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Theory of phonon spectroscopy with the quantum twisting microscope
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We develop a theory of probing phonon modes of van der Waals materials using the quantum twisting micro-
scope. While elastic tunneling dominates the tunneling current at small twist angles, the momentum mismatch
between the K points of tip and sample at large twist angles can only be bridged by inelastic scattering. This
allows for probing phonon dispersions along certain lines in reciprocal space by measuring the tunneling current
as a function of twist angle and bias voltage. We illustrate this modality of the quantum twisting microscope by
developing a systematic theory for graphene-graphene junctions. We show that beyond phonon dispersions, the
tunneling current also encodes the strength of electron-phonon couplings. Extracting the coupling strengths for
individual phonon modes requires careful consideration of various inelastic tunneling processes. These processes
are associated with the intralayer and interlayer electron-phonon couplings and appear at different orders in a
perturbative calculation of the tunneling current. We find that the dominant process depends on the particular
phonon mode under consideration. Our results inform the quest to understand the origin of superconductivity in
twisted bilayer graphene and provide a case study for quantum-twisting-microscope investigations of collective
modes.
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I. INTRODUCTION

Beyond conventional transport experiments, much infor-
mation on van der Waals materials derives from local probes
such as scanning tunneling microscopy (STM) as well as
scanning single-electron-transistor and scanning SQUID mea-
surements. A particularly well-studied system is twisted
bilayer graphene with its multitude of electronic phases
when the twist angle is close to the magic angle [1–3].
Scanning tunneling microscopy has been instrumental in
elucidating the effects of correlations on their flat-band dis-
persion [4–7], of superconductivity [8], and of the correlated
insulating states [9]. Compressibility measurements using
a scanning single-electron transistor revealed a cascade of
flavor-polarized phases [10,11] as well as excess entropy as-
sociated with the formation of local moments [12]. It was
also instrumental in uncovering anomalous Chern-insulator
phases [13]. Scanning-SQUID measurements revealed the for-
mation of Chern mosaics [14].

The quantum twisting microscope (QTM) [15] is a power-
ful new instrument complementing previously existing local
probes. Rather than measuring the local tunneling current at
the atomic scale as in scanning tunneling microscopy, it relies
on coherent tunneling across a twistable finite-area junction
formed at the interface between van der Waals systems placed
on a scanning tip with a flat pyramidal top and on a substrate
(see Fig. 1). Due to the finite contact area, tunneling con-
serves crystal momentum modulo reciprocal lattice vectors
of the tip and sample layers. Except at special twist angles,
umklapp processes involving larger reciprocal lattice vectors

will typically be suppressed. The twist imposes a relative
rotation of the dispersions of tip and sample in momentum
space. Moreover, the bias voltage introduces a relative shift
of the dispersions in energy. Measuring the tunneling current
as a function of bias voltage and twist angle will then provide
direct signatures of momentum-resolved dispersions. This has
been used to explore the electronic dispersion of graphene lay-
ers using graphene-graphene junctions as well as the flat-band
dispersions of twisted bilayer graphene using junctions of
graphene and twisted bilayer graphene [15]. Theoretical work
has explored the use of the QTM to probe two-dimensional su-
perconductors [16], spin liquids [17], as well as spin-ordered
states close to metal-insulator transitions [18].

Beyond electronic dispersions, the QTM is also exquisitely
suited to access momentum-resolved dispersions of the collec-
tive excitations of van der Waals systems as shown by a very
recent experiment [19]. Whenever the electronic dispersions
of tip and sample with their relative twist do not intersect,
the momentum mismatch can be bridged by emission of a
collective-excitation quantum. Here, we illustrate this modal-
ity of the QTM by developing a comprehensive theory of
phonon spectroscopy. Our considerations focus on graphene-
graphene junctions, but the approach readily generalizes to
other junctions and other collective excitations. Along the
way, we include analytical results for elastic tunneling be-
tween tip and sample for context and comparison.

Due to the semimetallic nature of graphene, its Fermi cir-
cles are typically small for relevant gate-induced densities.
Thus, inelastic tunneling processes enabled by phonon emis-
sion dominate except at the smallest twist angles (i.e., for
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θ � 5◦ in current experiments [19]), and the phonon wave
vector is approximately equal to the distance between Dirac
points of tip and sample. This implies that the relevant phonon
wave vector can be systematically varied by changing the
twist angle, allowing for direct measurements of the phonon
dispersions.

In addition to the phonon dispersion, the measurements
also encode the strength of electron-phonon coupling as a
function of wave vector. The phonon spectrum and electron-
phonon coupling are important inputs in developing a theory
of superconductivity [20–29] and the linear temperature de-
pendence of the resistivity [23,30–37] in magic-angle twisted
bilayer graphene. In both cases, there has been substantial
debate whether the phenomenon has a conventional origin in
the electron-phonon coupling or an underlying exotic mech-
anism due to electron-electron correlations. Measurements of
graphene-graphene junctions in a QTM may be highly rele-
vant in this context as van der Waals coupling tends to lock the
interlayer distance between tip and sample layers of a QTM to
the interlayer distance of a twisted bilayer. At the same time,
QTM measurements cannot access inelastic phonon processes
at very small twist angles, where they will be difficult to
differentiate from the elastic-tunneling background. Glean-
ing information on phonon dispersions and electron-phonon
couplings in magic-angle twisted bilayer graphene will thus
require extrapolation from larger twist angles.

This paper is organized as follows. In Sec. II, we begin
by summarizing the results of the detailed calculations in the
subsequent sections. This summary section makes our results
accessible without the need to read the more technical sec-
tions in detail. Section III collects background material and
fixes notation. We first introduce the electronic properties of
graphene layers (Sec. III A), review tunneling between twisted
layers in Secs. III B and III C, and discuss the electrostatics of
QTM junctions Sec. III D. Section IV focuses on the elastic
tunneling current, giving analytical results for the threshold
behaviors of the differential conductance. Section V discusses
the phonon modes and the electron-phonon coupling, includ-
ing both intralayer and interlayer couplings. The theory of
phonon spectroscopy is finally addressed in Sec. VI. Follow-
ing the general expressions for the inelastic-tunneling current
in Sec. VI A, we discuss the contributions of the interlayer and
intralayer electron-phonon couplings in Secs. VI B and VI C,
respectively. We conclude in Sec. VII.

II. OVERVIEW OF RESULTS

A. Tunneling

We illustrate phonon spectroscopy by considering tunnel-
ing between two graphene layers. Twisting the tip and sample
layers with respect to each other leads to a relative rotation
of their Brillouin zones (Fig. 2). In particular, this induces a
relative displacement of their K points by equal-length vectors
q j , where j = 0, 1, 2 enumerates the three equivalent K points
within the Brillouin zone [Fig. 2(b)]. Current flow between
tip and sample is dominated by elastic tunneling as long as
the Fermi circles of tip and sample intersect [15] [Fig. 2(c)].
This is a consequence of the fact that tunneling between tip
and sample conserves crystal momentum modulo reciprocal
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FIG. 1. Schematic setup of QTM with scanning tip (top) and
fixed sample (bottom). The electron densities of the van der Waals
layers (here, monolayer graphene) on tip and substrate are controlled
by independent top (TG) and bottom (BG) gates (here, graphite). The
gate electrodes are separated from the van der Waals layers by a gate
dielectric (here, hBN). For elastic-tunneling experiments at small
twist angles, tip and sample are separated by an additional barrier
layer (e.g., WSe2, not shown). No additional barrier is needed when
probing inelastic tunneling currents at larger twist angles.

lattice vectors of the graphene layers. At larger twist angles,
the momentum mismatch between the electrons in tip and
sample requires inelastic processes involving phonon emis-
sion, with the phonon wave vector approximately equal to
one of the q j [Fig. 2(d)]. (Here, we assume that temperature
is sufficiently low that phonon absorption can be neglected.)
Bias voltages, at which eVb equals the energy h̄ωr,q j of a
phonon mode r, are associated with threshold features in
the current-voltage characteristic. Tracking these inelastic-
tunneling features as a function of twist angle θ (and hence

(a)
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(b)

K
K

(c) (d)

FIG. 2. (a) Bernal-stacked configuration (two layers shifted rel-
ative to each other by the bond vector e1) used as reference
configuration for twisted layers. Top layer (tip, blue); bottom layer
(sample, red). (b) Definition of vectors q j connecting the K points of
the Brillouin zones of tip and sample. (c) Overlapping Fermi circles
of tip and sample at small twist angle θ . In this limit, current is
dominated by elastic tunneling between tip and sample. (d) Tunnel-
ing at twist angles with mismatched Fermi circles occurs by phonon
emission (green arrow connecting states on Fermi circles of tip and
sample due to momentum conservation). The phonon wave vector Q
is approximately equal to one of the q j .
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FIG. 3. Electron-phonon coupling in twisted graphene layers.
Sketch of tip (blue) and sample (red) layers with phonon-induced
atomic displacement u (illustrated for the in-plane displacement
of one atom in the tip). The displacements u modify the bond
lengths and consequently the hopping amplitudes t‖ within the layer
(intralayer electron-phonon coupling Hintra) and between layers t⊥

(interlayer electron-phonon coupling Hinter).

q j) allows for mapping out the phonon dispersion along cer-
tain lines in momentum space. (Umklapp processes lead to
additional sharp elastic scattering peaks at larger, commensu-
rate twist angles due to overlap of Fermi surfaces in higher
Brillouin zones [15].)

Electron-phonon coupling emerges from several mech-
anisms [38]. Modifications of the hybridization of carbon
orbitals associated with phonon-induced changes in the bond
lengths contribute as illustrated in Fig. 3. The intralayer cou-
pling Hintra originates in changes of the hopping amplitudes
within the layer, corresponding to electron-phonon coupling
within the individual graphene layers. In twisted bilayers,
phonons also affect the amplitude of interlayer tunneling,
giving rise to the interlayer electron-phonon coupling Hinter.
In addition, longitudinal acoustic phonons lead to a local ex-
pansion or contraction of the lattice, which shifts the chemical
potential [38,39], referred to as deformation potential. We
find that the coupling mechanism dominating the tunneling
current differs between phonon modes, so that it is important
to account for the various couplings to understand phonon
signatures in QTM measurements.

Twisted graphene layers are described by the Hamiltonian

H = H0 + HT + Hintra + Hinter. (1)

Here, H0 describes the two uncoupled graphene layers, in-
cluding their phonon modes, and HT accounts for the (purely
electronic) interlayer tunneling. Retaining terms to first order
in the interlayer tunneling, we can then expand the T matrix
for electron scattering between tip and sample layers as

T = HT + Hinter + HTG0Hintra + HintraG0HT + · · · . (2)

The first term HT on the right-hand side gives rise to the
elastic-tunneling processes at small twist angles. Inelastic
tunneling involving the emission of a phonon due to the in-
terlayer electron-phonon coupling is described by the second
term. Both of these processes can be described in the lowest
order in a Fermi-golden-rule calculation of the tunneling cur-
rent. The remaining two terms describe higher-order inelastic
processes involving both electron tunneling and intralayer
electron-phonon coupling, with the Green function G0 =
[E − H0]−1 of the uncoupled layers accounting for the en-
ergy denominators of the virtual intermediate states. We find
that the inelastic-tunneling current can be dominated by one

electron-phonon coupling or the other, despite their different
orders in perturbation theory.

B. Electrostatics and characteristic voltages

Due to the small quantum capacitance of the graphene
layers, a bias voltage applied between tip and sample will
predominantly modify the chemical potentials. This is accom-
panied by a smaller relative shift eφ in energy of the Dirac
points of tip and sample due to the electrostatic potential dif-
ference φ. The ratio of the shifts in electrostatic and chemical
potentials is of order qTFd , where qTF is the Thomas-Fermi
screening wave vector of graphene and d the distance between
tip and sample layers [see Eq. (63) below and the discussion
around it for more details]. In our analytical calculations,
we focus on the limit in which qTFd � 1 (small quantum
capacitance) and assume overall charge neutrality. Then, tip
and sample have opposite chemical potentials ±μ, so that the
bias voltage (i.e., the difference in electrochemical potential)
is eVb = 2μ + eφ with eφ � 2μ.

At small bias voltages, the electrostatic shift φ can be
neglected and the Dirac points of tip and sample are aligned
in energy, but offset in momentum by q j . The offset Dirac
cones intersect at energies that are larger in magnitude than
h̄vDq0/2, where vD is the Dirac velocity. As the chemical
potentials of tip and sample are equal to ±eVb/2, this leads
to a characteristic voltage of

eV ∗
b = h̄vDq0 (3)

for elastic scattering [Figs. 4(a) and 4(b)], with cur-
rent flow due to elastic tunneling only possible for bias
voltages Vb > V ∗

b .
At larger bias voltages, the electrostatic potential leads to

an appreciable relative shift of the Dirac points in energy.
When this shift eφ becomes of order h̄vDqj , there is ap-
proximate nesting of the Dirac dispersions of tip and sample
[Fig. 4(c)]. Nesting defines a second characteristic voltage V ∗∗

b
through the condition

eφ(V ∗∗
b ) = h̄vDq0. (4)

Note that there is a sharp drop in the elastic-tunneling current
as the bias increases past this characteristic voltage.

The dispersions depicted in Figs. 4(a) and 4(b) neglect
interlayer tunneling, which opens gaps at the crossing points
of the Dirac dispersions of the two layers. The magnitude of
the resulting gaps is given by the interlayer tunneling strength
w. Our perturbative approach requires that these gaps be small
compared to eV ∗

b . This is satisfied for twist angles

θ >
w

vD|K| . (5)

(Here, K denotes the location of the K point as measured
from the � point.) This is equivalent to the condition that the
twist angle be larger than the magic angle of twisted bilayer
graphene.

For twist angles satisfying Eq. (5), inelastic tunneling pro-
cesses are relevant provided that the phonon energy h̄ωr,q j

is smaller than eV ∗
b . In this case, the tunneling current at

bias voltages Vb < V ∗
b is entirely due to inelastic processes,

allowing for measurements of the phonon dispersions and the
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FIG. 4. Characteristic voltages for elastic QTM tunneling at
small twist angles, assuming overall charge neutrality of tip and
sample as well as small quantum capacitance. (a), (b) Tunneling
onsets at eV ∗

b [Eq. (67)], beyond which occupied states in the Dirac
cone of tip overlap with empty states in the Dirac cone of the sample.
Illustration of Dirac cones of tip and sample separated in momentum
by q0 and their fillings for a voltage (a) below and (b) above V ∗

b .
(c) Dirac cones of tip and sample for bias voltages of order V ∗∗

b

exhibiting nesting due to the relative electrostatic shift eφ of the
Dirac points. I, II, III refer to momentum regions to the left of the
blue dashed line (I), between blue and red dashed lines (II), and to
the right of the red dashed line (III). (d) Constant-energy cut through
the shifted Dirac-cone dispersions of tip and sample for bias voltages
close to the nesting condition illustrated in (c).

electron-phonon coupling. For optical phonons with frequen-
cies ∼200 meV, this gives a minimal twist angle of 1◦– 2◦.
For acoustic phonons, the condition is less stringent due to
their smaller energy. There exists an energy window as long
as the Dirac velocity is large compared to the mode velocity of
the acoustic phonons, which is always the case away from the
magic angle.

C. Elastic tunneling

Coherent tunneling across an extended contact (area � =
LxLy) is central to the QTM [15]. To bring out the importance
of coherence, we consider a reference problem of �/λ2

F paral-
lel incoherent local tunneling contacts. The Fermi wavelength
λF = 2π/κF defines the characteristic size of the local con-
tacts, so that the coarse-grained local tunneling of a contact at
R can be approximated as wλ2

F δ(r − R). Here, w denotes the
underlying tunneling amplitude of the extended contact with
units of energy. This gives an incoherent tunneling current of
order

(2πe/h̄)
(
wλ2

F

)2
ν(μ)[Nf ν(μ)eVb] (6)

per tunnel contact, where ν(μ) = μ/(2π h̄2v2
D) is the density

of states per flavor at the chemical potential. This expression
for the current is composed of the Fermi-golden-rule rate for
tunneling of an incident electron and the number of inci-
dent electrons within the voltage window accounting for the
spin and valley degeneracy Nf = 4. With the linear graphene
dispersion E = h̄vDκ and the relation μ = h̄vDκF = eVb/2
between voltage and chemical potential (for sufficiently small
voltages, so that the electrostatic potential φ can be neglected),
this gives a differential-conductance scale of order

Gincoh = e2

h

Nf w
2�

h̄2v2
D

(7)

for an array of �/λ2
F parallel contacts.

We find that Gincoh provides a convenient scale for ex-
pressing our results for the tunneling current in the QTM.
Elastic tunneling sets in at voltages Vb > V ∗

b . The differential
conductance in the vicinity of V ∗

b is given by (see Sec. IV A)

dI

dVb
= 3

√
2Gincoh

√
V ∗

b

Vb − V ∗
b

θ(Vb − V ∗
b ), (8)

exhibiting a square-root divergence in the bias voltage. As
eV ∗

b = h̄vDq0, measuring the threshold voltage as a function
of twist angle (and hence q0) can be viewed as direct spec-
troscopy of the Dirac dispersion of the graphene layers.

Similarly, the current near the threshold voltage V ∗∗
b for

nesting is (see Sec. IV B)

I = 3

2
Gincoh

(V ∗∗
b )2√

V ∗
b |φ(V ∗∗

b ) − φ(Vb)|θ (V ∗∗
b − Vb). (9)

This implies a large negative differential conductance at volt-
age V ∗∗

b . The divergence at V ∗∗
b is a consequence of the

assumptions of strictly linear dispersion and momentum-
conserving tunneling. The tunneling current originates from
momenta, where the Dirac cones of tip and sample touch, so
that the contributions to the current diverge concurrently at
all energies within the bias window [Figs. 4(c) and 4(d)]. The
divergence of the current at V ∗∗

b will thus be cut off by non-
linear corrections to the dispersion relation as well as spatial
inhomogeneities, which lift strict momentum conservation.

D. Inelastic tunneling

When the Fermi circles of tip and sample no longer inter-
sect at larger twist angles, momentum-conserving tunneling
at low bias voltages is enabled by emission (or absorption) of
phonons. Neglecting the small electronic momenta relative to
the K points, the relevant phonons have wave vectors equal
to the wave vectors q j connecting the K points of the tip
and the sample [Fig. 2(b)]. Consequently, the inelastic tun-
neling channels for the various phonon modes r open beyond
the threshold voltages eVb = h̄ωr,q j , where ωr,q j denotes the
phonon frequency of mode r at wave vector q j . This appears
in the tunneling current as steps in the differential conductance
and consequently as peaks in d2I/dV 2

b .
For out-of-plane (flexural) phonons, the electron-phonon

coupling is dominated by the interlayer electron-phonon cou-
pling Hinter. While Hinter depends linearly on the phonon
displacements, the intralayer coupling Hintra to out-of-plane
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phonons has a weaker quadratic dependence on the mode
displacements. The dominant coupling due to Hinter emerges
directly from the change in the interlayer tunneling amplitude
due to the out-of-plane component of the atomic displace-
ments and is thus of order �ZPM(∂w/∂d ). Here, d is the
interlayer distance and1

�ZPM = (
h̄
/

Mωr,q0

)1/2
(10)

(with M the mass per unit cell of a single layer) the zero-point-
motion amplitude of the relevant out-of-plane phonon mode.
We then find [Eq. (104)]

d2I

dV 2
b

∼ Gincoh(κF a)2

(
�ZPM

∂ ln w

∂d

)2

δ(Vb − h̄ωr,q0/e), (11)

where the factor (κF a)2 accounts for the size of the graphene
Fermi circles. (a is the carbon-carbon bond length of
graphene.)

There are two out-of-plane phonon modes r, which we
denote by ZA and ZO, respectively. The mode ZA is an
optical mode in the out-of-plane direction, i.e., the atomic
displacements are antisymmetric between the two layers. At
the same time, it is acoustic in nature within the plane, i.e.,
the long-wavelength displacements of the two sublattices are
symmetric within each layer. Even when mechanical coupling
between the tip and sample layers is negligible, the mode
frequencies saturate to a constant at small wave vectors due
to mechanical coupling between the graphene layers and their
substrates. At larger wave vectors, the mode frequencies are
quadratic in the phonon wave vector akin to the flexural modes
of free-standing graphene membranes. The ZO mode is also
optical in nature within the plane and thus characterized by
larger mode frequencies for all wave vectors.

The interlayer electron-phonon coupling to in-plane
phonons has a different origin. A relative displacement u of
the two layers does not modify the magnitude of the interlayer
tunneling, but changes its phase by exp(iK · u) [40]. If u
originates from a phonon displacement, the phase becomes
time dependent, akin to a time-dependent vector potential.
Thus, Hinter can be viewed as being due to a synthetic electric
field [41–43]. Importantly, the coupling is maximal for mode
displacements u, which are parallel to the vector K of the
K point. At small twist angles, the phonon wave vector q0

is approximately perpendicular to K, so that the coupling is
predominantly to transverse phonon modes. This is illustrated
in Fig. 5. Unlike the intralayer electron-phonon coupling, this
coupling does not go to zero in the long-wavelength limit.
Transverse phonons, both acoustic (TA) and optical (TO), will
thus involve an interlayer electron-phonon coupling of order
wK · u ∼ w(�ZPM/a) cos θ from expanding the phase factor
to linear order. Combining this with the factor accounting for
the size of the graphene Fermi circles gives

d2I

dV 2
b

∣∣∣∣
inter,T

∼ Gincoh(κF �ZPM)2 cos2 θδ
(
Vb − h̄ωr,q0

/
e
)

(12)

1Notice that the actual real-space amplitude of the zero-point fluc-
tuations for a particular phonon mode is smaller than �ZPM by a factor
1/

√
N .

FIG. 5. Illustration of the interlayer electron-phonon coupling.
At small twist angles θ , the phonon wave vector q0 is almost per-
pendicular to the vectors K and K′ of the K points of tip and
substrate, respectively. As a result, the phonon displacements are
approximately parallel to K and K′ for transverse phonons (u⊥) and
perpendicular for longitudinal phonons (u‖).

for the contribution of the interlayer electron-phonon
coupling for transverse acoustic and optical phonons. The
expression for longitudinal acoustic (LA) and optical (LO)
phonons is similar, differing only in its twist-angle depen-
dence,

d2I

dV 2
b

∣∣∣∣
inter,L

∼ Gincoh(κF �ZPM)2 sin2 θδ
(
Vb − h̄ωr,q0

/
e
)
. (13)

The full result for both longitudinal and transverse phonons is
given in Eq. (104).

The intralayer electron-phonon coupling Hintra gives con-
tributions of the same order for acoustic phonons, albeit with a
different twist-angle dependence. We can estimate the relevant
electron-phonon coupling by noting that Hintra originates in
the dependence of t‖ on the bond length. Thus, the intralayer
electron-phonon coupling is of order ∂t‖

∂a �ZPM(q0a) for acous-
tic phonons. Here, the last factor accounts for the fact that
the relative displacements of neighboring atoms is suppressed
in the long-wavelength limit. Combining this with the fact
that the tunneling Hamiltonian is of order w and the energy
denominators are of order h̄vDq0, we find that the contribution
of Hintra to the T matrix is of order

w(∂t‖/∂a)�ZPM(q0a)

h̄vDq0
. (14)

With the estimates ∂t‖/∂a ∼ t‖/a and h̄vD/a ∼ t‖, this be-
comes of order w(�ZPM/a), which is indeed of the same order
as the contribution of Hinter. At the same time, Hintra has only
weak twist-angle dependence and is of the same order for
longitudinal and transverse phonons due to the triad of bond
vectors. This yields

d2I

dV 2
b

∣∣∣∣
intra

∼ Gincoh(κF �ZPM)2δ
(
Vb − h̄ωr,q0

/
e
)

(15)

for acoustic phonons.
For optical phonons, the intralayer electron-phonon cou-

pling Hintra does not involve the suppression factor q0a, so
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TABLE I. Summary of results for the step in dI/dV at the inelastic threshold eVb = h̄ωq0 for various phonon modes. Expressions given
in the table give the parametric dependencies when multiplied by Gincohθ (eVb − h̄ωq0 ). The contribution of Hinter is obtained in first-order
perturbation theory, while the contribution of Hintra follows from a second-order calculation treating both Hintra and HT perturbatively [see
Eq. (2)]. The equation numbers given in the table point to the full expressions in the text. We include the results for electron-phonon coupling
originating from modifications of hopping amplitudes by phonons. For LA phonons, there is an additional contribution due to the deformation
potential (strength D), which can be obtained from the contribution of Hintra by the replacement ∂t‖/∂ ln a ↔ D (see Sec. V B 3). We note that
the amplitude �ZPM of the zero-point motion contains an implicit dependence on the frequency of the phonon mode under consideration [cf.
Eq. (10)].

dI/dV Acoustic Optical Out of plane

[Gincohθ (eVb − h̄ωq0 )] LA TA LO TO ZA and ZO

Hinter (κF �ZPM)2 sin2 θ (κF �ZPM)2 cos2 θ (κF �ZPM)2 sin2 θ (κF �ZPM)2 cos2 θ (κF a)2
(
�ZMP

∂ ln w

∂d

)2

Eq. (104)

Hintra (κF �ZPM)2 (κF �ZPM)2
(

κF �ZPM
q0a

)2 (
κF �ZPM

q0a

)2
Higher order

Eq. (116)

that

d2I

dV 2
b

∣∣∣∣
intra

∼ Gincoh

(
κF �ZPM

q0a

)2

δ
(
Vb − h̄ωr,q0/e

)
. (16)

At long wavelengths, this dominates over the contribution of
Hinter in Eqs. (12) and (13). The full result for the contribution
of Hintra for both acoustic and optical phonons is given in
Eq. (116).

We summarize these results for the inelastic contributions
to the tunneling current in Table I. We conclude this section by
addressing the limit of small twist angles θ (but sufficiently
large that elastic scattering can be neglected). For acoustic
modes, q0 ∼ θ and ωr,q0 ∼ q0, which implies �ZPM ∼ 1/

√
q0.

For overall charge neutrality, the threshold condition eVb =
h̄ωq0 implies that κF ∼ q0, while κF approaches a nonzero
constant for small q0 away from overall charge neutrality. We
thus find that for acoustic modes, d2I/dV 2

b diverges as 1/q0

at small twist angles away from charge neutrality. For optical
modes in the limit q0 → 0, κF and �ZPM approach nonzero
constants, so that one finds a 1/q2

0 divergence both at and
away from charge neutrality. The divergence is cut off by the
condition for the twist angle in Eq. (5), which corresponds to
q0 � w/vD. A further limitation specific to optical phonons is
set by Eq. (106).

E. Scattering picture

The current can be estimated using a scattering approach,
which gives insight beyond the Fermi-golden-rule calcu-
lations presented in subsequent sections. We consider a
scattering geometry, in which electrons in the tip impinge
on the tip-sample junction in the y direction, with channels
defined by wave vectors kx (Fig. 6). When normalizing the
incoming and outgoing states to unit flux in the y direction,
the tunneling current is

I = e

h

∑
kxk′

x

∫
dE dE ′Tkxk′

x
(E , E ′) fμ(E )[1 − f−μ(E ′)], (17)

where we assume Vb > 0 and zero temperature. Here,
Tkxk′

x
(E , E ′) is the probability density that an electron in chan-

nel kx of the tip impinging on the junction at energy E is
scattered into channel k′

x of the sample at energy E ′.

For elastic tunneling, we can approximate

Tkxk′
x
(E , E ′) ∼ w2

h̄2|vyv′
y|

∣∣∣∣∣
∫

�

dr
eik·r−ik′ ·r

Lx

∣∣∣∣∣
2

δ(E − E ′) (18)

to lowest order in the tunneling amplitude (Born ap-
proximation). Here, we defined the mode velocities vy =
(1/h̄)(∂E/∂ky) and v′

y = (1/h̄)(∂E ′/∂k′
y) of tip and sample,

respectively. Focusing on order-of-magnitude estimates for
small twist angles, we have suppressed the sublattice structure
of the graphene wave functions and consider only momentum-
conserving tunneling at the K point, i.e., we neglect umklapp
processes. Evaluating the integral and taking the limits of

∗

(a) (b)

FIG. 6. (a) Scattering geometry of the QTM junction between tip
(blue) and sample (red). Plane waves in the tip layer with wave vector
ky in channel kx impinge on the tunneling contact (black shaded area)
and are transmitted into plane waves with momentum k′

y in channel
k′

x in the sample. (b) Constant-energy lines of the dispersions of tip
and sample for bias voltage Vb close to the characteristic bias voltage
V ∗

b (full colored lines: energy E = eVb; dashed colored lines: eVb >

E > eV ∗
b ). Tunneling occurs at the crossing points of the dispersions

of tip (blue) and sample (red) along the line �ky = 0 (black). The
length 2kmax of this line at a given bias voltage Vb can be obtained
from the indicated right triangle.
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large Lx and Ly gives

Tkxk′
x
(E , E ′) ∼ w2

h̄2|vyv′
y|

δkx,k′
x
Lyδ(ky − k′

y)δ(E − E ′), (19)

which makes the momentum-conserving nature of tunnel-
ing explicit. Here, ky = ky(kx, E ) and k′

y = k′
y(k′

x, E ′) are
determined by the electron dispersions in tip and sample,
respectively. Inserting Tkxk′

x
(E , E ′) into the expression for the

current and performing the energy integrals, we find

I ∼
∫

�ky=0
dkx

ew2�

h̄2|vy − v′
y|

θ (kmax − |kx|). (20)

For convenience, we temporarily measure kx from the line
connecting the Dirac points of tip and sample. The integral
is over the line defined by �ky = ky − k′

y = 0 and we used
that ∂�ky/∂E = 1/h̄vy − 1/h̄v′

y.
For voltages close to V ∗

b , the dispersions of tip and sample
are illustrated in Fig. 6(b). The condition �ky = 0 enforces
ky = k′

y = 0, so that v′
y = −vy � vD. Moreover, one reads

off h̄vDkmax = [(eVb/2)2 − (eV ∗
b /2)2]1/2. Inserting these rela-

tions into Eq. (20), we recover the parametric dependencies in
Eq. (8).

For bias voltages near V ∗∗
b , the dispersions of tip and sam-

ple are illustrated in Fig. 4(d). Approximate nesting of the
Fermi circles of tip and sample implies that vy is close to v′

y,
leading to a strongly enhanced current. Nesting occurs for any
energy E within the bias window, with the current dominated
by energies |E | > eφ(V ∗∗

b ). For these energies, one readily
estimates

|vy − v′
y|

vD
∼

(
eφ(V ∗∗

b )

|E |
)(

h̄vDkx

E

)2

, (21)

accounting for the fact that vy − v′
y is nonzero due to eφ(V ∗∗

b )
and increases from zero symmetrically about kx = 0. Almost
nesting crossing points of the dispersions of tip and sample
exist only for φ < φ(V ∗∗

b ) (and thus Vb < V ∗∗
b ). At energy E ,

these crossing points satisfy

φ − φ(V ∗∗
b )

φ(V ∗∗
b )

∼
(

h̄vDkx

E

)2

, (22)

so that

kmax ∼ eVb

h̄vD

( |φ − φ(V ∗∗
b )|

φ(V ∗∗
b )

)1/2

. (23)

These relations combined with Eq. (20) reproduce the para-
metric dependencies in Eq. (9).

The scattering approach is readily extended to inelastic
current flow between tip and sample. Here, we consider the
contribution of the interlayer electron-phonon coupling. The
contribution of the intralayer electron-phonon coupling can be
obtained by replacing the relevant electron-phonon coupling
strength along the lines sketched in Sec. II D above.

The plane-wave factor 1√
�

eiQ·r of the phonon introduces
the phonon wave vector Q into the momentum-conservation
factors. Moreover, we account for the phonon energy h̄ωQ
in the energy balance and use that in addition to the inter-
layer tunneling amplitude w, the characteristic strength of
the interlayer electron-phonon coupling is controlled by the
ratio �ZPM/a of the atomic zero-point motion �ZPM and the

graphene bond length a (see Sec. V for a detailed discussion).
We can then estimate

Tkx,k′
x
(E , E ′) ∼ 1

N

∑
Q

w2

h̄2vyv′
y

(
�ZPM

a

)2

× δkx,k′
x+Qx Lyδ(ky− k′

y− Qy)δ(E − E ′− h̄ωQ),
(24)

with N = �/�uc being the number of unit cells of area �uc.
For sufficiently large twist angle q0  κF , we approximate

the phonon frequency ωQ � ωq0 [Fig. 2(d)]. We can then
perform the sum over Q to obtain

Tkx,k′
x
(E , E ′) ∼ L2

y

N

w2

h̄2vyv′
y

(
�ZPM

a

)2

δ(E − E ′ − h̄ωq0 ). (25)

For bias voltages close to eVb = h̄ωq0 , we have

d

dVb
fμ(E )[1 − f−μ(E ′)]δ(E − E ′ − h̄ωq0 )

� eθ (eVb − h̄ωq0 )δ(E − μ)δ(E ′ + μ). (26)

The δ functions constrain the energies of the initial and fi-
nal states to the Fermi circles of tip and sample. Thus, we
can approximate |vyv

′
y| ∼ v2

D and the sums over kx and k′
x

each contribute a factor of the order of the number of chan-
nels, 2κF Lx. Collecting factors into Eq. (17), this reproduces
Eqs. (12) and (13) up to the twist-angle dependence, which
we dropped in the estimate of the electron-phonon coupling.

III. TWISTED GRAPHENE LAYERS: ELECTRONIC
STATES

For completeness and for fixing notation, we briefly review
some elements of the electronic properties of graphene [39]
and of tunneling between twisted layers [40]. We also include
a discussion of the electrostatics of graphene-graphene junc-
tions in the QTM [15].

A. Graphene

Each of the two graphene layers is described by a tight-
binding Hamiltonian

H = −t‖ ∑
R

3∑
j=1

{|R〉 〈R + e j | + |R + e j〉 〈R|}, (27)

where the e j denote the three bond vectors

e1 = a

(
0
1

)
; e2/3 = a

(∓√
3/2

−1/2

)
(28)

emanating from an A site to the three nearest-neighbor B sites
(Fig. 7). The sum is over the sites R of sublattice A. In the
Bloch basis defined through

|k, α〉 = 1√
N

∑
R

eik·(R+τα ) |R + τα〉 (29)

(α = A, B denotes the sublattice, τA = 0, and τB = e1), the
Hamiltonian takes the form

Hk =
(

0 −t‖ ∑
j eik·e j

−t‖ ∑
j e−ik·e j 0

)
. (30)
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A

B
KK‘

(a) (b) (c)

FIG. 7. Honeycomb lattice of graphene layers. (a) A and B sub-
lattices and lattice vectors a1/2 of direct lattice. (b) Bond vectors e j of
direct lattice. (c) Brillouin zone with K and K′ points and reciprocal
lattice vectors Q1/2. We also occasionally use Q0 = 0.

The band structure

Ek,± = ±t‖
√

A2
k + B2

k (31)

has valence (−) and conduction (+) bands with the lattice-
periodic part |k,±〉 = (uA,k,±, uB,k,±)T of the Bloch functions
given by

uA,k,± = 1√
2

; uB,k,± = ∓ 1√
2

e−iγk . (32)

Here, we define Ak = ∑
j cos(k · e j ) and Bk = ∑

j sin(k · e j )
as well as the phase γk = arctan(Bk/Ak ). For graphene lat-
tice vectors a1/2 = a[±√

3/2, 3/2], the reciprocal lattice is
spanned by the vectors (see Fig. 7)

Q1/2 = 4π

3a

(√
3/2

±1/2

)
. (33)

We occasionally find it useful to define Q0 = 0.
We measure wave vectors k from the � point. For states

close to the K point at K = 4π
3a (1/

√
3, 0) or the K ′ point

at −K, the electron dispersion simplifies to the Dirac form
Eκ,± = ±h̄vD|κ| (with vD = 3t‖a/2h̄), where κ is measured
from the K or K ′ point, respectively. The phase γk becomes

γk = π − arctan(κy/κx ) (34)

(K point) and γk = arctan(κy/κx ) (K ′ point).

B. Tunneling between twisted layers

We describe tunnneling between the twisted graphene lay-
ers on tip (layer 1, unprimed) and sample (layer 2, primed)
following Bistrizer and MacDonald [40]. Starting with the
Bernal-stacked configuration [see Fig. 2(a)], the sites of the
A sublattice of the twisted layers (denoted R and R′, respec-
tively) are related by

R′ = D(θ )(R − e1) + d. (35)

Here, D(θ ) is a rotation matrix involving the twist angle θ

and d a relative shift of the rotated lattices. Note that with our
conventions, the vector K′ denotes the location of the K point
of the primed (sample) layer.

Tunneling between the layers is described by the matrix
elements

〈R + τα|HT |R′ + τ ′
β〉 = t⊥(R + τα − R′ − τ ′

β ) (36)

of the (first-quantized) tunneling Hamiltonian HT , where
t⊥(r) is assumed to be only a function of the distance of the
sites projected into the graphene plane.

We consider the tunneling matrix elements

T αβ

kp′ = 〈kα|HT |p′β〉 (37)

between states |kα〉 with momentum k and sublattice α in the
tip [Eq. (29)] and states

|p′β〉 = 1√
N

∑
R′

eip′ ·(R′+τ ′
β ) |R′ + τ ′

β〉 (38)

with momentum p′ and sublattice β in the sample. The vector
τ ′

β is rotated relative to τβ by the twist angle θ . Inserting
definitions and expanding

t⊥(r) = 1

�

∑
q

t⊥
q eiq·r (39)

into a Fourier series (note that the sum over q is not restricted
to the Brillouin zone), one finds

T αβ

kp′ = 1

�

∑
q

1

N

∑
R

∑
R′

t⊥
q

× eiq·(R+τα−R′−τ ′
β )e−ik·(R+τα )eip′ ·(R′+τ ′

β ). (40)

We transform the sums over R and R′ into sums over recipro-
cal lattice vectors G and G′ of the two layers using∑

R

eiq·R = N
∑

G

δq,G (41)

and ∑
R′

e−iq·R′ = N
∑

G

e−iG′ ·(−e′
1+d)δq,G′ . (42)

Unlike the sum over R, the sum over R′ generally does not
include a term with R = 0, resulting in the phase factor on the
right-hand side. This yields [40]

T αβ

kp′ =
∑
G1

∑
G2

t⊥
k+G1

�uc
eiG1·τα−iG2·(τβ−e1 )−iG′

2·dδk+G1,p′+G′
2
.

(43)

With momenta measured relative to the � point, translation in-
variance enforces that tunneling conserve crystal momentum
modulo reciprocal lattice vectors of the two layers.

Unlike for elastic tunneling, inelastic tunneling at larger
twist angles involves virtual states far from the Fermi energy.
However, matrix elements of HT always involve one momen-
tum close to the K points of one of the layers. This can be
used to simplify the tunneling matrix element since tq decays
rapidly on the scale of the Brillouin zone [40]. Assuming for
definiteness that k is close to the K point, one retains only
those terms in the sum over G1, in which the momenta in
t⊥
k+G1

have the smallest magnitude, i.e., the three contributions
with G1 = 0, G1 = −Q1, and G1 = −Q2 corresponding to
vectors k − Q j located near the three equivalent K points in
the hexagonal Brillouin zone. Using that momentum conser-
vation effectively restricts G1 = G2 for relevant twist angles,
this gives

T αβ

kp′ � w

2∑
j=0

e−iQ j ·τα+iQ j ·(τβ−e1 )+iQ′
j ·dδk−Q j ,p′−Q′

j
, (44)
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where w = t⊥
K /�uc. Explicit evaluation of the exponentials

gives

T αβ

kp′ �
2∑

j=0

T αβ
j eiQ′

j ·dδk−Q j ,p′−Q′
j

(45)

with the matrices

T0 = w

(
1 1
1 1

)
, T1/2 = w

(
e∓iζ 1
e±iζ e∓iζ

)
(46)

in sublattice space. Here, we used the abbreviation ζ = 2π/3.
We note that the same expression holds when p′ is close to the
K point of the sample, but k is possibly further from the tip’s
K point.

C. Matrix elements

Calculations of the tunneling current by Fermi’s golden
rule require the matrix elements of the tunneling Hamiltonian
between eigenstates of the upper and lower layers,

T ss′
kp′ = 〈k, s|HT |p′, s′〉. (47)

Here, s, s′ = ± enumerate the valence and conduction bands
of the top and bottom graphene layers, respectively. Accord-
ing to Eq. (45), we can write

T ss′
kp′ �

2∑
j=0

T ss′
kp′; je

iQ′
j ·dδk−Q j ,p′−Q′

j
(48)

with

T ss′
kp′; j = 〈k, s|Tj |p′, s′〉. (49)

Equation (46) gives

〈u|Tj |u′〉 = we−i jζ (uA + ei jζ uB)∗(u′
A + ei jζ u′

B), (50)

where we used e3iζ = 1. Interestingly, the matrix elements
factorize into independent contributions of the two spinors.
Using the explicit Bloch spinors in Eq. (32), this becomes

T ss′
kp′; j = w

2
e−i jζ [1 − se−i(γk− jζ )]∗[1 − s′e−i(γ ′

p′ − jζ )]. (51)

We note that the phases γk and γ ′
p′ are defined in terms of

the bond vectors of tip and sample, respectively. We can also
express the matrix elements for momenta k and p′ close to the
Dirac points. Writing k = K + κ and p′ = K′ + π′, specify-
ing to the K point, and using Eq. (34), we find

T ss′
κπ′; j = we−i jζ

2
[1 + sei(θκ− θ

2 + jζ )][1 + s′ei(θπ′+ θ
2 + jζ )]. (52)

Note that here we have defined the angles θκ and θπ′ in a global
coordinate system, relative to which the tip and sample layers
are rotated by ±θ/2.

D. Electrostatics

We review the electrostatics of the QTM contact [15]. We
assume a configuration (see Fig. 1), in which a bias voltage
Vb is applied between tip and sample. The electron densities
nT and nS of tip and sample are further controlled by gate
voltages VTG = VG + VD and VBG = VG − VD applied to the
top and bottom gates. Here, we defined the symmetrized and

antisymmetrized gate voltages VG = 1
2 (VTG + VBG) and VD =

VTG − VBG.
The gate electrodes are assumed to have a high density

of states (large quantum capacitance), so that their chemical
potentials are independent of the applied voltages. We set
μTG � μBG � 0. Consequently, the gate voltages control their
electric potentials,

e(VG + VD) = eφTG; e(VG − VD) = eφBG. (53)

Similarly, the bias voltage Vb controls the electrochemical
potentials (encompassing the chemical potentials μ and the
electrostatic potentials φ) of tip (T) and sample (S),

±eVb

2
= μT/S + eφT/S. (54)

The chemical potentials are related to the electron densities of
tip and sample through

nT/S = Nf

μ2
T/S

4π h̄2v2
D

sgnμT/S. (55)

Here, Nf = 4 is the number of flavors and we assume that
the graphene dispersions can be approximated as linear for
relevant densities.

Electrostatics relates the potentials and electron densities
through

e(φTG − φT) = − e2dg

εhBNε0
nTG, (56)

e(φT − φS) = e2d

εε0
(nS + nBG) = −e2d

εε0
(nT + nTG), (57)

e(φS − φBG) = e2dg

εhBNε0
nBG. (58)

Here, dg denotes the thickness of the gate dielectrics
(dielectric constant εhBN) and d the distance of tip and sample
(dielectric constant ε). Finally, the relation

nT + nS = −(nTG + nBG) (59)

is imposed by overall charge neutrality.
We first solve these equations for the charges on tip and

sample. The gate voltage VG controls the overall charge den-
sity in tip and sample,

2eVG = e2dg

εhBNε0
(nT + nS) − (μT + μS). (60)

Assuming that the screening lengths are small compared to dg

in gate electrodes as well as tip and sample, we can further
neglect the chemical potential shifts, so that

2eVG = e2dg

εhBNε0
(nT + nS). (61)

Correspondingly, the difference in electron densities on tip
and sample is controlled by the bias voltage Vb in conjunction
with the displacement field VD,

εhBNε0

e2dg
2eVD − 2εε0

e2d
eVb = 2εε0

e2d
(μT − μS) + (nT − nS).

(62)
Here, we assumed that d � dg. Equation (55) can now be used
to extract nT/S as well as μT/S. This in turn yields φT/S with
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Eq. (54). We note that the setup in Fig. 1 admits independent
control of the chemical potentials μT and μS as well as the
potential difference φT − φS.

In our analytical calculations, we choose VG = VD = 0 and
a small quantum capacitance. Then, tip and sample are overall
charge neutral, nT + nS = 0, and have opposite chemical po-
tentials, μT = −μS = μ. For a linear graphene dispersion, the
density of states per flavor at the (bias-dependent) Fermi en-
ergy is ν(μ) = μ/(2π h̄2v2

D) for both layers and the difference
φ = φT − φS in electric potentials is

eφ = e2d

εε0
nT = (qTFd )μ � μ, (63)

where qTF = (e2/2εε0)Nf ν(μ) is the Thomas-Fermi wave
vector. Thus, eVb = 2μ + eφ � 2μ. At the same time, eφ
gives a relative shift of the Dirac points in tip and sample.
This leads to the bias regimes sketched in Fig. 4.

The electrostatics of the contact region (d � dg) differs
from that far from the contact (d  dg), where the gate
charges directly control the electron densities of tip and sam-
ple, nT � −nTG and nS � −nBG. For certain parameters, this
difference in electrostatics induces pn junctions in the sample,
which enclose the contact region. This leads to Fabry-Perot–
type resonances within the sample, which affect the measured
tunneling currents. We do not consider this experimental issue
in the following, as it can be avoided in phonon spectroscopy
by a judicious choice of parameters.

IV. ELASTIC TUNNELING

We begin our discussion of the tunneling conductance of
QTM junctions by considering elastic tunneling. For small
twist angles, the Dirac cones of tip and sample layers intersect
at small bias voltages and for the same valley, as illustrated in
Fig. 2(c). In practice, one limits the strong tunnel coupling in
this limit by separating tip and sample by a few atomic layers
of a transition metal dichalcogenide (e.g., WSe2) [15].

Complementing the scattering approach sketched in
Sec. II, we evaluate the current from tip to sample using
Fermi’s golden rule,

I = 2πeNf

h̄

∑
s,s′

∑
k

∑
p′

|〈k, s|HT |p′, s′〉|2

× δ
(
E (T)

k,s + eφT − E (S)
p′,s′ − eφS

)
× [

fμT

(
E (T)

k,s

) − fμS

(
E (S)

p′,s′
)]

. (64)

For overall charge neutrality and small quantum capacitance
(see Sec. III D), the tunneling current becomes

I = 2πeNf

h̄

∑
s,s′

∑
k

∑
p′

|〈k, s|HT |p′, s′〉|2

× δ
(
E (T)

k,s + eφ − E (S)
p′,s′

)
×[

feVb/2
(
E (T)

k,s

) − f−eVb/2
(
E (S)

p′,s′
)]

. (65)

In describing elastic scattering at small twist angles, it is
advantageous to measure momenta from the K points of tip
and sample. With k = K + κ and p′ = K′ + π′ as well as

Eq. (48) for the tunneling matrix elements, we find

I = 2πeNf

h̄

∑
s,s′

∑
κ

∑
π′

∑
j

|T ss′
κ,π′; j |2δπ′−κ,q j

× δ(Eκ,s + eφ − Eπ′,s′ )

× [
feVb/2(Eκ,s) − f−eVb/2(Eπ′,s′ )

]
. (66)

We dropped the layer superscripts on the dispersions, which
are identical provided that trigonal warping can be neglected.

One expects structure in the differential conductance
dI/dVb at two characteristic voltages [15] (see Fig. 4). As the
bias voltage increases, the tunneling current onsets at

eV ∗
b = h̄vDqj = 2h̄vD|K| sin

θ

2
, (67)

which depends linearly on small twist angles. At a larger bias
voltage [see Eq. (63) and Fig. 4]

V ∗∗
b = 2V ∗

b

qTFd
 V ∗

b , (68)

the potential difference φ leads to nesting of the Dirac cones
of tip and sample. This occurs when

eφ(V ∗∗
b ) = h̄vDqj = 2h̄vD|K| sin

θ

2
. (69)

The linear dependence of V ∗
b on (small) θ implies that V ∗∗

b
has a leading square-root dependence. Retaining the electric
potential in the relation eVb = 2μ + eφ yields a subleading
linear term.

A. Voltages of order V ∗
b

We first consider voltages of order V ∗
b , such that the elec-

trostatic potential difference φ is negligible. The energy δ

function imposes s = s′, so that

I = 2πeNf

h̄

∑
j

∑
s

∑
κ

∣∣T ss
κ,κ+q j ; j

∣∣2
δ
(
Eκ,s − Eκ+q j ,s

)
× [

feVb/2(Eκ,s) − f−eVb/2
(
Eκ+q j ,s

)]
. (70)

It is convenient to rewrite this as

I = 2πeNf

h̄

∑
j

∑
κ

∑
s

|T ss
κ,κ+q j ; j |2

× ∣∣Eκ,s + Eκ+q j ,s

∣∣δ(E2
κ,s − E2

κ+q j ,s

)
× [

feVb/2(Eκ,s) − f−eVb/2
(
Eκ+q j ,s

)]
. (71)

We pass to the differential conductance at zero temperature.
The derivative of the first Fermi function places Eκ,s and thus
also Eκ+q j ,s at the chemical potential μ = eVb/2 with s = +.
Corresponding results hold for the derivative of the second
Fermi function, which yields

dI

dVb
= 2πe3Nf Vb

h̄

∑
j

∑
κ

∑
s

∣∣T ss
κ,κ+q j ; j

∣∣2

×δ
(
E2

κ,+ − E2
κ+q j ,+

)
δ

(
Eκ,+ − eVb

2

)
. (72)
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The first δ function enforcing energy conservation has the
argument

E2
κ,+ − E2

κ+q j ,+ = h̄2v2
Dqj (2κ cos θ j + q j ), (73)

where θ j = �(κ, q j ). Thus, the δ function imposes θ j � π

for bias voltages near the threshold, which implies θκ + jζ =
−π/2 and θκ+q j + jζ = π/2. Evaluating the matrix element
in Eq. (52) for this case gives |T ss

κ,κ+q j ; j |2 = w2 for small twist
angles, which is independent of j and s. Thus, we find

dI

dVb
� 12πe3Nf w

2Vb

h̄
�ν(eVb/2)

× 1

h̄2v2
Dq0

∫
dθ0

2π
δ(2κF cos θ0 + q0). (74)

Performing the angular integral yields the result given in
Eq. (8) of Sec. II.

B. Voltages of order V ∗∗
b

In the vicinity of V ∗∗
b , we need to retain the electrostatic

potential in Eq. (66). We write the potential as φ = φ(V ∗∗
b ) +

δφ and evaluate the current for small δφ. For small quantum
capacitance qTFd � 1, the chemical potential μ = eVb/2 is
much larger than φ, so that we retain only the contributions of
regions I and III in Fig. 4(c), where tunneling satisfies s = s′.
Regions I and III give identical contributions by particle-hole
symmetry. Moreover, the sum over j gives a factor of 3 in
view of C3 symmetry. Thus, we have

I = 12πeNf

h̄

∑
κ

∣∣T ++
κ,κ+q0;0

∣∣2
δ
(
Eκ,+ + eφ − Eκ+q0,+

)
× [

feVb/2(Eκ,+) − f−eVb/2
(
Eκ+q0,+

)]
. (75)

The Fermi-function factor is nonzero and equal to unity as
long as 0 < h̄vDκ < eVb/2.

For small δφ, we can approximate

Eκ,+ + eφ − Eκ+q0,+ � eδφ + h̄vD
κq0(1 − cos θ0)

κ + q0
. (76)

We thus have θ0 � 1. Moreover, we observe that θκ �
θκ+q0 � π/2 in region I. According to Eq. (52), we can now
approximate the matrix element as |T ++

κ,κ−q0;0|2 � w2 for small
twist angles. Thus, we find

I = 3eNf w
2�

π h̄

∫ μ/(h̄vD )

0
dκ κ

∫
dθ0 δ

(
eδφ + h̄vDκq0

2(κ + q0)
θ2

0

)
.

(77)

We note that the integral over κ is dominated by the upper
limit, so that we can approximate κ + q0 � κ in the argument
of the δ function. Evaluating the remaining integrals yields the
result in Eq. (9) of Sec. II.

V. PHONONS AND ELECTRON-PHONON COUPLING

A. Mode expansion

We consider the phonon modes of tip or sample layer,
neglecting mechanical coupling between the graphene layers.
We expand the atomic displacements u(R + τα ) of each of the

layers, including both in-plane and out-of-plane components,
into phonon modes (annihilation operator br,Q) enumerated by
their momenta Q and mode index r:

u(R + τα, t ) = 1√
N

∑
Q

∑
r

εα
r,Q

1√
2Mωr,Q

× eiQ·(R+τα )
(
br,Qe−iωr,Qt + b†

r,−Qeiωr,Qt
)
.

(78)

Here, M is the mass of the unit cell and the momentum sum
is restricted to the Brillouin zone. The polarization vectors
εα

r,Q denote the mode displacement of sublattice α, which we
normalize according to∑

α

Mα

(
εα

r,q

)∗ · εα
r′,q = Mδr,r′ (79)

with the Mα denoting the mass of the atom on sublattice
α (i.e., Mα = M/2 for graphene layers). We keep the mode
expansion of the atomic displacements general throughout this
paper to facilitate generalization from the case of graphene to
other types of layers on tip and sample.

For graphene, the polarization vectors can be chosen real
due to inversion symmetry. The polarization vectors satisfy
the general relation [

εα
r,Q

]∗ = εα
r,−Q, (80)

while inversion symmetry implies εα
r,Q = εα

r,−Q. At long wave-
lengths, the phonon modes include longitudinal and transverse
acoustic modes, longitudinal and transverse optical modes,
as well as a flexural mode. The quadratic dispersion of the
flexural mode is cut off at a nonzero frequency at long wave-
lengths due to the coupling between the graphene layers and
the substrates, even in the absence of mechanical coupling
between tip and sample.

B. Electron-phonon coupling

Electron-phonon coupling arises from changes in the bond
lengths of the graphene layers associated with the atomic
displacements as well as from the deformation potential.
Changes in the intralayer bond lengths result in the electron-
phonon coupling of individual graphene layers. At long
wavelengths, this intralayer coupling can be incorporated
in the Dirac description as a gauge field. The atomic dis-
placements also modify the interlayer tunneling discussed
in Sec. III B, leading to interlayer electron-phonon coupling.
The electron-phonon coupling originating from the deforma-
tion potential gives a separate contribution to the intralayer
coupling.

1. Intralayer electron-phonon coupling

We consider the intralayer electron-phonon due to changes
in the bond lengths for one of the layers. The atomic displace-
ments modify the electronic tight-binding Hamiltonian of the
graphene layer by

Hintra = −
∑

R

3∑
i=1

δt‖
R,R+ei

|R〉 〈R + ei| + H.c. (81)
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Assuming that the hopping amplitude t‖ depends only on the
interatomic distance, one finds

δt‖
R,R+ei

� β êi · [u(R + ei ) − u(R)] (82)

to linear order in the atomic displacements u. Here, ê j de-
notes the unit vector in the direction of e j and β = ∂t‖/∂a
the derivative of the hopping amplitude with respect to the
bond length. Notice that the intralayer coupling is limited

to in-plane phonons. Coupling to flexural phonons appears
only in quadratic order in the atomic displacements and
can be neglected since there is coupling to flexural modes
already at linear order in the interlayer electron-phonon
coupling.

The matrix elements of the electron-phonon coupling can
be obtained by inserting the mode expansion in Eq. (78) into
Hintra |k, A〉. This yields

Hintra |k, A〉 = − 1

N

∑
R

∑
j

∑
Q

∑
r

β√
2Mωr,Q

ê j · [
εB

r,QeiQ·e j − εA
r,Q

](
br,Qe−iωr,Qt + b†

r,−Qeiωr,Qt
)
ei(k+Q)·R |R + e j〉 . (83)

Evaluating the sum over R yields

Hintra |k, A〉 = − 1√
N

∑
j

∑
Q

∑
r

β√
2Mωr,Q

ê j · [
εB

r,Q − εA
r,Qe−iQ·e j

](
br,Qe−iωr,Qt + b†

r,−Qeiωr,Qt
)
e−ik·e j |k + Q, B〉 (84)

with |k + Q, B〉 interpreted as the state, for which k + Q is folded back into the Brillouin zone. Here, we have used the identity
1√
N

∑
R eip·R |R + e j〉 = e−ip·e j |p, B〉, which can be checked by direct calculation. Similarly, one finds

Hintra |k, B〉 = − 1√
N

∑
j

∑
Q

∑
r

β√
2Mωr,Q

ê j · [
εB

r,QeiQ·e j − εA
r,Q

](
br,Qe−iωr,Qt + b†

r,−Qeiωr,Qt
)
eik·e j |k + Q, A〉. (85)

As a result, the intralayer electron-phonon interaction takes the form

Hintra =
∑

Q

∑
r

(
br,−Qe−iωr,−Qt + b†

r,Qeiωr,Qt
)∑

k

{|k − Q, B〉 Mr
k−Q,B;k;A 〈k, A| + |k − Q, A〉 [Mr

k,B;k−Q;A]∗ 〈k, B|} (86)

with the electron-phonon matrix element

Mr
k−Q,B;k,A = 1√

N

∑
j

β√
2Mωr,Q

× ê j · [
εA

r,Qe−i(k−Q)·e j − εB
r,Qe−ik·e j

]
. (87)

For acoustic phonons, the term in square brackets vanishes
linearly in Q, while the denominator vanishes only as |Q|1/2.
Thus, the intralayer electron-phonon coupling vanishes in the
long-wavelength limit. For optical phonons, the coupling ap-
proaches a constant in the long-wavelength limit.

2. Interlayer electron-phonon coupling

The interlayer electron-phonon coupling arises from mod-
ifications in the interlayer distances between atoms in the two
layers. Importantly, this contribution to the electron-phonon
coupling cannot be obtained starting with the continuum
model of twisted bilayer graphene, even at long phonon

wavelengths. The reason is that as we will see, the domi-
nant contribution to the coupling arises from phonon-induced
changes of phases of the tunneling matrix element, which
depend on the large momenta of the K points as measured
from the � point.

The interlayer tunneling amplitude is a function of the
in-plane and out-of-plane distances of the atoms in the two
layers. Including the modification of the distances by the
atomic displacements, we have

t⊥(|R + τα − R′ − τ ′
β + u‖ − u′

‖|, d + u⊥ − u′
⊥)

= 1

�

∑
q

t⊥
q (d + u⊥ − u′

⊥)eiq·(R+τα−R′−τ ′
β+u‖−u′

‖ ). (88)

Here, we used the shorthands u = u(R + τα ) and u′ =
u′(R′ + τ ′

α ) and denote the equilibrium interlayer distance by
d . Expanding to linear order in the displacements yields

t⊥(|R + τα − R′ − τ ′
β + u‖ − u′

‖|, d + u⊥ − u′
⊥) � 1

�

∑
q

t⊥
q (d )eiq·(R+τα−R′−τ ′

β )

{
1 + iq · (u‖ − u′

‖) + ∂ ln t⊥
q (d )

∂d
(u⊥ − u′

⊥)

}
.

(89)
The first term in the curly brackets is just the interlayer tunneling discussed in Sec. III B [40]. The contributions of the second
and third terms, collectively denoted δt⊥, encapsulate the electron-phonon coupling

Hinter =
∑

R

∑
R′

∑
α,β

|R + τα〉 δt⊥(|R + τα − R′ − τ ′
β + u‖ − u′

‖|, d + u⊥ − u′
⊥) 〈R′ + τ ′

β | + H.c. (90)

to in-plane (u‖) and out-of-plane (u⊥) phonons.
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The derivation of matrix elements 〈k, α|Hinter|p′, β〉
closely follows the discussion of interlayer tunneling in
Sec. III B. Using the mode expansion in Eq. (78) of the atomic
displacements, one finds the following rule for shifting the
electronic momenta in the expressions for the tunneling ma-
trix element: Scattering from phonons in the tip (wave vector

Q) can be accounted for by shifting the outgoing momentum
according as k → k − Q and leaves the incoming momentum
p′ invariant. Scattering from phonons in the sample (wave
vector Q′) can be accounted for by shifting the incoming
momentum p′ → p′ + Q′ and leaves the outgoing momentum
k invariant. This yields

〈k, α|Hinter|p′, β〉 =
∑

Q

∑
r

〈k, α|Hinter|p′, β; r, Q〉(br,Qe−iωr,Qt + b†
r,−Qeiωr,Qt

) − (Q → Q′), (91)

where [cf. Eq. (43)]

〈k, α|Hinter|p′, β; r, Q〉 = 1√
N

∑
G1

∑
G2

eiG1·τα−iG2·(τβ−e1 )−iG′
2·d δk−Q+G1,p′+G′

2

× 1√
2Mωr,Q

{
t⊥
p′+G′

2

�uc
i(p′ + G′

2) · εα
r,Q + 1

�uc

∂t⊥
p′+G′

2
(d )

∂d
ẑ · εα

r,Q

}
(92)

and

〈k, α|Hinter|p′, β; r, Q′〉 = − 1√
N

∑
G1

∑
G2

eiG1·τα−iG2·(τβ−e1 )−iG′
2·d δk+G1,p′+Q′+G′

2

× 1√
2Mωr,Q′

{
t⊥
k+G1

�uc
i(k + G1) · ε

β

r,Q′ + 1

�uc

∂t⊥
k+G1

(d )

∂d
ẑ · ε

β

r,Q′

}
. (93)

The first terms in the curly brackets in Eqs. (92) and (93) describe coupling to in-plane phonons, while the second terms describe
coupling to flexural phonons.

The contribution of Hinter to the inelastic tunneling current can be accounted for in first-order perturbation theory. Conse-
quently, the electronic momenta k and p′ are close to the K points of tip and sample. In this case, we can further simplify
the matrix elements. As discussed in Sec. III B, the dominant terms are then given by G1 = 0, G1 = −Q1, and G1 = −Q2

with G1 = G2. Moreover, except for the smallest twist angles, we can neglect the distance of k and p′ from the respective K
points relative to the distance qj between the K points of tip and sample. With these approximations, the Kronecker-δ imposing
momentum conservation in Eq. (92) simplifies as δk−Q+G1,p′+G′

2
→ δK−Q−Q j ,K′−Q′

j
= δQ,qj , so that the phonon wave vector

equals a connection vector between the Dirac points of tip and sample [and analogously for Eq. (93)]. Thus, we find

〈k, α|Hinter|p′, β; r, Q〉 = 1√
N

2∑
j=0

T αβ
j eiQ′

j ·d δQ,q j

1√
2Mωr,Q

{
i(K′ − Q′

j ) · εα
r,Q + w̃

w
ẑ · εα

r,Q

}
, (94)

〈k, α|Hinter|p′, β; r, Q′〉 = − 1√
N

2∑
j=0

T αβ
j eiQ′

j ·d δQ′,q j

1√
2Mωr,Q′

{
i(K − Q j ) · ε

β

r,Q′ + w̃

w
ẑ · ε

β

r,Q′

}
. (95)

Here, we defined w̃ = ∂w
∂d . (Note that w̃ and w have differ-

ent dimensions.) Several comments are in order concerning
these results in the limit of small twist angles. (i) The vectors
q j and hence the phonon wave vector Q are approximately
perpendicular to K − Q j as well as K′ − Q′

j . Thus, as a
consequence of the scalar product, the coupling to in-plane
phonons is predominantly to transverse phonon modes for the
phonon vectors probed in QTM experiments. (ii) The coupling
to transverse acoustic modes diverges as |Q|−1/2 at small
phonon wave vectors Q. (iii) The coupling to the transverse
acoustic modes is effectively to layer-antisymmetric phonons,
also known as the phason mode.

As mentioned in the beginning of this section, the relevant
momenta entering Eqs. (94) and (95) are the large momenta of
the K points rather than the phonon wave vector. It is for this

reason that even in the long-wavelength limit, this coupling
cannot be obtained by adding phonon displacements to the
continuum model of twisted bilayer graphene. Instead, one
has to follow the derivation of the continuum model after
taking the phonon displacements into account.

The underlying reason is that the interlayer coupling arises
from phase factors associated with the interlayer tunneling.
We use this observation in the Appendix A to show that by
means of a gauge transformation, the interlayer coupling can
be brought into a form, which is analogous to the intralayer
coupling. As it appears in this section, the contribution of the
interlayer coupling to the inelastic tunneling current can be
accounted for in a first-order golden rule calculation. In the
transformed form, it must be treated in second order. Remark-
ably, in the transformed form, the intralayer and interlayer
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couplings are related by the replacement

∂t‖

∂a
↔ it‖K. (96)

This shows that one expects both contributions to the inelastic
tunneling current to have corresponding parametric dependen-
cies, as borne out by the explicit calculations (see Table I).

3. Deformation-potential coupling

For long-wavelength phonons, the deformation potential

V (r) = −D∇ · u (97)

gives an additional contribution to the electron-phonon cou-
pling of longitudinal acoustic phonons. This can be compared
with the intralayer electron-phonon coupling in Eqs. (81)
and (82) due to changes in the bond length. In contrast to the
deformation potential, the latter is of comparable magnitude
for transverse and longitudinal acoustic phonons. Apart from
this difference, the magnitudes of the deformation-potential
and the gauge couplings are related by the replacement

D ↔ ∂t‖

∂ ln a
. (98)

We can use this correspondence to obtain the additional con-
tribution of the deformation potential to the inelastic tunneling
current from the result for the intralayer gauge coupling.

We also note that the deformation coupling locally shifts
the chemical potential, inducing changes of the charge density.
These charge fluctuations will be screened by electron-
electron interactions, effectively reducing the strength of the
deformation potential. We take D to be the renormalized cou-
pling.

VI. PHONON SPECTROSCOPY

A. Inelastic-tunneling current

We are now in a position to compute the inelastic tunnel-
ing current to the leading orders in tip-sample tunneling and
electron-phonon coupling. Inelastic electron tunneling in con-
junction with phonon emission emerges from the interlayer
electron-phonon coupling Hinter [see Eqs. (94) and (95)] as
well as the intralayer electron-phonon coupling Hintra in con-
junction with interlayer tunneling. While the first contribution
can be captured by Fermi’s golden rule in lowest order, the
second requires a higher-order calculation.

Keeping the calculation general at first, we assume a
nonzero matrix element 〈p′, s′; r, Q|Tinel|k, s〉 of the inelastic
contribution to the T matrix without specifying to a particular
process. We assume zero temperature and eVb > 0. Then,
tunneling is unidirectional from tip to sample and only phonon
emission contributes. We also specify to charge neutrality and
small quantum capacitance, so that φT = φS and μ = eVb/2
at bias voltages corresponding to typical phonon frequencies.
With these assumptions, the phonon contribution δI to the
tunneling current from tip to sample is given by

δI = 2πeNf

h̄

∑
Q

∑
r

∑
k,p′

∑
s,s′

|〈p′, s′; r, Q|Tinel|k, s〉|2δ(Ep′,s′ + h̄ωr,Q − Ek,s) fμ(Ek,s)[1 − f−μ(Ep′,s′ )] + (Q → Q′). (99)

Passing to the differential conductance in the limit of zero temperature using μ = eVb/2 gives

dδI

dVb
= 2πe2Nf

2h̄

∑
Q

∑
r

∑
k,p′

∑
s,s′

θ (eVb − h̄ωr,Q)|〈p′, s′; r, Q|Tinel|k, s〉|2

×{δ(Ep′,s′ + h̄ωr,Q − μ)δ(Ek,s − μ) + δ(−μ + h̄ωr,Q − Ek,s)δ(Ep′,s′ + μ)} + (Q → Q′). (100)

The singular contribution to the second derivative d2δI/dV 2
b arises from the derivative of the threshold factor θ (eVb − h̄ωr,Q).

The resulting δ function enforces that the bias voltage match the phonon energy. Using this constraint, the two terms in curly
brackets become equal, and we obtain

d2δI

dV 2
b

= 2πe3Nf

h̄

∑
Q

∑
r

δ(eVb − h̄ωr,Q)
∑
k,p′

|〈p′,−; r, Q|Tinel|k,+〉|2δ(Ep′,− + μ)δ(Ek,+ − μ) + (Q → Q′). (101)

Here, we also used that tunneling at the threshold is from s = + to s′ = −. Due to the δ functions, the initial and final electron
states are located at the Fermi energies of tip and sample, respectively. Thus, we find

d2δI

dV 2
b

= 2πe3Nf �
2

h̄
ν(μ)ν(−μ)

∑
r

∑
Q

δ(eVb − h̄ωr,Q)
∫

dθk

2π

dθp′

2π
|〈p′,−; r, Q|Tinel|k,+〉|2 + (Q → Q′), (102)

which depends on Fermi-circle averages of the T -matrix element.

B. Interlayer electron-phonon coupling: First-order perturbation theory

We first consider the contribution δIinter of the interlayer electron-phonon coupling Tinel → Hinter in Eq. (102). We can readily
perform the angular averages in Eq. (102) using Eqs. (94), (95), and (52). By C3 symmetry, the sum over j implicit in the matrix
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elements can be accounted for by a factor of 3 and we obtain

d2δIinter

dV 2
b

= 6πe3Nf �
2

h̄N

∑
r

δ(eVb− h̄ωr,q0 )
ν(μ)ν(−μ)

2Mωr,q0

∑
α

{∣∣iwK′ · εα
r,Q=q0

+ w̃ẑ · εα
r,Q=q0

∣∣2+ ∣∣iwK · εα
r,Q′=q0

+ w̃ẑ · εα
r,Q′=q0

∣∣2}
.

(103)

Here, we also used that by symmetry, ωr,q0 is the same for the
tip and sample layers. Finally, we note that the contributions of
phonon emissions in tip and sample are identical in magnitude
and use the fact that the polarization vectors are real. This
yields the result

d2δIinter

dV 2
b

= Gincoh

∑
r

δ(Vb − h̄ωr,q0/e)
8π2(κF �r,q0 )2

√
3

×
∑

α

{(
K̂′ · εα

r,Q=q0

)2 + w̃2

w2|K|2
(
ẑ · εα

r,Q=q0

)2
}
.

(104)

Here, we have rewritten the prefactor by introducing the
length �r,q0 = √

h̄/Mωr,q0 characterizing the contribution of
phonon mode r with wave vector q0 to the amplitude of
the zero-point motion of the atoms and using |K|2�uc =
8π2/(3

√
3). We note that in Sec. II D as well as Table I, we

use the less specific notation �ZPM for �r,q0 .
Each phonon mode contributes a δ-function peak to

d2δI/dV 2
b at eVb = h̄ωr,q0 . Several comments are in order:

(i) At small twist angles, transverse phonons contribute more
strongly to the inelastic tunneling current as the vectors K
and K′ are nearly orthogonal to the phonon wave vector q0.
(ii) As the twist angle decreases and the phonon wave vector
q0 → 0, the strength of the electron-phonon coupling diverges
for acoustic phonons. Concurrently, the Fermi wave vector κF

decreases. On balance, we have (κF �r )2 ∼ ωr,q0 , so that the
strength of the phonon resonance decreases as the twist angle
becomes smaller. We note, however, that this is specific to the
case of overall charge neutrality. Away from charge neutrality,
the Fermi wave vector remains nonzero at zero bias and one
finds a singular enhancement at small twist angles. The cutoff
at small twist angles is discussed at the end of Sec. II D.
(iii) For the same reason, acoustic phonons contribute more
weakly than optical phonons at overall charge neutrality, but
stronger away from charge neutrality provided that the phonon
frequencies are small compared to the zero-bias chemical
potential. (iv) Similar considerations apply to the out-of-plane
ZA and ZO modes. The lower-frequency ZA mode is expected
to be weaker than the ZO mode at charge neutrality, but
stronger away from it. We also note that the ZA mode is
gapped at small twist angles, cutting off the electron-phonon
coupling.

In deriving d2δI
dV 2

b
, we neglected the electronic momenta

measured from the respective K points, relative to q0 [see

Eqs. (94) and (95) and the preceding discussion]. Within this
approximation, all inelastic tunneling events involve phonons
with momenta q j and d2δI

dV 2
b

becomes a δ peak as a function

of bias voltage. Retaining the small electronic momenta ef-
fectively broadens the δ peak. The phonon momenta are now
equal to q j only up to wave vectors of order κF . For acoustic
modes, we can estimate the change in phonon frequency as
�ωr ∼ h̄cκF with c the speed of sound. Thus, we find

�ωr

ωr,q0

∼ c

vD
� 1 (105)

for the relative broadening of the phonon peak. We note that
this approximation also implies a limitation on the twist angle
due to the requirement κF � q0 ≈ |K|θ . For an optical mode
(for which this condition is more stringent), this implies

θ  c

vD
. (106)

Here, we estimated the frequency of the optical phonon as
c|K|.

C. Intralayer electron-phonon coupling: Second-order
perturbation theory

The contribution of the intralayer electron-phonon inter-
action is obtained by Tinel → HTG0Hintra + HintraG0HT in
Eq. (102). This is written in second quantization (as indicated
by calligraphic symbols) to keep proper track of the relative
exchange phase of the two contributions.

The relevant processes are illustrated in Fig. 8, for a bias
voltage at threshold (eVb = h̄ωr,q j ). Electron tunneling is from
the chemical potential in the tip (conduction band) to the
chemical potential in the sample (valence band). We specify to
electron wave vectors in the vicinity of K and K′. Figures 8(a)
and 8(c) describe phonon emission in the tip, 8(b) and 8(d) in
the sample. By symmetry, both sets of processes contribute
equally. For definiteness, we specify to emission of a phonon
in the tip.

In the process shown in Fig. 8(a), tunneling follows the
initial phonon emission, so that the process contributes to
HTG0Hintra. Similarly, in the process shown in Fig. 8(c),
phonon emission follows the initial tunneling, so that the pro-
cess contributes to HintraG0HT . These processes are described
by the matrix elements

〈p′,−; r, Q|HT G0Hintra|k,+〉 =
∑

r

〈p′,−; r, Q|HT |r,+; r, Q〉〈r,+; r, Q|Hintra|k,+〉
Ek,+ − Er,s − h̄ωr,Q

(107)
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(a) (b) (c) (d)

FIG. 8. Second-order processes contributing to the inelastic tunneling current involving the intralayer electron-phonon coupling. (a),
(b) Processes with intermediate electrons in the conduction band. (c), (d) Processes with intermediate valence holes. All processes are shown at
the threshold voltage eVb = h̄ωr,q j , with full (dashed) black lines indicating the first (second) process. Notice that due to the difference between
electronic and phononic velocities, actual phonon energies (as well as μ) are much smaller than represented here for reasons of readability.
This also implies that the electronic momenta measured from the respective Dirac points are much smaller than the distance between the Dirac
points of tip and sample.

and

〈p′,−; r, Q|HintraG0HT |k,+〉 =
∑

r

〈p′,−; r, Q|Hintra|p′,−; r,−; k,+〉〈p′,−; r,−; k,+|HT |k,+〉
Er,s − E ′

p′,−
(108)

of the T matrix, respectively. Here, we denote holes by over-
lines. In this section, we also denote energies of tip (sample)
without (with) prime. Energy and momentum conservation
demand that Ek,+ = E ′

p′,− + h̄ωQ as well as Q = k − p′ �
q j . The three contributions to tunneling are related by C3

symmetry and incoherent, so that we focus on the j = 0 con-
tribution, which leaves the momentum unchanged, i.e., r = p′
in both processes.

The processes in Figs. 8(a) and 8(c) contribute with a
relative statistical minus sign. This follows as they involve
the operator products c†

p,−cr,+c†
r,+ck,+ and c†

r,−ck,+c†
p,−cr,−,

respectively. Anticommuting the operators in the second prod-
uct turns it into −c†

p,−c†
r,−cr,−ck,+. The relative minus sign

follows by noting that cr,+c†
r,+ and c†

r,−cr,− both reduce to
unity when acting on the ground state.

The energy denominators of the two processes in
Eqs. (107) and (108) are equal to each other up to corrections
which are small in the ratio of the phonon and electron veloc-
ities. As can also be seen by inspection of Figs. 8(a) and 8(c),
the energy denominators differ by the phonon energy h̄ωr,Q,
which can be neglected in leading order. Thus, they can be
approximated by Ek,+ − Ep′,+ � h̄vDq0 provided that the lin-
earized Dirac spectrum accurately describes the intermediate
state at momentum r = p′.

Using Eq. (51), we find

〈p′,−; r, Q|HT |r = p′,+; r, Q〉 = w

2

[
1 + eiγp′

][
1 − e−iγ ′

p′
]

(109)

and

〈p′,−; r = p′,−; k,+|HT |k,+〉 = w

2
[1+ eiγp′ ] [1 + e−iγ ′

p′ ]

(110)

for the matrix elements of the tunneling Hamiltonian. Note
that here, γp′ and γ ′

p′ are evaluated using the bond vectors
of the respective layer. To compute the matrix elements of
Hintra, we use that it has only off-diagonal matrix elements in
sublattice space. We can approximate the electron momenta
as k � K and p′ = r � K′. Using Eqs. (32) and (86), we then
have

〈r = p′,+; r, Q|Hintra|k,+〉
� −δQ,q0

1
2

{
Mr

K′,B;K,Aeiγp′ + [
Mr

K,B;K′,A
]∗

e−iγk
}

(111)

and

〈p′,−; r, Q|Hintra|p′,−; r = p′,−; k,+〉
� δQ,q0

1
2

{
Mr

K′,B;K,Aeiγp′ − [Mr
K,B;K′,A]∗e−iγk

}
. (112)

Adding the amplitudes accounting for their relative minus
sign, we find

〈p′,−; r, Q|HintraG0HT − HT G0Hintra|k,+〉
= −δQ,q0

w

4h̄vDq0
[1 + eiγp′ ]

{
[1 − e−iγ ′

p′ ]
(
Mr

K′,B;K,Aeiγp′ + [Mr
K,B;K′,A]∗e−iγk

)
+ [1 + e−iγ ′

p′ ]
(
Mr

K′,B;K,Aeiγp′ − [
Mr

K,B;K′,A
]∗

e−iγk
)}

= −δQ,q0

w

2h̄vDq0
[1 + eiγp′ ]

{
Mr

K′,B;K,Aeiγp′ − [
Mr

K,B;K′,A
]∗

e−iγk−iγ ′
p′
}

= δQ,q0

w

2h̄vDq0

[
1 − e−i(θπ′−θ/2)

]{
Mr

K′,B;K,Ae−i(θπ′ −θ/2) + [
Mr

K,B;K′,A
]∗

eiθκ+iθ ′
π′
}
. (113)
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In the last step, we have approximated the phases in the Dirac approximation. Taking the absolute value, averaging over the
Fermi circles, and noting that as a result of the average over θκ, the two terms contribute incoherently gives∫

dθk

2π

dθp′

2π
|〈p′,−; r, Q|Tinel|k,+〉|2 → w2

2(h̄vDq0)2

{∣∣Mr
K′,B;K,A

∣∣2 + ∣∣Mr
K,B;K′,A

∣∣2
}
. (114)

Inserting this into Eq. (102) and accounting for phonon emission in the substrate, we find

d2δ Iintra

dV 2
b

= Gincoh

∑
r

δ(Vb − h̄ωr,q0/e)
κ2

F �

(h̄vDq0)2

{∣∣Mr
K′,B;K,A

∣∣2 + ∣∣Mr
K,B;K′,A

∣∣2
}
. (115)

Both matrix elements contribute equally, so that we find the result

d2δ Iintra

dV 2
b

= Gincoh

∑
r

δ
(
Vb − h̄ωr,q0

/
e
)(

κF �r,q0

)2 β2�uc

(h̄vDq0)2

∣∣∣∣∣
∑

j

[
εA

r,q0
e−iq0·e j − εB

r,q0

]∣∣∣∣∣
2

. (116)

The behavior in the limit of small twist angle, i.e., q0 → 0,
depends on the type of phonon mode. For acoustic phonons,
the dependencies on q0 of the last two factors on the right-
hand side compensate to yield a constant. At charge neutrality,
(κF �r )2 ∼ ωr,q0 implies that the overall expression reduces
linearly with decreasing q0 → 0. Away from charge neutral-
ity, the peak grows as 1/q0. For optical phonons, the last factor
as well as (κF �r )2 remain constant for q0 → 0. Thus, the peak
grows as 1/q2

0 as the twist angle decreases both at and away
from charge neutrality.

We end this section by remarking that making the re-
placement derived in the Appendix A, one can reproduce
the contribution of acoustic phonons due to the interlayer
electron-phonon interaction from Eq. (116) for the intralayer
coupling.

VII. CONCLUSIONS

While STM probes local tunneling in real space, the
QTM exploits tunneling which is local in reciprocal space.
This makes the QTM ideally suited to probing momentum-
dependent dispersions. Elastic tunneling between twisted
graphene layers requires voltages above a twist-angle-
dependent threshold. This opens a window at small voltages,
in which the tunneling current in a QTM is purely inelastic
and gives access to collective-mode dispersions along certain
lines in momentum space. In this paper, we illustrated this
modality by developing a comprehensive and analytical the-
ory for phonon spectroscopy in twisted graphene-graphene
junctions. We showed that intralayer and interlayer electron-
phonon couplings give contributions to the inelastic tunneling
current, and that the dominant contribution can come from
various processes for a specific phonon mode, as summarized
in Table I. Phonon spectroscopy relies on (i) small Fermi sur-
faces of the tip and sample layers and (ii) the Fermi velocity
being large compared to the phonon velocity. These condi-
tions are also satisfied by other van der Waals materials. Thus,
graphene-graphene junctions should be considered as a model
system illustrating a more broadly applicable technique. It
is also conceivable that tip layers with different arrange-
ments of Fermi pockets give access to phonon dispersions and

electron-phonon couplings along additional directions in mo-
mentum space.

The intralayer electron-phonon coupling has two contri-
butions at long wavelengths. Phonon-induced modifications
in the bond lengths can be described as a gauge field
within the effective Dirac description of the graphene band
structure. The conventional deformation potential associated
with compressions and dilations of the lattice enters the Dirac
equation as a scalar potential. It has been difficult to reliably
extract corresponding coupling constants from experiment.
Provided that the contribution of intralayer electron-phonon
coupling contributes significantly in QTM measurements, we
find that for small twist angles, the gauge coupling is much
stronger for transverse acoustic modes, while the deformation
potential couples only to longitudinal acoustic modes. Thus,
QTM measurements may well resolve this issue in addition to
providing direct access to coupling constants.

Our considerations were limited to situations in which tun-
neling preserves the valley. In practice, rotating the tip by π/3
merely replaces the tip’s K valley by the K ′ valley. This makes
the twist-angle-dependent tunneling invariant under π/3 rota-
tions. Moreover, every phonon mode contributes twice at a
particular twist angle, due to scattering between identical as
well as opposite valleys. Both contributions become symmet-
ric at a twist angle of π/6, making this a symmetry point of
the measured spectra.

Our analytical considerations focused on zero temperature,
where only phonon emission contributes to the inelastic tun-
neling current. At finite temperatures, also phonon absorption
contributes. We also did not consider higher-order umklapp
processes. These do affect elastic scattering at specific angles,
making their contribution to inelastic tunneling an interesting
question. Both effects can be included by straightforward
extension of the calculations presented here.

Our considerations further neglected the finite size of the
tunneling contact. A finite contact area limits the accuracy
of momentum conservation in the tunneling process. This
enables a background elastic-tunneling current at all angles.
The magnitude of this background depends sensitively on the
contact shape. We can evaluate the tunneling amplitude for
a finite contact area following the discussion of the scatter-
ing picture in Sec. II E. While a rectangular contact would
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have independent Lorentzian-type broadenings of the x and y
components of the momentum, these components are coupled
in more general situations. For instance, one would expect
just a single Lorentzian broadening for a weakly disordered
contact. The background current is dominated by the tail of
these broadening functions, which yields different behaviors
in these two cases.

In addition to phonon dispersions, QTM measurements
also give access to momentum-resolved electron-phonon cou-
plings. In view of the multiple inelastic tunneling processes,
extracting this information from experiment must rely on
theoretical results of the kind that we provide in this paper.
Corresponding results promise to shed light on the nature
of superconductivity and the linear temperature dependence
of the resistivity in magic-angle twisted bilayer graphene.
Phonon spectroscopy based on QTM measurements may fi-
nally bring us closer to understanding the origin of these
phenomena, which may or may not originate from electron-
phonon coupling.
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APPENDIX: INTERLAYER ELECTRON-PHONON
COUPLING

It may seem accidental that for acoustic phonons, the con-
tributions of first- and second-order perturbation theory are
of the same order. Here, we rationalize this result by showing
that the two kinds of electron-phonon couplings can be made
to look similar by means of a gauge transformation.

Focusing on the contribution of T0, the interlayer tunneling
can be written in the continuum limit as

HT =
∫

dr ψ†
t,α (r)T αβ

0 (r)eiK·[u(r+τα )−u′(r+τβ )]ψb,β (r) + H.c.

(A1)

The phonon displacements of the two layers contribute a
phase to the interlayer tunneling, akin to a vector potential
introducing a Peierls phase. This phase can be eliminated by
a gauge transformation

ψb,β (r) → ψb,β (r)eiK·u′(r+τβ ) (A2)

and an analogous transformation for the upper layer. This is
implemented by the unitary transformation

U = exp

{
−i

∑
α

∫
dr K · [u(r + τα )ψ†

t,α (r)ψt,α (r) − u′(r + τα )ψ†
b,α (r)ψb,α (r)]

}
. (A3)

Apart from eliminating the phase factor including the phonon displacements in HT , this transforms the electronic Hamiltonian of
the graphene layers. (An additional contribution due to the transformation of the phonon Hamiltonian is small in the parameter
c/vD.) We revert to a tight-binding description for convenience. Then, the unitary transformation becomes

U = exp

{
−i

∑
α

∑
R

K · [u(R + τα )c†
t (R + τα )ct (R + τα ) − u′(R′ + τ ′

α )c†
b(R′ + τ ′

α )cb(R′ + τ ′
α )]

}
. (A4)

The graphene Hamiltonian, say for the top layer, transforms
into

H = −t‖ ∑
R

∑
e j

eiK·[u(R)−u(R+e j )]c†
t (R + e j )ct (R) + H.c.

(A5)

Expanding the exponential to linear order in the atomic
displacements, we find that the resulting electron-phonon
coupling takes essentially the same form as the intralayer
electron-phonon coupling of the top layer, except for the fact
that it is phase shifted by π/2 due to the factor of i. The
calculation for the bottom layer proceeds by complete analogy

and generates a corresponding electron phonon coupling for
the bottom layer.

With this form of the interlayer electron-phonon coupling,
we readily see that the results for intralayer and interlayer
electron-phonon coupling are related by the replacement

∂t‖

∂a
↔ it‖K. (A6)

One can check that making this replacement in Eq. (116)
indeed reproduces the contribution of in-plane phonons to
Eq. (104) for the interlayer electron-phonon coupling.

The vectorial nature of the interlayer coupling implies
that it is strongly twist-angle dependent, with coupling to
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transverse phonons dominating over longitudinal phonons.
This relation also makes it explicit that apart from this dif-
ference in their twist-angle dependence, the two types of
electron-phonon couplings give contributions of the same or-
der, when making the (approximate) replacement ∂t‖/∂a →
t‖/a. In particular, we expect that the parametric dependencies
on electron filling and phonon wave vector are identical in
both cases. Moreover, the relative phase shift of π/2 im-
plies that there are no interference terms between the two
contributions.

It is also interesting to note that the dependence of the
electron-phonon coupling on the phonon momentum Q is
seemingly different before and after the gauge transformation.

Focusing on acoustic phonons, the coupling before the gauge
transformation diverges as 1/

√
Q due to the linear dispersion.

This dependence emerges from the zero-point amplitude of
the phonon displacements. In contrast, after the transforma-
tion, there is an additional factor of Q due to the difference
in phonon displacements of neighboring graphene sites. Thus,
the coupling behaves as

√
Q. This shows that the coupling

is consistent with the expectation that it vanishes in the long-
wavelength limit corresponding to near-uniform relative shifts
of the top and bottom layers. Of course, in keeping with
gauge invariance, physical results are identical in both cases,
with the singular Q dependence emerging from the energy
denominator after the gauge transformation.
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