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We study current correlations in a T junction composed of a grounded topological superconductor and of
two normal-metal leads which are biased at a voltage V . We show that the existence of an isolated Majorana
zero mode in the junction dictates a universal behavior for the cross correlation of the currents through the two
normal-metal leads of the junction. The cross correlation is negative and approaches zero at high bias voltages as
−1/V . This behavior is robust in the presence of disorder and multiple transverse channels, and persists at finite
temperatures. In contrast, an accidental low-energy Andreev bound state gives rise to nonuniversal behavior of
the cross correlation. We employ numerical transport simulations to corroborate our conclusions.
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I. INTRODUCTION

Majorana bound states (MBS) in condensed matter physics
are zero-energy modes which are bound to the boundaries
of an otherwise gapped topological superconductor (TSC).
Such an MBS is described by a self-adjoint operator and is
protected against acquiring a finite energy. These properties
are responsible for much of the great interest in MBSs [1,2].

Several theoretical proposals have been put forward for
realizing topological superconductivity in condensed mat-
ter systems [3–10]. Promising platforms include proximity-
coupled semiconductor nanowires [8,9] and ferromagnetic
atomic chains [10–17], where recent transport measurements
have provided compelling evidences for MBS formation
[18–25].

Much emphasis has been put on investigating the dif-
ferential conductance through a normal lead coupled to a
MBS [26–29]. At low enough temperatures the differential
conductance spectrum shows a peak at zero bias voltage which
is quantized to 2e2/h. The observation of such conductance
quantization has proved to be difficult, because it requires the
temperature to be much lower than the width of the peak.

Alternatively, one can seek for signatures of a MBS
in current correlations. Various aspects of current noise
in topological superconducting systems have been studied
[26,30–34]. Here, we consider a setup composed of multiple
leads coupled to an MBS, which we term a “Majorana
beam splitter” (Fig. 1), and study the cross correlations of
the currents in the leads. In a recent work [35] we have
examined the cross correlation between currents of opposite
spin emitted from an MBS, showing that it is negative in
sign and approaches zero at high bias voltage. In the present
work we show that this result holds much more generally:
The cross correlation of any two channels in the beam splitter
has the same universal characteristics, i.e., it is negative and
approaches zero at voltages larger than the width of the
Majorana resonance, independently of whether the different
channels are spin resolved or not. An immediate experimental
consequence is that this effect can be observed in a much less
challenging setup, which does not require spin filters to resolve
the current into its spin components.

The rest of this paper is organized as follows. In Sec. II
we describe the setup under study and state our main results.

In Sec. III we employ a simple model for the Majorana
beam splitter, and calculate the current cross correlation
using a scattering-matrix approach. In Sec. IV we corroborate
our conclusions in a numerical simulation of a microscopic
model, comprising a proximity-coupled semiconductor wire.
In Sec. V we present a semiclassical picture of transport, and
use it to rederive our results in the high-voltage limit. This
is done in a way which relates the result of this paper to the
nonlocal nature of MBSs. Finally, we conclude in Sec. VI.

II. SETUP AND MAIN RESULT

We consider a T junction between a topological super-
conductor (TSC) and two normal-metal leads as depicted in
Fig. 1(a). We study the low-frequency cross correlation of the
currents through the two arms of the junction, namely

PRL =
∫ ∞

−∞
dt〈δÎR(0)δÎL(t)〉, (1)

where δÎη = Îη − 〈Îη〉, and Îη=R,L are the current operators
in the right and left arm of the junction, respectively [36].
The brackets stand for thermal quantum averaging. We denote
the width of the resonance due to the MBS by �, and the
excitation gap by � [37]. A voltage V is applied between
the superconductor and the leads. Below we show that in the
regime eV � �, PRL has a simple, universal behavior, given
by Eq. (9). In particular, PRL is negative, and approaches zero
when eV � �. For eV � � the behavior is nonuniversal.

This effect survives, to a large extent, at finite temperatures.
As long as the temperature T is smaller than V , PRL is only
weakly temperature dependent, even if T > �. This is in
contrast to the zero-bias peak in the differential conductance
spectrum which is only quantized to 2e2/h for T � �.

Unlike studies which have focused on the cross correlation
between currents through two MBSs at the two ends of a TSC
[30,33,38–40], here the effect is due to a single MBS. In Refs.
[30,33,38–40] it was crucial that the MBSs at the two ends
of the TSC were coupled [41]. Here, on the other hand, the
effect is most pronounced when the two MBSs are spatially
separated such that only a single MBS is coupled to the leads.
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FIG. 1. (Color online) (a) The proposed experimental setup is a
T junction between a topological superconductor (TSC) and two
metallic leads. Here the TSC is realized by a semiconductor nanowire,
proximity coupled to a conventional s-wave superconductor under an
applied magnetic field. (b) We model the TSC by a spinless p-wave
superconductor. It is coupled to the leads through a normal-metal
section N, whose length dN is taken to zero. Scattering at the NP
interface is described by the reflection matrix rNP [see Eq. (3)], while
scattering at the T junction is described by the matrix SJ [see Eq. (4)].

III. SCATTERING MATRIX APPROACH

The proposed experimental setup is described in Fig. 1(a). A
semiconductor nanowire is proximitized to a grounded s-wave
superconductor. When a sufficiently strong magnetic field is
applied, the wire enters a topological phase [8,9], giving rise
to an MBS at each end. One of the wire’s ends is coupled to
two metallic leads, both biased at a voltage V .

To calculate the currents through the leads and their
cross correlation we use the Landauer-Büttiker formalism in
which transport properties are obtained from the scattering
matrix, describing both normal and Andreev scattering. We
are interested in bias voltages smaller than the gap � [37].
An electron incident from one of the normal leads is therefore
necessarily reflected from the middle (superconducting) leg.
It can be reflected to the right or the left lead, either as an
electron or as a hole. Since there is no transmission into the
superconductor, scattering is described solely by a reflection
matrix.

Each normal lead contains 2M transverse channels, includ-
ing both spin species. The overall reflection matrix which we
wish to obtain reads

rtot =
(

ree reh

rhe rhh

)
, (2)

where each block is a 4M × 4M matrix. The matrix element
r

αβ

ij , where α,β = {e,h}, is the amplitude for a particle of type
β coming from the channel j to be reflected into the channel
i as a particle of type α. Here, i = 1, . . . ,2M enumerates
the channels in the right lead while i = 2M + 1, . . . ,4M

enumerates the channels in the left lead.
We model the TSC as a spinless p-wave superconductor

which is a valid description close to the Fermi energy [42,43].
It is convenient to insert a (spinless) normal-metal section
between the TSC and the junction. In this way, we separate
the scattering in the T junction itself from the scattering at
the normal–p-wave interface [cf. Fig. 1(b)]. The length of the
normal-metal section dN is then taken to zero.

Andreev reflection at the normal–p-wave superconductor
interface is described by

rNP(ε) =
(

0 −a(ε)
a(ε) 0

)
, (3)

where a(ε) = exp [−i arccos(ε/�)] is the Andreev reflection
amplitude for |ε| � � [44,45], with ε being the energy as
measured from the Fermi level. The information about the
topological nature of the system is encoded in rNP(ε). The
relative minus sign between the off-diagonal elements of
rNP(ε) signals that the pairing potential of the superconductor
has a p-wave symmetry. Moreover, the nontrivial topological
invariant [46,47] Q = det[rNP(0)] = −1 dictates the existence
of an MBS at each end of the superconductor.

Scattering at the T junction (which connects the added
normal section to the two leads) is described by

SJ =
(

Se 0
0 S∗

e

)
; Se =

(
r t ′
t r ′

)
, (4)

where Se describes scattering of electrons and S∗
e describes

scattering of holes. Here, r is a 4M × 4M matrix describing
the reflection of electrons coming from the left and right
leads (each having 2M transverse channels), r ′ is a reflection
amplitude for electrons coming from the middle leg (having a
single channel), t is a 1 × 4M transmission matrix of electrons
from the right and left leads into the middle leg, and t ′ is a
4M × 1 transmission matrix of electrons from the middle leg
into the right and left leads. The matrix Se is assumed to
be energy independent in the relevant energy range, but is
otherwise a completely general unitary matrix.

We can now concatenate SJ with rNP to obtain the overall
reflection matrix rtot of Eq. (2). The block ree is obtained by
summing the contributions from all the various trajectories in
which an electron is reflected back as an electron, while the
block rhe is obtained by summing those trajectories in which
an electron is reflected as a hole. This yields

ree = r + t ′(−a)r ′∗at + t ′(−a)r ′∗ar ′(−a)r ′∗at + . . .

= r − a(ε)2t ′r ′∗t
1 + |r ′|2a(ε)2

, (5a)

rhe = t ′∗at + t ′∗ar ′(−a)r ′∗at + · · · = a(ε)t ′∗t
1 + |r ′|2a(ε)2

. (5b)

The two other blocks are given by reh(ε) = [rhe(−ε)]∗
and rhh(ε) = [ree(−ε)]∗ in compliance with particle-hole
symmetry [48].

Given the blocks of the reflection matrix, the sum of currents
in the leads and their cross correlation are obtained by [49]

I = e

h

∑
k,l=1,...,4M

α,β∈{e,h}

sgn(α)
∫ ∞

0
dεA

ββ

kk (l,α; ε)fβ (ε),

PRL = e2

h

∑
i∈R,j∈L

∑
k,l=1,...,4M

α,β,γ,δ∈{e,h}

sgn(α) sgn(β)
∫ ∞

0
dε

×A
γδ

kl (i,α; ε)Aδγ

lk (j,β; ε)fγ (ε)[1 − fδ(ε)],

A
γ δ

kl (i,α; ε) = δikδilδαγ δαδ − (
r

αγ

ik

)∗
rαδ
il , (6)

where I = 〈ÎR〉 + 〈ÎL〉 is the total current in the leads, and with
fe(ε) = 1 − fh(−ε) = 1/{1 + exp[(ε − eV)/kBT ]} being the
distribution of incoming electrons in the leads. Here, the index
i = 1, . . . ,2M runs only over the channels of the right lead,
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while the index j = 2M + 1, . . . ,4M runs only over those
of the left lead. We use a convention in which sgn(α) = 1 for
α = e and sgn(α) = −1 for α = h. At zero temperature Eq. (6)
reduces to [30]

I = 2e

h

∫ eV

0
dε Tr(rherhe†),

PRL = e2

h

∑
i∈R,j∈L

∫ eV

0
dεPij (ε), (7)

Pij = ∣∣Rhe
ij

∣∣2 + ∣∣Reh
ij

∣∣2 − ∣∣Ree
ij

∣∣2 − ∣∣Rhh
ij

∣∣2
,

where Rαβ = rαerβe†.
Let us introduce the parameter D = ∑4M

i=1 |ti |2 representing
total normal transmission from the two leads into the middle
leg of the T junction. Inserting Eq. (5) into Eq. (7) and using
the unitarity of Se, we first obtain the differential conductance,

dI

dV
= 2e2

h

�2

(eV)2 + �2
, (8)

where � = �D/2
√

1 − D. As expected dI/dV has a peak at
V = 0 which is quantized to 2e2/h. Similarly, we obtain for
the cross correlation [50],

PRL(V ) = −2e2

h
�R�L

eV

(eV)2 + �2
, (9)

where �η = �
∑

i∈η |t ′i |2/2
√

1 − D (note that � = �R + �L).
The cross correlation PRL is negative for all V and approaches
zero as −1/V for eV � �. This result is valid for eV � �. It
is valid even in the presence of strong disorder in the junction
region, as we did not assume a particular form of Se. Moreover,
it does not depend on a specific realization of the TSC hosting
the MBS.

The low-voltage behavior of the result in Eq. (9) can be
understood from simple considerations based on the properties
of MBSs. For eV � � and at zero temperature the conductance
through the MBS is quantized to 2e2/h, resulting in an
overall noiseless current [51]. Upon splitting the current into
the two parts IR and IL, the total noise P is related to the
cross correlation via P = PR + PL + 2PRL, where PR and
PL are the current noises through the right and left leads,
respectively [36]. Since P → 0 at low voltage, while PR and
PL are non-negative by definition, one must have PRL � 0.
More specifically, at zero voltage the total noise obeys [31]
dP/dV |V =0 = 0. In addition, since (for zero temperature)
PR(0) = PL(0) = 0, one has dPR/dV |V =0,dPL/dV |V =0 �
0. It therefore follows that dPRL/dV |V =0 � 0. The cross
correlation PRL is thus negative at low voltage.

The high-voltage limit of Eq. (9) can be derived in a
semiclassical picture of transport, based on the nonlocal nature
of MBSs. In particular, the analysis relies on the fact that no
local probe can determine the occupation of the MBS. This is
explained in Sec. V below.

IV. NUMERICAL ANALYSIS

We now turn to illustrate the results of the previous section
using numerical simulations. We consider the system depicted
in Fig. 1(a). A semiconductor nanowire of dimensions Lx �

Wy � Wz is proximity coupled to a conventional s-wave
superconductor and is placed in an external magnetic field.

The Bogoliubov de-Gennes Hamiltonian describing the
nanowire is given in Nambu representation, 
†(x) =
(ψ†

↑,ψ
†
↓,ψ↓, − ψ↑), by

H =
[−∇2

2me
+ V (x,y)

]
τ z + iλR(σy∂x − σx∂y)τ z

− μBg

2
Bσx + �ind(x)τ x, (10)

where me is the effective mass of the electron, V (x,y) includes
both the chemical potential and a disordered potential, λR is
the Rashba spin-orbit coupling strength, B is the magnetic
field directed along the wire, μB is the Bohr magneton, g is
the Landé g factor, �ind(x) = �0θ (x − x0) is the proximity-
induced pair potential, and σ and τ are vectors of Pauli
matrices in spin and particle-hole space, respectively. Since
we take Wz to be much smaller than the magnetic length, we
can ignore the orbital effect of the magnetic field.

We approximate the continuum model of Eq. (10) by a
tight-binding Hamiltonian,

H =
∑

r

∑
s,s ′

{[
Vrδss ′ − μBg

2
Bσx

ss ′

]
c†r,scr,s ′

−
∑

d=x̂,ŷ

[(ttbδss ′ + iu(σ ss ′ × d) · ẑ)c†r,scr+a0d,s ′ + H.c.]

}

+
∑

r·x̂>x0

[�0c
†
r,↑c

†
r,↓ + H.c.], (11)

where r runs over the sites of an Nx by Ny square lattice
with spacing a0. Here ttb = 1/2mea

2
0 , u = λR/2a0, Vr =

−μ + 4ttb + V dis
r , μ is the chemical potential, and V dis

r is a
Gaussian-distributed disorder potential with zero average and
correlations V dis

r V dis
r′ = v2

disδrr′ .
We express H in a first quantized form as a 4NxNy ×

4NxNy matrix HTB, from which one extracts the retarded
Green function,

GR(ε) = (ε − HTB + iπWW †)−1, (12)

and subsequently the reflection matrix [52,53],

rtot(ε) = 1 − 2πiW †GR(ε)W. (13)

Here, W is a matrix describing the coupling of the eigenmodes
in the leads to the end of the nanowire as depicted in Fig. 1(a)
and specified in Appendix B. The metallic leads are described
in the wide band limit by an energy independent W . With the
help of Eqs. (2) and (6) we then obtain the currents through
the leads and their cross correlation

In the present work we use parameters consistent with
an InAs nanowire, namely Eso = meλ

2
R/2 = 75 μeV, lso =

1/(meλR) = 130 nm, and g = 20 [20]. The induced pair
potential is taken to be �0 = 150 μeV. The length of the
wire is Lx = 2 μm, with the section not covered by the
superconductor being x0 = 200 nm in length, and the width of
the wire is Wy = 130 nm.

In Fig. 2 we present the cross correlation PRL(V ) and
the differential conductance dI/dV at various temperatures
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FIG. 2. (Color online) (a) Zero-frequency cross correlations PRL [defined in Eq. (1)] of the currents through the left and right leads as a
function of bias voltage V at various temperatures. PRL is negative for all V and approaches zero at voltages which are larger than both the
resonance width and the temperature. (b) Total differential conductance, dI/dV , where I = IR + IL. At zero temperature dI/dV exhibits a
zero-bias conductance peak quantized to 2e2/h [54]. A nonzero temperature widens the peak and reduces its height to a nonuniversal value.
The inset shows the zero-temperature local density of states at zero energy in the wire in the absence of coupling to the leads in arbitrary units.
The section of the wire not covered by the superconductor is x ∈ [0,x0], as depicted in Fig. 1(a).

for μ = 0 and B = 520 mT. For these values of μ and
B the system is in the topological phase [8,9,55]. PRL is
negative and approaches zero at high voltages, in agreement
with the analytic expression of Eq. (9). Interestingly, this
behavior persists even at nonzero temperatures. The main
effect of temperature is to increase the voltage above which
PRL starts approaching zero. Since the gap in the system is
about 100 μeV, the effect can be seen even at the relatively
high temperature of T = 100 mK, a temperature for which the
zero-bias conductance peak is much lower than 2e2/h.

Next, we study the effect of disorder on PRL. Figure 3(a)
presents PRL for 10 different realizations of random disorder
with vdis = 75 μeV. As expected, the behavior of PRL does
not change significantly. We can compare this to the case of
an ordinary Andreev state which is tuned to zero energy. The
end of the wire which is not covered by a superconductor

[x < x0 in Fig. 1(a)] hosts Andreev bound states which are
coupled to the leads. For each realization of disorder, we tune
the magnetic field to bring one of them to zero energy [56],
and calculate PRL. In all the realizations, the resulting tuned
magnetic field was below the critical field Bc = 260 mT, i.e.,
the system is in the trivial phase. As shown in Fig. 3(b), the
behavior of PRL is nonuniversal and varies significantly from
one realization of disorder to another. Importantly, in all cases
PRL is positive at large V .

In our simulations we have chosen the length of the wire
Lx = 2 μm to be sufficiently bigger than the localization
length of the Majorana wave function (which here is about
ξ ∼ 300 nm), so that the leads are only coupled to a single
MBS. If ξ becomes of the order of Lx , say by increasing the
magnetic field B, then the leads become coupled also to the
MBS at the other end of the wire. At this point it is as if the

0 5 10 15 20 25
−0.3

(a) (b)
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FIG. 3. (Color online) Current cross correlation PRL vs bias voltage V at μ = 0 and T = 0 for different realization of short-range Gaussian
disorder. (a) B = 520 mT > Bc, the system is in the topological phase with a zero-energy Majorana bound state (MBS) at each end of the
wire. The universal behavior of PRL(V ), (being negative and approaching zero at high voltage) is not affected by the presence of disorder. (b)
For each realization of disorder the magnetic field is tuned to have an Andreev bound state (ABS) with zero energy at the end of the wire, while
keeping the system in the topologically trivial phase, B = 170 − 200 mT < Bc (see the text for more details). The behavior of PRL(V ) varies
significantly for different realizations of disorder. In all cases PRL > 0 for large V in contrast to the topological case where it goes to zero.
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FIG. 4. (Color online) (a) Cross correlation and (b) differential conductance at various chemical potentials μ, corresponding to a different
odd number of occupied transverse channels. The calculations are performed at T = 0, vdis = 0, and B = 520 mT. The addition of occupied
channels introduces extra subgap states which coexist with the Majorana bound state. These appear as peaks in the differential conductance
spectra at finite V [see (b) at V � 80 μeV]. Above this voltage the behavior of PRL is no longer universal.

leads are coupled to a single ABS. Increasing the magnetic
field therefore induces a crossover between the MBS case and
the ABS case, in exactly the same way which was described
and analyzed in Ref. [35].

It is interesting to examine the case when more than a
single transverse channel is occupied in the wire. For weak
pairing [57], the system is in the topological phase whenever
an odd number of channels is occupied. Figure 4 presents
PRL and dI/dV for various values of μ, each corresponding
to a different odd number of occupied channels between 1
and 7. When more than a single channel is occupied we can
have subgap Andreev bound states which coexist with the
MBS. One such state can be seen in Fig. 4(b) as a peak at
V � 80 μeV. It is only below this voltage that the behavior
of PRL(V ) remains qualitatively the same as in the single
channel case. In this respect, the existence of subgap states
reduces the effective energy gap below which PRL(V ) exhibits
its universal features. Another effect of introducing higher
transverse channels is the stronger coupling of the middle leg
of the T junction to the two leads [58].

V. SEMICLASSICAL PICTURE

The behavior of the current cross-correlation, as given in
Eq. (9), at high voltages can be derived based on simple
semiclassical considerations. We reconsider the setup shown
in Fig. 1(a), and examine the limit eV � �, where � is the
width of the zero-energy resonance (which can be either a
MBS or an ABS).

In this limit, the transport of current from the supercon-
ductor to the leads can be described in terms of a sequence
of tunneling events. In each tunneling event, a Cooper pair
in the superconductor dissociates; one electron is emitted
into the right or left lead, and the other is absorbed into the
zero mode localized at the edge of the superconductor. In
the presence of such a zero mode, the many-body ground
state of the superconductor is doubly degenerate. We denote
the two ground states by |0〉 and |1〉, corresponding to an
even and odd number of electrons in the superconducting
wire, respectively. Each time an electron is emitted into the

leads, the superconductor flips its state from |0〉 to |1〉 or vice
versa.

Let us denote by �0
R/h and �0

L/h the probability per unit
time to emit an electron into the right or left lead, respectively,
given that the superconductor is in state |0〉. Similarly, �1

R,L/h

are the corresponding rates when the system is in the |1〉 state.
After a time τ , there are NR and NL electrons emitted to the

right and left leads, respectively. The average currents in the
leads are given by

〈IR〉 = e〈NR〉
τ

; 〈IL〉 = e〈NL〉
τ

, (14)

and the current cross correlation is given by

PRL = lim
τ→∞

1

τ

∫ τ

0
dt1

∫ τ

0
dt2〈δIR(t1)δIL(t2)〉

= e2

τ
(〈NRNL〉 − 〈NR〉〈NL〉). (15)

In the case of a Majorana zero mode, all the local properties
of the states |0〉 and |1〉 are identical. This is usually stated
as the fact that one cannot make a local measurement which
would reveal in which of the two ground states the system is in.
In particular, this implies that �0

R = �1
R ≡ �̃R and �0

L = �1
L ≡

�̃L. Let us divide the time τ into short time intervals �t ∼ h
eV ;

�t is the minimal time between consecutive emission events
(set by the minimal temporal width of an electron wave packet
whose energy spread is ∼eV). At each time step �t , either an
electron is emitted to the right lead, an electron is emitted to the
left lead, or no electron is emitted at all. The transport process is
thus described by a trinomial distribution. The probabilities of
being emitted to the right and left lead are pR = �̃R�t/h and
pL = �̃L�t/h, respectively, and there are overall N = τ/�t

time steps. One thus obtains [59]

〈NR〉 = NpR = �̃Rτ/h,

〈NL〉 = NpL = �̃Lτ/h, (16)

〈NRNL〉 − 〈NR〉〈NL〉 = −NpRpL = − �̃R�̃Lτ�t

h2
.
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Finally, inserting Eq. (16) into Eqs. (14) and (15) one has

〈IR〉 = e

h
�̃R; 〈IL〉 = e

h
�̃L, (17)

and

PRL ∼ − e

h

�̃R�̃L

V
. (18)

PRL is negative and approaches zero as −1/V . We have
therefore reproduced the high-voltage limit of Eq. (9).

Unlike the case of an MBS, for an ABS the probabilities
to emit an electron to the right or the left lead can depend
on the state of the system, |0〉 or |1〉. To illustrate the effect
this dependence has on the cross correlations, we consider the
case,

�0
L = 0; �1

R = 0, (19)

where the electron can only go right if the system is in |0〉, and
it can only go left if the system is in |1〉 [60]. Because each
time an electron is transmitted the state of the system changes
(either from |0〉 to |1〉 or vice versa), it is clear that NR =
NL = N/2. For simplicity we assume �0

R = �1
L ≡ �̃. In this

case, the distribution for the total number of emitted electrons
is binomial; in each time step we only ask whether an electron
has been emitted to one of the leads or not. The probability for
an electron to be emitted is p = �̃�t/h. Remembering that
half of the times the electron is emitted to the right and half of
the times to the left, one obtains

〈NRNL〉 − 〈NR〉〈NL〉 = 1

4
Np(1 − p) = τ �̃

4h

(
1 − �̃�t

h

)
.

(20)
Inserting this into Eq. (15) one has

PRL = 1

4

e2

h
�̃

(
1 − C

�̃

eV

)
, (21)

where C is a constant of order unity. PRL is monotonically
increasing, asymptotically approaching a positive constat. This
is in agreement with Fig. 3(b) and with the results of Ref. [35].

VI. CONCLUSIONS

When current from a topological superconductor is split
into two metallic leads, the current cross correlation PRL

exhibits universal behavior as a function of bias voltage V .
The cross correlation is negative for all V and approaches zero
at high voltage as −1/V . This behavior is robust and does not
rely on a specific realization of the topological superconductor
hosting the Majorana, or on a specific form of coupling to
the leads. It can be observed even in disordered multichannel
systems at finite temperature. For the effect to be observed the
width of the Majorana resonance � has to be smaller than the
energy of the first subgap state. Importantly, the temperature
T does not have to be smaller than �.

In contrast, for the case of an accidental low-energy ABS,
PRL is nonuniversal. In particular, it is sensitive to details such
as the realization of disorder.

The result of this work for the current cross correlation has
its roots in the defining properties of MBSs. The high-voltage
behavior can be shown to stem from the nonlocal nature of
MBS; the fact that the occupation of the Majorana mode cannot

be revealed by any local probe. The low-voltage behavior stems
from the fact that the MBS induces perfect Andreev reflection
at zero bias.

Note added. We became aware of two recent papers by
Valentini et al. [61] and by Tripathi et al. [62]. Our results are
consistent with theirs where they overlap.
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APPENDIX A: HAMILTONIAN APPROACH

The results presented in Eqs. (8) and (9) of Sec. III can
be derived from a Hamiltonian approach of transport. We
start from an effective low-energy Hamiltonian describing a
multiple number of conducting channels which are coupled to a
single MBS. Each of the channels belongs either to the left lead
or to the right lead (although the calculation proceeds similarly
in the case of a different number of leads). The Hamiltonian
reads

H = HL + HT ,
(A1)

HL =
∑
ik

εikη
†
ikηik; HT = iγ

∑
ik

(λiηik + H.c.),

where γ describes the MBS, η
†
ik creates an electron with

momentum k and energy εik in the i th channel, and λi is the
coupling constant of the i th channel to the Majorana.

In the wide-band limit the reflection matrix can be obtained
by [52,53]

rtot(ε) = 1 − 2πiW
†
M

(
ε + iπWMW

†
M

)−1
WM, (A2)

with WM being a vector of coupling constants given by

(WM )i = √
νi

{
λi, i = 1, . . . ,4M

λ∗
i , i = 4M + 1, . . . ,8M

, (A3)

where νi is the density of states of the i th channel at the Fermi
energy, and M is the number of spinful channels in each lead
(all together there are 4M electronic channels). One obtains
for the blocks of rtot [see also Eq. (2)],

ree
ij = δij + 2π

√
νiνjλ

∗
i λj

iε − �
, rhe

ij = 2π
√

νiνjλiλj

iε − �
, (A4)

with rhh(ε) = [ree(−ε)]∗ and reh(ε) = [rhe(−ε)]∗, and where
we have defined � = 2π

∑4M
i=1 νi |λi |2.

Inserting Eq. (A4) into Eq. (7) results in

dI

dV
= 2e2

h

�2

(eV)2 + �2
, (A5)

and

PRL(V ) = −2e2

h
�R�L

eV

(eV)2 + �2
, (A6)
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where �η = 2π
∑

i∈η νi |λi |2. We have therefore rederived
Eqs. (8) and (9). We note that the definition of � here is in
terms of the coupling constant, while in Sec. III it is given in
terms of transmission amplitudes. In both cases, however, it
equals the width of the Majorana-induced resonance.

APPENDIX B: DETAILS OF NUMERICAL SIMULATIONS

To obtain the scattering matrix using Eqs. (11)–(13) we
express the Hamiltonian H in first quantized form using a
4NxNy × 4NxNy matrix HTB defined by

H = ∑
mn



†
mHTB
n; 
† = (�†,�) , (B1)

where �
†
m=2Ny (nx−1)+2(ny−1)+s = c

†
r=(nxa,nya),s creates an elec-

tron with spin s on site (nx,ny) of an Nx × Ny square lattice.
Here, s = 1 for spin =↑ and s = 2 for spin ↓. In our
simulations we used Nx = 90 and Ny = 6.

The matrix W in Eq. (12) describes the coupling between
the extended modes of the leads and the sites of the lattice.
In each lead there are M spinful transverse channels. In our
simulations M = 4 (see Fig. 5). Including both leads, both
spin species, and the particle-hole degree of freedom, W is a
4NxNy × 8M matrix of the following form:

W =
(

We 0

0 −W ∗
e

)
; We = (WL WR), (B2)

where WL and WR described the coupling to the left and right
lead, respectively. As depicted in Fig. 5, each lead is coupled
only to those lattice sites which are adjacent to it. Moreover, the

FIG. 5. (Color online) Illustration of the tight-binding model
corresponding to the system depicted in Fig. 1(a). Each lead is tunnel
coupled to the sites adjacent to it. The purple sites are ones in which
there is a nonvanishing induced pair potential [cf. Eq. (11)].

coupling to each site is modulated according to the transverse
profile of the particular channel. This is described by

WL = W 0 ⊗

⎛
⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎠

1

2

Ny

⊗ σ 0; WR = W 0 ⊗

⎛
⎜⎜⎝

0
...
0
1

⎞
⎟⎟⎠

1

Ny−1

Ny

⊗ σ 0,

W 0
nm =

{
wm sin πnm

M+1 , 1 � n � M

0, M < n � Nx

, m = 1, . . . ,M,

(B3)

where σ 0 is a 2 × 2 identity matrix in spin space, and wm is a set
of coupling constants for each transverse channel of the leads.
In this work we have used w2

m = 0.03�0,∀m ∈ {1,2,3,4}.
Given the coupling matrix W and the first-quantized

Hamiltonian HTB, the reflection matrix is calculated using
Eqs. (12) and (13).
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