N + 1)]

}
. (C13)

Recalling the definition of ( 1
C )k,k′ from Eq. (5), we can identify ( 1

C )k,k′ as(
1

C

)
k,k′

=
∑

l

W (k)
l

{
l ·
[

N − l − 1

2(N + 1)

]
+ cos [2πk′/(N + 1)] − cos [2πk′(l + 1)/(N + 1)]

4(N + 1) sin2 [πk′/(N + 1)]

}
. (C14)

This equation is used to generate the Table I in the main text for N = 4, 5. At fixed k, k′, but taking N → ∞, we can obtain
( 1

C )k,k′ analytically by going from a sum to an integral in Eq. (C14). This immediately reveals a scaling with N . We get for the
dominant O(N ) terms (

1

C

)
k,k′

= N
∫ 1

0
dy sin2(πky)

{
y(1 − y) + 1 − cos(2πk′y)

2π2(k′)2

}
. (C15)

Note that the integral over y depends only on k and k′, with the
entire N dependence factored out in the front. Evaluating this
integral for k, k′ = 1, 2, we obtain the large N entry in Table I.
In Table II, we give the results for ( 1

C )k,k′ in expression form,
rather than evaluated numerically as in the main text.

For reference, we evaluate the numerical constants

e2dl

Aucε0
= e2 · 0.3 nm

√
3·0.2432

2(π/180)2θ2 nm2 · e2 · 55.263 keV−1 nm−1

= 32.34θ2
physical meV, (C16)

with θ in degrees and where we used vacuum permittiv-
ity ε0 = 55.263 102 keV−1nm−1 and interlayer distance dl =

0.3 nm. This yields

Uk =
[

32.34
θ2

physical

ε⊥

no∑
k′

(
1

C

)
k,k′

νk′

]
meV. (C17)

3. Application to TPG

For example, the k = 2 sector in TPG has the following
singular vectors

L(k=2)
j = 1√

2
(1, 0,−1) j, Rk=2

j = 1√
2

(1,−1) j .
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FIG. 5. Same as Figs. 2(d)–2(f) in the main text but without imposed strain.

The weights of the k = 1, 2, 3 sectors are

W (k=1)
l = 1

12 (1, 3, 4, 3, 1)l (C18)

W (k=2)
l = 1

4 (1, 1, 0, 1, 1)l (C19)

W (k=3)
l = 1

3 (1, 0, 1, 0, 1)l . (C20)

Evaluating, using θ = 1.9◦, interlayer ε⊥ ∈ [2, 12], the non-
magic effective chemical potential increases by

U1 − U2 = 3.24/ε⊥
[
3ν2 + 7νmagic

]
meV. (C21)

Supposing that νmagic = 4, we obtain a range of �U ≈ 7 −
45 meV increase of the effective nonmagic-sector chemical
potential due to Hartree layer potentials.

We now consider effects of the layer potentials beyond
simple sector shifts, which are

(i) Intrasector potential difference, both for k = 1 and
k = 2

(ii) A term mixing k = 1 and k = 3 – magic and MLG-
like, acting like an external displacement field in TTG

We can readily evaluate the magnitudes of all these terms
assuming fixed sector filling using the results from the previ-
ous section. We evaluate −eVl in terms of ν1 (νmagic), ν2,

−eVl = e2dl

ε0ε⊥Auc

[
ν2

(
0,

1

4
,

1

4
,

1

4
, 0

)
l

+ ν1

(
0,

5

12
,

7

12
,

5

12
, 0

)
l

]
. (C22)

With this in hand, we can evaluate

D1 = − e2dl

ε0ε⊥Auc

[
1

12
ν2 + 1

36
ν1

]
, (C23)

for the magic sector and

D2 = − e2dl

ε0ε⊥Auc

[
1

4
ν2 + 5

12
ν1

]
, (C24)

for the nonmagic TBG-like sector, significantly larger than
D1. By mirror symmetry, the k = 2 sector does not mix any
other sector. Let us, however, evaluate the mixing term of
k = 1 and k = 3. This is the term

H13 = f †
k=1,i=1 fk′=3,i=1

∑
l

(VTNG)l,k=1,i=1

× (VTNG)l,k′=3,i=1(−eVl ) + H.c. (C25)

from Eq. (C4), which we readily evaluate using −eVl ,

H13 = − e2dl

ε0ε⊥Auc

[√
3

8
ν2 + 7

√
3

24
ν1

]
f †
k=1,i=1 fk′=3,i=1 + H.c.

(C26)
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FIG. 6. νmagic as a function of νtotal at different ε⊥ and ε‖ for N = 5 at strain εstrain = 0.2%.
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FIG. 7. Strain dependence of charge in the magic sector depending on the gate charge increases from left to right. Here we take ε⊥ = 6,
ε‖ = 10.

H13 has exactly the same effect as a displacement field in TTG.
However, rather than being explicitly tunable in a doubly-
gated setup, it is self-generated and doping dependent.

APPENDIX D: EXTENDED DATA

1. Extended data for N = 3, 4, 5

This section presents extended data for N = 3, 4, 5 as a
function of various model parameters. In Fig. 5, we show the
flavor resolved magic-sector filling dependence on νtotal for
N = 3, 4, 5 at zero strain. The trends are qualitatively similar
to the ones seen for finite strain. However, due to the constant
density of states above the correlation induced gap, flavor
polarization is preferred already upon infinitesimal doping
from charge neutrality. Further, compared to εstrain = 0.2%,
the νmagic = 3 cascade appears earlier for HFL.

In Fig. 6, we consider (as in the main text) a finite strain
εstrain = 0.2% at different values of the interaction strength
parameters ε⊥ and ε‖ for N = 5. To compare different inter-
action strengths most clearly, we plot the total filling of the
magic sector νmagic rather than flavor resolved fillings. As ar-
gued in the main text, we find that the stronger the interaction
effects HHartree and HLayer, the more the onset of the magic-
sector cascade occurs at a larger total filling. In particular,

strong interactions cause the entire TBG-like nonmagic active
band to fill before the magic band fills.

2. Extended data for large N

We first examine the effect of changing alternating het-
erostrain on the data from Fig. 1(d). In Fig. 7, we compare
the charge in the magic sector for zero and nonzero val-
ues of heterostrain at three different gate charges. We find
a rather weak dependence of the maximal N for νmagic = 4
on strain, confirming that the physics at νmagic = 4 is mainly
governed by electrostatics. On the other hand, when a par-
tial filling of the magic band occurs, strain dependence is
apparent.

In Fig. 8, we compare the charge in the magic sector flat
bands for different interaction strengths. We vary ε‖ = 10, 14
and the ratio ε⊥ = 6, 10. The key dependence at lower gate
charge n = 10 × 1012cm−2 is in fact on ε‖, but ε⊥ starts to
play a role at larger gate densities and large N .

In Fig. 9, we consider the dependence of our data at full
magic-sector filling for kmagic = 1. We first consider the pa-
rameter dependence of the νtotal at which the magic bands
are fully filled [same as Fig. 3(a)]. We consider two different
values of strain εstrain = 0, 0.2% and sweep interactions. As
expected, stronger interactions lead to a larger postponement
of full magic filling.
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FIG. 8. Dependence of the magic-sector filling on interaction strength and the number of layers with gate charge n increasing from left to
right. Here we work at zero strain εstrain = 0.0%.
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FIG. 9. Interaction strength dependence of total charge needed to fill the magic sector completely. (Left) εstrain = 0%. (Right) εstrain = 0.2%.

Next, we consider the role of layer dependence of the inter-
action. As discussed in the main text, due to the vertical extent
of the layers, the interaction strength at momentum q = λG
(recall G = |Gmoiré|, the magnitude of the moiré wavevector)
in sector k is effectively reduced by a factor of

〈exp(−λG|z − z′|)〉 =
∑
i, j

W (k)
i exp(−λGdl |i − j|)W (k)

j .

(D1)

In Fig. 10(a), we plot this suppression factor as a function
of λ for N = 5, 10 and sectors k = 1, 2. For Hartree effects
(λ = 1), this suppression reaches 25% for N = 5 and 50% for
N = 10. In our definition of rs [Eq. (21)], we chose λ = 1

2
as an approximate momentum for Fock effects. In Fig. 10(b),
we compare the effect of the choice λ = 0 (dashed) or λ = 12
(full) on the value of rs. A larger value of λ reduces inter-
acting strength and therefore rs. In Fig. 11, we examine the
dependence on interaction parameters of the effective strength
of interaction, our rs data from the main text, Fig. 3(d).
While the unstrained data show relatively little dependence
on interaction strength, at finite strain rs is larger for stronger
interactions. Heuristically, at stronger interactions, the same

amount of strain plays a smaller role. Lastly, we consider the
role of various choices on the rs plot. In Fig. 12, we consider
different choices of measuring the bandwidth and νmagic. In
particular, in addition to the bandwidth definition from the
main text, we could consider the standard deviation of the
magic band energy distribution σ to measure the width of
the bands. This has the advantage of being less susceptible to
outliers than BW from the main text. For BW, a single kmagic

point at which there is large mixing can artificially blow up
the bandwidth of the band descended from the noninteracting
magic band. Another choice could be not to focus not at
νmagic = 4, but rather at νmagic = 3.6. However, as seen in
Fig. 12, the advantage of kmagic = 2 for N = 5, 6 remains
robust to these choices.

APPENDIX E: METHODS

To obtain the numerical results, we perform self-consistent
Hartree-Fock. Our default choice will be a 12 × 12 k-space
grid. Our q 
= 0 interaction is the double-gate screened, layer-
dependent (see Appendix B 2) Coulomb interaction, with gate
distance ds = 40 nm and interlayer distance dl = 0.3 nm. We
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FIG. 10. (a) Dependence of the interaction suppression factor on momentum (in units of G = |Gmoiré|) for N = 5, 10 and k = 1, 2.
(b) Dependence of the rs plot in Fig. 3(d) in the main text on the choice of λ characterizing the typical momentum for Coulomb interactions.
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FIG. 11. ε‖ and ε⊥ dependence of the rs plot from the main text.

choose our physical twist angles by the following formula:

θ = 2 cos

[
πkmagic

N + 1

]
× 1.1◦, (E1)

chosen so that the effective twist angle of sector kmagic is the
magic angle θ eff

kmagic
= 1.1◦. In Fig. 13 we plot Eq. (E1) for

the different choices kmagic = 1, 2 (see also Ref. [16] for an
equivalent plot). This demonstrates that achieving the regime
where k = 2 is in the magic regime for N � 5 is feasible due
to the realistic physical twist angles of θ > 1◦ thus avoiding
lattice reconstruction effects.

1. N � 5

For the N � 5 analysis, we consider Nactive = 10 bands
and calculate the remote Hartree and Fock contribution using
Nremote = 14 bands below and above the active bands. For the
heatmap and cascade plots, Figs. 2(g)–2(i), we simulate all
four spin/valley flavors, inducing flavor symmetry breaking
by proposing symmetry-broken trial states at integer fillings.
For the illustrative band structure and density of states plots,
Figs. 2(d)–2(f), we use a larger 24 × 24 grid, but do not
include flavor symmetry breaking. We show the band struc-
tures close to νmagic = 4. The cascade and band structure plots
are performed at ε‖ = 14 and ε⊥ = 6.

2. N � 5

For the N � 5 analysis, we consider Nactive = max[10, 2N]
bands and calculate the remote Hartree and Fock contri-
bution using Nremote = max[10, 3N] bands below and above
the active bands. This dependence is motivated by the fact
that adding a layer adds a band, which we want to include
in our analysis, to account for nonmagic-sector screening.
We caution, however, that the precise choice is somewhat
arbitrary.

For Fig. 1(a), we work at zero strain and ε‖ = 10, ε⊥ = 6.
For Figs. 3(a) and 3(b), we also work at zero strain and ε‖ =
10, ε⊥ = 6. In Figs. 3(c) and 3(d) we show both zero strain
and εstrain = 0.2% results.

3. Stability of Hartree-Fock with Hlayer

In our Hartree-Fock numerics, we ran into an instability
for large Hlayer terms (large filling of large N in combination
with a small out-of-plane constant ε⊥). Our system oscillates
between states with vertical polarization to the top and to the
bottom of the sample. Clearly such spontaneously polarized
states fail at screening the gate electric field and are therefore
high energy [see Eq. (11)]. We can understand the appearance
of such oscillations by considering mean-field Hlayer for a
state polarized to the top layer in an infinite density of states
system. In the mean field of such a state, the lowest-energy
state is the state polarized to the bottom layer. In this way,
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FIG. 12. Dependence of the rs on working at νmagic = 3.6 or νmagic = 4 and of using the bandwidth (BW) or standard deviation σ as a
measure of the width of the active magic bands.
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FIG. 13. Physical twist angle for choosing kmagic = 1 (red) or kmagic = 2 (orange) as a function of the layer number N .

there appears an oscillation between opposing vertical polar-
izations upon iterating Hartree-Fock. Other terms in Eq. (3)
make this instability weaker. For example, a finite density of
states induces an energy cost to filling one layer excessively.

We find that explicitly imposing V1 = VN = 0 by adding a
constant gradient removes this instability, at the cost of a slight
inaccuracy. Numerically, we find that the gradient is small,
typically below 1

ε⊥
meV.
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