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We generalize the theory of thermoelectrics to include coherent electron systems under adiabatic ac driving,
accounting for quantum pumping of charge and heat, as well as for the work exchanged between the electron
system and driving potentials. We derive the relevant response coefficients in the adiabatic regime and show
that they obey generalized Onsager reciprocity relations. We analyze the consequences of our generalized
thermoelectric framework for quantum motors, generators, heat engines, and heat pumps, characterizing them in
terms of efficiencies and figures of merit. We illustrate these concepts in a model for a quantum pump.
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I. INTRODUCTION

Describing the relation between particle and energy cur-
rents is at the heart of thermoelectrics [1–5]. For dc driving
with small temperature gradients and bias voltages, linear-
response relations between the currents and the applied forces
constitute the basis to describe thermoelectric phenomena.
When combined with the principles of thermodynamics, the
resulting theory has the beauty of simplicity and the strength
of high predictive power. Specifically, it allows for a successful
characterization of the efficiency of various thermoelectric
machines in terms of the figure of merit introduced by Ioffe in
1949 [6].

An important challenge is to incorporate genuine quantum
effects associated with coherent transport in nanodevices into
this theoretical framework for thermoelectric effects. Here,
we address how to include adiabatic quantum pumping as a
paradigm of coherent-transport effects in a suitably general-
ized thermoelectric framework and explore the fundamental
relations of the corresponding quantum machines. Quantum
pumping generates nonzero dc currents by locally applying
purely ac drivings to a quantum coherent conductor [7–9]. It
generates both charge and energy currents [10] and enables
heat pumping and the exchange of work between different
driving forces [11,12]. The aim of the present work is to extend
the linear-response theory of thermoelectric effects to systems
under adiabatic driving. To this end, we need to include the
energy flux between the electrons and the ac forces on an equal
footing with the heat and particle fluxes.

Figure 1 shows the setup that we have in mind. It
consists of a central coherent conductor which is coupled to
two reservoirs. In conventional thermoelectrics [2], the two
reservoirs differ in both temperature and chemical potential. A
thermal engine converts a temperature difference into electric
power. As a consequence of the second law, the efficiency
of this conversion process is limited by the Carnot efficiency
ηC = (T2 − T1)/T2, where T2 > T1 denotes the temperatures
of the reservoirs. The optimal efficiency that can be reached
for a specific device is controlled by its figure of merit, or ZT

value [2],

η = ηC

√
1 + ZT − 1√
1 + ZT + 1

. (1)

The ZT value can be expressed in terms of the linear-response
coefficients of the device, relating charge and heat currents to
bias voltage and temperature gradient [2].

The thermal engine can also be operated in reverse, realizing
a refrigerator which invests electric power to continuously ex-
tract heat from the colder reservoir. The maximal efficiency of
this device is given by the appropriate Carnot efficiency ηC =
T1/(T2 − T1), and in terms of this Carnot efficiency, the optimal
efficiency for a specific device is again given by Eq. (1) [2].

In this paper, we consider setups in which the coherent
conductor is also subject to a set of ac potentials. For
definiteness, we will consider reservoirs which have either
different chemical potentials [Fig. 1(a)] or different tem-
peratures [Fig. 1(b)], although our theory could readily be
applied to situations which combine ac potentials with both
chemical-potential and temperature gradients. The physics of
these setups can be understood by analogy to the Archimedes
device, a pipe with a rotating screw, which can be used to
pump water against gravity. This is a classical analog of an
adiabatic quantum pump, where ac driving pumps a certain
amount of electric charge per cycle. Specifically, this charge
can be pumped against an applied dc bias voltage [13], in
which case the quantum pump realizes a generator.

The Archimedes screw can also be operated in reverse, with
water flowing between the reservoirs by gravity and setting the
screw into rotational motion. An analogous effect can be used
to turn an adiabatic quantum pump into an adiabatic quantum
motor. This is most easily understood when imagining that
the time dependence of the ac potentials derives from the
(classical) dynamics of, say, one or more mechanical degrees
of freedom [14]. Then, a charge current pushed through the
coherent conductor will set the mechanical degrees of freedom
into motion.

The generator and quantum motor are driven by a bias
voltage and correspond to the setup sketched in Fig. 1(a). Al-
ternatively, we can also consider devices involving temperature
gradients instead of bias voltages, which realize heat pumps
and heat engines. Such a device is depicted in Fig. 1(b). The
devices in Fig. 1 are examples of nanomotors and nanoengines,
which have received much attention recently [14–19]. We
note that the effect of ac potentials on the conventional
thermoelectric effects has been studied in a number of recent
papers [13,20–22].
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FIG. 1. Sketch of the setup. A coherent quantum conductor is
driven by time-periodic potentials and connected to two reservoirs
biased by (a) a chemical-potential difference δμ or (b) a temperature

gradient δT or both. Charge ṄR , heat Q̇R , and power Ẇ are
exchanged between the reservoirs and the ac sources. The solid
(dashed) arrow indicates (a) the motor (generator) mode of the device
and (b) the heat-engine (heat-pump) mode.

The aim of the present work is to extend the linear-
response theory of thermoelectrics to such nanomotors and
nanoengines, to understand their efficiencies, and to identify
appropriate figures of merit. This program poses several
conceptual concerns: (i) We need to identify the current that
complements the charge and heat currents and accounts for the
effects of the ac potentials. Similarly, we need to identify the
affinity that complements the (scaled) temperature difference
and bias voltage. (ii) We need to develop the generalized
linear response theory which includes these additional quan-
tities. While this is a conventional linear-response theory for
traditional thermoelectrics, the ac potentials are not actually
weak but only slowly varying. (iii) We finally need to identify
appropriate efficiencies and figures of merit. We will see that
the latter also differ in essential ways from those defined in
conventional thermoelectrics.

In Sec. II, we generalize linear-response theory to include
the response to the adiabatically varying ac potentials in
addition to the applied bias voltage. We do this by working
to linear order in the rate of change (or velocity) of the ac
potentials. We find that this can be done in a manner which
closely resembles the derivation of Kubo formulas in linear
response theory. Consequently, we derive general Kubo-like
expressions for the response of both the charge current and the
generalized forces conjugate to the ac potentials. These expres-
sions imply that the response coefficients satisfy Onsager-like
relations and are thus not independent of one another. In
Sec. III, we generalize the thermodynamical framework to
include the time-averaged work per unit time performed by
the ac forces as a third flux, along with the heat and particle
fluxes. We also identify the scaled frequency �ω/T of the

driving as the appropriate third affinity, complementing the
temperature and chemical-potential differences. In Sec. IV,
we define and analyze the efficiency and figure of merit for
the various quantum machines sketched in Fig. 1. We find that
the definition of the appropriate figure of merit analogous to the
ZT value differs in characteristic ways, reflecting the fact that
the usual off-diagonal thermoelectric response coefficients, the
off-diagonal coefficients involving the third flux or affinity,
do not enter into the entropy production. To illustrate these
concepts, we apply our theory to an example device in Sec. V
which is based on a simple model for a quantum pump. We
summarize in Sec. VI.

II. ADIABATIC RESPONSE AND ONSAGER RELATIONS

We begin by evaluating the forces and currents induced by a
set of time-periodic parameters in the adiabatic approximation.
We will see that this can be done in close analogy to linear-
response theory, allowing us to derive Onsager-like relations.

We collect the parameters Vi(t) of the Hamiltonian Ĥ into
a vector V(t) = V(t + T ) = (V1(t),V2(t), . . . ) so that Ĥ =
Ĥ(V(t)), where T = 2π/ω is the driving period [23]. Quite
generally, the Hamiltonian of the system can be expressed as

Ĥ(V(t)) = Ĥ0 −
∑

j

F̂jVj (t), (2)

where H0 is the time-independent part of the Hamiltonian and
Fj are Hermitian operators that play the role of generalized
forces

F̂(t) = −∂Ĥ(t)

∂V(t)
. (3)

The quantum expectation values tr{ρ̂F̂} in terms of the
electronic density matrix ρ̂ are just conventional forces when
Vj denote regular Cartesian coordinates of a classical system
obeying Newtonian dynamics.

At lowest order in the adiabatic approximation, the system
is described by the frozen density matrix ρ̂t for the Hamiltonian
Ĥt with t treated as a parameter. Accounting for the temporal
variation of V(t) to lowest order, we can approximate the time
evolution operator as

Û (t,t0) � T exp

{
−iĤt (t − t0) − i

∫ t

t0

dt ′(t − t ′)F̂ · V̇(t)

}
.

(4)
To linear order in the small “velocity” V̇(t), we can now follow
the usual steps of linear response theory [24] and express the
expectation value O(t) of an observable Ô at time t as

O(t) � 〈Ô〉t − i

∫ t

t0

dt ′(t − t ′)〈[Ô(t),F̂(t ′)]〉t V̇(t)

= 〈Ô〉t + �OF
t · V̇(t). (5)

Here, the operators Ô(t) and F̂(t ′) are defined in the Heisenberg
representation with respect to the frozen Hamiltonian Ht ,
and 〈· · · 〉t denotes the expectation value with respect to the
frozen density matrix ρ̂t . The response function �OF

t can
be expressed through the retarded adiabatic susceptibility
χ

O,F
t (t − t ′) = −iθ (t − t ′)〈[Ô(t),F̂(t ′)]〉t . We now expand the

frozen average to linear order in an applied bias δμ, yielding
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〈Ô〉t � �Oc
t δμ, where the linear-response coefficient �Oc

t is
given by the usual Kubo formula. Applying this procedure
specifically to the charge current J c(t) and the forces F(t)
(and postponing the heat currents and temperature gradients
until later), we obtain(

J c(t)
F(t)

)
=

(
J c

t

Ft

)
+

(
�cc

t �
cf
t

�
f c
t �̂

ff
t

)(
δμ

V̇(t)

)
, (6)

to linear order in δμ and V̇(t).
The terms in Eq. (6) have clear physical interpretations. The

first term on the right-hand side collects the currents and forces
evaluated with the frozen density matrix ρ̂t in equilibrium (i.e.,
for δμ = 0). These terms have zero mean when averaged over
one period of the ac fields. The forces can be thought of as
conservative Born-Oppenheimer forces and can be expressed
as a gradient of the equilibrium energy of the system with
respect to V(t). For several potentials this term may lead to
exchange of work between the different forces Fj without
dissipation. Such processes were considered in Refs. [11,12].
Adiabatic quantum pumping of charge by the ac potentials
is described by �

cf
t , while �

f c
t captures the modification

of the forces by the applied bias δμ. Both contributions are
generally nonzero when averaged over a period, implying that
this contribution to the force is nonconservative. This was
discussed for noninteracting electrons coupled to adiabatic
nanomechanical systems [25,26] and nanomagnets [27]. In
the latter case, this corresponds to a spin-transfer torque.
The diagonal components describe the usual conductivity
through �cc

t and the velocity-dependent force through �̂
ff
t . In

time-reversal-symmetric systems, the latter is symmetric and
describes a frictional force. Without time-reversal symmetry,
�̂

ff
t may have an antisymmetric part which is analogous to

the Lorenz force [26].
The derivation of the response coefficients �

ij
t follows

standard linear-response theory, including the “adiabatic”
response to the ac potentials. Consequently, it is natural to
expect that the response functions �

ij
t satisfy Onsager-like

relations. In fact, these can be derived in the usual manner, as
shown in detail in Appendix A. Thus, we find the generalized
Onsager relations

�cc
t (B) = �cc

t (−B), �
ff

ij (B) = sisj�
ff

ji (−B),

�
cf

j (B) = sj�
f c

j (−B), (7)

where the sign sj = ± depends on the parity of the operators
F̂j under time reversal. As the derivation of Onsager relations
is very general, these relations are valid at finite temperature
T and in the presence of many-body interactions [28].

The second line in Eq. (7) imposes a relation between
the adiabatic quantum pumping of charge (as described by
�

cf

j ) and the nonconservative force (as described by �
f c

j ).
This relation, which is valid in the adiabatic regime, was
previously found for noninteracting adiabatic quantum motors
at zero temperature and B = 0 [14]. It has been pointed
out that time-reversal symmetry, by way of Onsager-like
arguments, does not imply symmetry of the pumped charge
under magnetic-field reversal unless the system has additional
spatial symmetries [29–34]. The relation in Eq. (7) implies that

there is still an Onsager relation associated with the pumped
charge, but it does not relate the pumped charge to itself but
rather to the nonconservative force in response to an applied
bias.

Before closing this section, we comment on how to include
heat currents and thermal gradients in this linear-response
scheme. Within linear response, we can readily extend Eq. (6)
to a 3 × 3 matrix equation⎛
⎝J c(t)

JQ(t)
F(t)

⎞
⎠ =

⎛
⎝J c

t

J
Q
t

Ft

⎞
⎠ +

⎛
⎝�cc

t �
cq
t �

cf
t

�
qc
t �

qq
t �

qf
t

�
f c
t �

f q
t �̂

ff
t

⎞
⎠

⎛
⎝ δμ

δT

V̇(t)

⎞
⎠. (8)

Here, we can identify the thermal conductance �
qq
t relating

the heat current JQ(t) to δT as well as the usual thermoelectric
coefficients �cq and �qc. In addition, our scheme includes the
coefficients �

qf
t and �

f q
t , which describe the generation of

heat currents by a time-dependent driving (quantum pumping
of heat) and the generation of a nonconservative force in
response to a temperature gradient, respectively.

The treatment of a temperature gradient within the Kubo
approach is less straightforward but has been addressed
numerous times in the literature [35–37]. An alternative route
is to calculate the relevant observables with a nonequilibrium
technique, such as the Keldysh or scattering matrix formalism,
and to perform the expansions in δT ,δμ, and V̇ a posteriori.
(This is the route which we follow in Sec. V.) Either approach
yields the additional Onsager relations

�
qq
t (B) = �

qq
t (−B), �

cq
t (B) = �

qc
t (−B),

(9)
�

qf

j (B) = sj�
f q

j (−B),

complementing Eq. (7). The first line corresponds to the usual
thermoelectric Onsager relations. The second line contains the
additional Onsager relations relating pumping of heat current
and the force generated in response to an applied thermal
gradient.

III. GENERALIZED THERMOELECTRIC FRAMEWORK

Conventional thermoelectrics considers particle and heat
currents in response to chemical-potential and temperature
differences. In the presence of ac driving as in the devices in
Fig. 1, we have to take into account the pumping of particles
and heat as well as the work performed by or on the ac
potentials on the same footing. To develop the corresponding
generalized thermoelectrics, we first consider the entropy
production of the system. After averaging over one period of
the ac driving, the net dissipation occurs only in the electrodes,
and we can write

Ṡ = Q̇L

TL

+ Q̇R

TR

, (10)

where the average heat flux in lead α is given by

Q̇α = Ėα − μαṄα. (11)

The energies Eα and particle numbers Nα satisfy the conser-
vation laws

ṄR = −ṄL, ĖL + ĖR = Ẇ . (12)
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While particle-number conservation takes the same form as
in standard thermoelectrics, energy conservation must account
for the additional work W performed by the ac potentials on the
electron system. The corresponding power can be expressed
as Ẇ = −∑

j Fj (t)V̇j (t), yielding the entropy production

Ṡ =ṄR

δμ

T
+Q̇R

δT

T 2
−

∑
j

Fj (t)
V̇j (t)

T
(13)

to linear order in the applied bias δμ = μL − μR and temper-
ature difference δT = TL − TR . Note that after averaging over
a certain period, the conservative Born-Oppenheimer forces
in Eq. (6) do not contribute to entropy production. Then, the
power can be expressed in linear response and for δT = 0 as

Ẇ =−
∑

j

((
�̂

f c
t

)
j
V̇j (t)δμ+

∑
l

(
�̂

ff
t

)
j l
V̇j (t)V̇l(t)

)
. (14)

Here, the first term on the right-hand side describes the work
performed by the nonconservative force originating from the
applied voltage δμ (δT would contribute a similar term), and
the second term is the dissipated power due to a frictional force
on the ac potentials.

In conventional thermoelectrics, one defines the particle and

heat fluxes J1 = ṄR and J2 = Q̇R as well as the corresponding
affinities X1 = δμ/T and X2 = δT /T 2 [38,39]. To extend
thermoelectrics to the present situation, we need to identify
appropriate fluxes and affinities for the ac driving terms.

At first glance, Eq. (13) may suggest defining −Fj as fluxes
and V̇j /T as the associated affinities. However, Eq. (13) holds
only after averaging over one period. Before time averaging,
the conservation laws involve additional terms [40], and the
forces Fj (t) contain contributions that are conservative. We can
identify an appropriate affinity by noting that after averaging,
the first term in Eq. (14) is proportional to ω, while the second
term is proportional to ω2. It is thus natural to define the affinity

X3 = �ω/T with associated flux J3 = Ẇ/(�ω) [38,39]. Thus,
Eq. (13) yields

Ṡ =
∑

j

JjXj (15)

for the rate of entropy production.
We complete our quantum thermoelectrics scheme by

linear-response relations between fluxes and affinities,

Ji =
∑

k

LikXk. (16)

The linear-response coefficients Lij are readily related to the
coefficients which appeared in Eq. (8). Indeed, we have

L11 = T �cc
t , L12 = T 2�

cq
t , L13 = T �

cf
t · v,

L21 = T �
qc
t , L22 = T 2�

qq
t , L23 = T �

qf
t · v,

L31 = −T �
f c
t · v, L32 = −T 2�

f q
t · v,

L33 = −T vT · �̂ff
t · v, (17)

where we defined v through V̇ = �ωv and vT denotes the
transpose of v.

Thus, the coefficients Lij also obey Onsager relations,
namely,

Lii(B) = Lii(−B), Lij (B) = ±Lji(−B), (18)

with i �= j . The sign in the second relation depends on the
behavior of the fluxes under time reversal. Assuming time
reversal from now on (and thus B = 0), this yields the relation
L12 = L21, which is well known from the usual theory of
thermoelectrics, as well as L13 = −L31 and L23 = −L32. It
is important to note that the off-diagonal response coefficients
have the same sign in conventional thermoelectrics, while they
have opposite signs when either J3 or X3 is involved. We
will see that below this has significant consequences for the
definition of figures of merit for the devices in Fig. 1.

The transport coefficients Lij can be directly calculated
from the coefficients �, which are in turn given in terms of the
susceptibilities χt (ω). Another possibility is to start from the
expressions for the charge, heat, and work currents; to perform
the expansions in �ω, δμ, and δT ; and to identify the coef-
ficients L from the resulting expressions. For noninteracting
systems, this procedure is rather straightforward.

In Sec. V, we will illustrate our general theory for a general
noninteracting model of a two-terminal conductor and evaluate
the various response coefficients explicitly. This will rely
on Green’s function [11,34,41] and scattering matrix [10,11]
expressions for the response coefficients, which we derive by
the procedure described in the previous paragraph. Details of
the calculations are given in Appendix C. The calculations
start with the expressions for charge current [Eq. (B2)], heat
current [Eq. (B4)], and work current [Eq. (B6)] for this model.
Performing the expansions in �ω, δμ, and δT , we find the
explicit formulas for Lij given in Appendix D. One can
also check that these expressions for the response coefficients
satisfy the generalized Onsager relations (18), as they should.

IV. EFFICIENCY AND FIGURE OF MERIT OF
QUANTUM MACHINES

A. Motors and generators

Consider a situation with applied ac driving forces and
a dc bias δμ but uniform temperature T . The device in
Fig. 1(a) can operate as a quantum motor or generator. When
the ac potentials pump particles into the reservoir with lower
chemical potential, the gain in electrical energy can be used to
perform work on the source of the ac potentials. This occurs
for L31δμ/T < 0 and corresponds to a motor as the work
performed on the ac potentials can be further transformed,
say, into mechanical work [14]. When reversing the sign of
δμ and thus L31δμ/T > 0, the ac potentials pump particles
into the reservoir with higher chemical potential, and we have
a generator.

Using X2 = 0, the rate of entropy production becomes

Ṡ = L11X
2
1 + L33X

2
3 + (L13 + L31)X1X3. (19)

Interestingly, the last term on the right-hand side vanishes due
to the Onsager symmetry L13 = −L31, and the coefficients
L13 and L31 do not affect the entropy production. As a
consequence, the second law of thermodynamics imposes
L11 > 0 and L33 > 0. This is in contrast to conventional
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thermoelectrics, where the off-diagonal response coefficients
are symmetric, L12 = L21, and do contribute to entropy
production. In the latter case, the second law also imposes
detL = L11L22 − L2

12 > 0.
We are now ready to characterize the performance of

adiabatically driven quantum motors or generators in terms
of efficiencies and figures of merit. The efficiency ηmot of a

motor is measured by the ratio of the work per unit time −Ẇ

performed on the ac potentials and the power ṄRδμ/e injected
by the voltage source. Similarly, the efficiency of the generator
ηgen is given by the inverse of this ratio, so that

ηmot = 1

ηgen
= −Ẇ

ṄRδμ/e
. (20)

Note that we have defined μL = μR + δμ (as well as TL =
TR = T ; see Fig. 1).

We first show that the second law of thermodynamics
implies an upper limit for these efficiencies. Using Eqs. (10),
(11), and (12), we find

Ẇ = T Ṡ − δμ

e
ṄR. (21)

Substituting this into Eq. (20), we obtain

ηmot = 1

ηgen
= 1 − T Ṡ

ṄRδμ/e
. (22)

Now, the second law of thermodynamics demands Ṡ > 0.
Moreover, the current flows with the potential drop δμ in

the motor, ṄRδμ > 0, but against the potential drop for a

generator, ṄRδμ < 0. Consequently, we find that both ηmot

and ηgen are upper bounded by unity.
The efficiency in Eq. (20) can also be written as

ηmot = 1

ηgen
= −X3J3

X1J1
, (23)

and the currents can be expressed through their linear-response
expressions (16). Still assuming time-reversal symmetry, so
that L13 = −L31, we can then maximize the efficiency as a
function of X1 at fixed X3. One finds that the efficiency is
maximized for

X1 = L11L33 ± √
L11L33detL

L11L13
X3, (24)

with + (−) for motors (generators). Alternatively, we can fix
X1 and maximize the efficiency as a function of X3. In this
case, one finds

X3 = −L11L33 ± √
L11L33detL

L33L13
X1, (25)

again with + (−) for motors (generators). Substituting
Eqs. (24) and (25) into Eq. (23), we find for the maximal
efficiency

ηmax =
√

1 + ζ − 1√
1 + ζ + 1

(26)

and identify the figure of merit as

ζ = −L13L31

L11L33
. (27)

Note that ηmax and ζ are valid for both motors and
generators.

Equations (26) and (27) should be contrasted with con-
ventional thermoelectrics [2–6], where the optimal efficiency
satisfies an analogous expression. In conventional thermo-
electrics, the efficiency of converting heat into electrical energy
is limited by the Carnot efficiency ηC . However, the maximal
efficiency which can be reached given a set of linear response
coefficients Lij is lower than the Carnot efficiency by a factor
involving the figure of merit ZT = L2

12/detL [see Eq. (1)].
In contrast, Eq. (26) describes the efficiency of converting
electrical energy into other (e.g., mechanical) forms of energy.
This process is not fundamentally limited, and hence Eq. (26)
does not contain an analog of the Carnot efficiency. However,
it still contains an analog of the factor involving the ZT value,
which contains an appropriate figure of merit ζ . Thus, the
motor efficiency ηmot is bounded by unity and reaches this limit
when ζ → ∞, i.e., when one of the dissipative coefficients
L11 or L33 approaches zero. The different form of the figure of
merit, i.e., the absence of the coefficients L13 and L31 from the
denominator, reflects the fact that unlike L12 and L21, these
coefficients do not affect entropy production.

B. Heat engine and heat pump

Analogous results are obtained when the device is driven
by a temperature gradient δT at constant chemical potential
[X1 = 0; see Fig. 1(b)]. When the device operates as a heat
engine, i.e., for L32δT /T 2 < 0, heat flows to the cold reservoir,
and the system performs work on the ac potentials. Conversely,
the device operates as a heat pump when L32δT /T 2 > 0,
where heat is pumped to the hot reservoir by the ac potentials.
As a result of the Onsager symmetry, we have L23 = −L32 for
time-reversal-symmetric systems, and we again find that the
second law imposes L22 > 0 and L33 > 0.

An appropriate measure of the efficiency of a heat engine
ηhe is the ratio of the work per unit time performed by the

electrons on the ac forces −Ẇ and the heat leaving the
hot reservoir −Q̇L. We assume that the left reservoir with
temperature TR = TL − δT is the hot reservoir. The efficiency
ηhp of a heat pump is characterized by the inverse ratio. Thus,
we have

ηhe = 1

ηhp
= Ẇ

Q̇L

(28)

for the efficiencies of heat engine and heat pump.
We first show that the second law implies that these effi-

ciencies are bounded by the corresponding Carnot efficiencies.
Using Eqs. (10), (11), and (12), we find

Ẇ = TRṠ + TL − TR

TL

Q̇L. (29)

Inserting this into the definition (28) of the efficiencies, we
obtain

ηhe = 1

ηhp
= TL − TR

TL

+ TRṠ

Q̇L

. (30)

For heat engines, heat flows from the hot to the cold reservoir,

so that Q̇L < 0, while for heat pumps, heat flows in the
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opposite direction, Q̇L > 0. Thus, we find that the second

law Ṡ > 0 implies that the efficiencies are smaller than the
familiar Carnot efficiencies, i.e., ηC = (TL − TR)/TL for the
heat engine and ηC = TL/(TL − TR) for the heat pump.

The efficiencies for heat engine and heat pumps can
alternatively be expressed as

ηhe = 1

ηhp
= −X3J3

X2J2
, (31)

where the fluxes can be expressed through their linear-response
expressions (16). Maximizing the efficiency as for motors and
generators, we again find Eqs. (24) and (25), but with the
affinity X2 taking the place of X1. This leads to a maximal
efficiency of

ηmax = ηc

√
1 + ζ̃ − 1√
1 + ζ̃ + 1

, (32)

with the figure of merit

ζ̃ = −L23L32

L22L33
. (33)

Equation (32) holds for both heat engines and heat pumps
when the appropriate Carnot efficiency ηc is used.

V. EXAMPLE

To illustrate these concepts, we consider a quantum dot
with a single level coupled to two reservoirs with chemical
potentials μα and temperatures Tα , α = L,R, as sketched
in Fig. 2. We assume that the dot level and the barriers
can be modulated periodically in time by ac gate potentials.
This model can describe a single-electron source, similar
to the gigahertz pump realized experimentally in Ref. [42].
For noninteracting electrons, the model is described by the
Hamiltonian

Ĥ(t) = Ĥc(t) + Ĥres + ĤT . (34)

The first term describes the central conductor, which is
modeled as a discrete chain of N sites with local energies

FIG. 2. Sketch of the device. A single-level quantum dot (m =
2) is defined by two tunnel barriers (m = 1,3). They are driven by
periodic gate potentials Vm(t) = V 0

j cos(ωt + δm), with V 0
1 = V 0

3 =
4, V 0

2 = 23, δ1 = 0, δ2 = π/2, and δ3 = π . The tunneling amplitudes
between barriers and the dot are w = 1 and wL = wR = 0.7 between
barriers and reservoirs. The barriers and the dot are modeled by a
discrete chain of N = 3 sites with local energies ε1 = ε3 = 3.3 and
ε2 = −1, respectively. The reservoirs have μL = μ, μR = μ − δμ,
and temperature T .

εm, nearest-neighbor hopping w, and an ac potential applied
to each site,

Ĥc(t)=
N∑

m=1

[
(εm + Vm(t))d†

mdm +
N−1∑
m=1

wd†
mdm+1

]
+H.c.

(35)
Specifically, we consider a setup with N = 3 sites, modeling
the tunneling barriers (m = 1,3) and the quantum dot (m = 2).
The site energies εm (m = 1,2,3) are modulated by three time-
dependent gate voltages of the form Vm(t) = V 0

m cos(ωt + δm).
The reservoirs are represented by free-electron Hamiltonians
for free electrons,

Ĥres =
∑

α=L,R,kα

Ekα
c
†
kα

ckα
, (36)

and tunneling between reservoirs and the central system is
described by

ĤT = −
∑

α,kα,n

[wαd†
nα

ckα
+ H.c.], (37)

where nα denotes the site of the central conductor which is in
contact with the reservoir α.

The mean charge current Ṅα and heat current Q̇α entering

the reservoir α, as well as the mean power Ẇ developed by
the ac forces, are calculated within a Floquet Green’s function
formalism following Ref. [11], as reviewed in Appendix B. To
derive the response coefficients Lij , we expand the currents

J1 = ṄR , J2 = Q̇R , and J3 = Ẇ/(�ω) to linear order in �ω

(see Appendix C). Explicit expressions for the coefficients Lij ,
in terms of Green’s functions [11,34,41] or scattering matrices
[10] and valid for noninteracting systems, can be found in
Appendix D. These coefficients can also be calculated using
an alternative procedure which does not rely on the Floquet
decomposition (see Refs. [26,27]). However, we prefer to use
the Floquet approach because this representation stresses that
�ω appears in the Fermi functions, which enter the integrals
for the currents on the same footing as the chemical potential
μ. This provides an alternative argument for identifying �ω/T

as an affinity.
For illustration, we consider an applied bias δμ at T = 0,

i.e., the motor/generator regime, and calculate the coefficients
listed in Appendix D for this case. In Fig. 3, we plot the
transport coefficients and the maximum efficiency ηmax as
functions of the chemical potential μ of the left reservoir. Large
values of the figure of merit require a large charge pumping
coefficient L13 along with a small value of L33L11, i.e., low
friction or conductance. In the absence of driving at the central
dot [V2(t) = 0], the conductance peaks near L11 = 1 when
μ is in resonance with the dot level. Driving the dot level
with a phase lag relative to the barrier oscillations (δ2 − δm �=
0 for m = 1,3) favors charge pumping and decreases the
conductance by dynamically tuning the dot off resonance. In
this way, high efficiencies can be achieved despite large values
of L33.

As the chemical potential passes the dot level, the pumping
coefficient changes sign, and the system switches from motor
mode (L31δμ/T < 0; see region M in the Fig. 3) to generator
mode (L31δμ/T > 0; see region G in the Fig. 3). The
efficiency becomes minimal when the chemical potential is
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FIG. 3. Maximum efficiency ηmax and transport coefficients at
T = 0 for the motor (M) or generator (G) modes. Inset: ηmax for
generator (motor) with μ = −0.7 (μ = 7.2).

resonant with the dot level, where the conductance is maximal
and pumping vanishes by particle-hole symmetry.

The device can also operate as a heat engine or pump
when imposing a temperature gradient. As this requires finite
T , quantum effects are less pronounced, and efficiencies are
lower than those shown in Fig. 3. However, we find that for
appropriate parameters these may still be as high as ≈0.4ηc.

VI. SUMMARY

Motivated in part by Jarzynski’s equality [43] and Crook’s
theorem, [44] there has been much interest in quantum
thermodynamics, including fluctuation relations, work fluc-
tuations, and the thermodynamic description of strongly
coupled systems. [45–47] Here, we provided a generalized
thermoelectric framework to analyze the thermodynamics of
ac-driven nanoscale systems which explicitly accounts for the
effects of quantum pumping and the related nonconservative
forces. We identified the additional flux and affinity through
which these forces enter the theory and defined generalized
Onsager relations for the associated response coefficients. This
framework allowed us to define appropriate efficiencies and
figures of merit which describe quantum motors, generators,
heat engines, and heat pumps. We illustrated our results for a
simple quantum-pump device.
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APPENDIX A: RESPONSE COEFFICIENTS
AND MICROREVERSIBILITY

The matrix elements entering �
cf
t read

�
cf

j = −i

∫ ∞

−∞
dt ′(t − t ′)θ (t − t ′)〈[Ĵ c(t),F̂j (t ′)]〉t

≡
∫ ∞

−∞
dττχ

J,Fj

t (τ ), (A1)

where we have defined the retarded susceptibility χ
J,Fj

t (τ ) =
−iθ (τ )〈[Ĵ c(τ ),F̂j (0)]〉t . In the latter step we have stressed
that for evolutions with the operator U (τ ) = e−iτ Ĥt , with
Ĥt = Ĥ (V(t)) being the frozen Hamiltonian, the actual time
argument of the integrand of (A1) is τ = t − t ′. Representing
the susceptibility in terms of the Fourier transform, we can
also write the previous expression as

�
cf

j = Re

[∫ +∞

−∞
dτ

∫ +∞

−∞

dω

2πi
e−iωτ ∂ωχ

J,Fj

t (ω)

]

= Re

[
−i

∫ +∞

−∞
dω∂ωχ

J,Fj

t (ω)δ(ω)

]

= lim
ω→0

Im
[
χ

J,Fj

t (ω)
]

ω
, (A2)

where we have used the fact that the spectral function
Im[χ

J,Fj

t (ω)] is odd in ω, hence Im[χ
J,Fj

t (0)] = 0 [24].
Analogously, the matrix elements of �̂

ff
t can be written as

�
ff

ij = −i

∫ ∞

−∞
dt ′(t − t ′)θ (t − t ′)〈[F̂i(t),F̂j (t ′)]〉t =

= Re

[
−i

∫ +∞

−∞
dω∂ωχ

Fi,Fj

t (ω)δ(ω)

]
=

= lim
ω→0

Im
[
χ

Fi,Fj

t (ω)
]

ω
, (A3)

where χ
Fi,Fj

t (ω) is the Fourier transform of χ
Fi,Fj

t (τ ) =
−iθ (τ )〈[F̂i(τ ),F̂j (0)]〉t .

The calculation of the conductivity follows the usual
procedure of the Kubo formula presented in text books [24].
We start by considering an extra perturbation due to the
coupling to an electric field E(t) = ∂tA(t). In the Fourier
domain the extra perturbation is H′(ω) = J · E(ω)/(iω),
which leads to the definition of the dc conductance,

�cc = lim
ω→0

Im
[
χ

J,J
t (ω)

]
ω

, (A4)

where χ
J,J
t (ω) is the Fourier transform of χ

J,J
t (τ ) =

−iθ (τ )〈[Ĵ (τ ),Ĵ (0)]〉t .
Similarly, evaluating the forces in linear response with

respect to δμ leads to

�
f c

j = lim
ω→0

Im
[
χ

Fj ,J
t (ω)

]
ω

, (A5)

where χ
Fj ,J
t (ω) is the Fourier transform of χ

Fj ,J
t (τ ) =

−iθ (τ )〈[F̂j (τ ),Ĵ (0)]〉t .
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The above definitions indicate that the susceptibilities
χ

Oi,Oj

t , with Ôi being a generic operator, satisfy microre-
versibility with respect to τ . It can be directly verified that

χ
Oi,Oj

t (−τ ) = −iθ (−τ )〈[Ôi(−τ ),Ôj (0)]〉t
= iθ (−τ )〈[Ôj (τ ),Ôi(0)]〉t

= −iθ (−τ )
∫ +∞

−∞

dω

π
Im[χ

Oj ,Oi

t (ω)]e−iωτ . (A6)

Hence, under a transformation τ → −τ the coefficient �ij

transforms to

�
Oi,Oj

ij = Re

[
i

∫ +∞

−∞

dω

π
Im

[
χ

Oj ,Oi

t (ω)
]∫ +∞

−∞
dττθ (−τ )e−iωτ

]

= lim
ω→0

Im[χ
Oj ,Oi

t (ω)]

ω
= �

Oj ,Oi

ji . (A7)

In the last step we have used
∫ 0
−∞ dττe−iωτ = 1

ω2 + iπδ′(ω).
In the presence of a magnetic field B, a time-reversal

transformation implies changing B → −B in the Hamiltonian
Ht defining the frozen density matrix ρ̂t used to evaluate
the expectation values. This property leads to the following
Onsager relations for the usual susceptibilities in the presence
of B: χ

Oi,Oj

t (B,ω) = sisjχ
Oj ,Oi

t (−B,ω), where the signs
si,sj = ± depend on the parity of the operators Ôi, Ôj under
a time-reversal transformation.

APPENDIX B: GREEN’S FUNCTION FORMALISM

In Ref. [11] it was shown that the averaged charge Ṅα and

heat Q̇α currents entering the reservoir α, as well as the mean

power Ẇ developed by the ac forces, can be written in terms of
the retarded Green’s function of the central structure connected
to the reservoirs expanded in the Floquet-Fourier transform as

ĜR(t,t ′) =
∞∑

n=−∞
e−inωt

∫ ∞

−∞

dE

2π
e−i E

�
(t−t ′)Ĝ(n,E). (B1)

This function is calculated from the Hamiltonian Ĥ(t) by
solving the Dyson equation (see Refs. [11,41]).

The resulting expression for the charge current is

Ṅα = e

h

∫
dE

∑
n,β

[fβ(E) − fα(E + n�ω)]Tαβ(n,E), (B2)

with

Tαβ(n,E) = |Ĝαβ(n,E)|2�̂β�̂α. (B3)

The heat current reads

Q̇α = Ėα − μα

Ṅα

e
, (B4)

with

Ėα =
∫

dE
∑

n

E

h
[fβ(E) − fα(E + n�ω)]Tαβ(n,E). (B5)

Similarly, the work performed by the ac potentials can be
written as

Ẇ = − 1

h

∑
α,l,n

∫ +∞

−∞
dEn�ωfα(E)

× Im{Tr[V̂ (n)Ĝ(n + l,E)�̂αĜ†(l,E)]}, (B6)

where V̂ (n) are the Fourier components of V̂ (t) =∑
n V̂ (n)einωt , with V̂ (t) being a matrix with diagonal el-

ements Vm(t). In the above expressions we introduced the
hybridization matrix �̂α , which has a single element at the
contact with the reservoir equal to |wα|22π

∑
kα

δ(E − Ekα
).

For practical uses it can be considered in the wideband limit,
thus independent of E. The Fermi-Dirac distribution fα(E) =
[1 + e(E−μα)/Tα ]−1 characterizes the thermal occupation of the
electrons in the reservoirs (from now on we set the Boltzmann
constant kB = 1).

The other possible approach is the Floquet scattering matrix
formalism used in Ref. [10]. The elements sij (Em,En) of the
Floquet scattering matrix ŝ(E), with En = E + n�ω, are the
amplitudes for an electron to scatter from lead j to lead i

after acquiring m − n Floquet quanta �ω. The general relation
between the Floquet scattering matrix elements and the Fourier
coefficients for the Green’s function is the generalized Fisher-
Lee formula [41]

sij (Em,En) = δij δmn − i
√

�i�jGij (m − n,En). (B7)

APPENDIX C: LINEAR RESPONSE

In order to calculate the currents Jl, l = 1,2,3 up to linear
order in �ω, δμ, and δT we perform the following expansion
of the Fermi function entering the integrands of Eqs. (B2),
(B4), and Eq. (B6):

fα(E + n�ω) ∼ fα(E) + n�ω∂Efα(E) − ∂f (E)

∂E
(μα − μ)

− ∂f (E)

∂E

(E − μ)

T
(Tα − T ). (C1)

We also evaluate G(n,E) up to linear order in ω by
expanding the Dyson equation in powers of ω (see [34,40]).
Up to the first order in ω it reads

Ĝ(t,E) ∼ Ĝf (t,E) + iĜ(1)(t,E), (C2)

with Ĝ(t,E) = ∑∞
n=−∞ Ĝ(n,E)e−inωt . The first term is the

frozen Green’s function

Ĝf (t,E) =
[

1̂ E − Ĥt
c + i

�̂

2

]−1

, (C3)

corresponding to the frozen Hamiltonian at time t , Ĥt
c = Ĥc(t)

(�̂ collects the hybridization functions of the reservoirs). The
next term is first order in ω. It reads

Ĝ(1)(t,E) = �

2
∂E∂t Ĝf (t,E) + Â(t,E), (C4)

where

Â = �

2

(
∂EĜf (t,E)

dV̂

dt
Ĝf (t,E)−Ĝf (t,E)

dV̂

dt
∂EĜf (t,E)

)
.

(C5)
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The expansion of the Floquet scattering matrix up to first order
in the driving frequency ω is

sij (E,En) = 1

τ

∫ τ

0
dte−inωt

[
sij (t,E)

+ n�ω

2
∂Esij (t,E) + �ωAij (t,E)

]
. (C6)

Here, sij (t,E) is the frozen scattering matrix. The matrix ele-
ments Aij (t,E) define a first-order correction to the adiabatic
scattering matrix. The frozen scattering matrix sij (t,E) and

Aij (t,E) do not change significantly on the energy scale �ω

and T and depend on the specific realization of the scatterer.
Anyway, it can be shown that, due to the unitarity of the
Floquet scattering matrix and of the frozen scattering matrix,
they satisfy [10]

�ω[ŝ†Â + Â†ŝ] = i�

2

(
∂ŝ†

∂t

∂ŝ

∂E
− ∂ŝ†

∂E

∂ŝ

∂t

)
. (C7)

Equation (C7) defines an explicit relation between Â and Â

[41].

APPENDIX D: TRANSPORT COEFFICIENTS

Substituting the expansions for the Fermi function, Eq. (C1), and for the Green’s function, Eq. (C2), into Eqs. (B2), (B4), and
Eq. (B6) and collecting terms up to first order in the affinities X1 = δμ

T
, X2 = δT

T 2 , and X3 = �ω
T

, we obtain

L11 = − T

hT

∫ T

0
dt

∫ +∞

−∞
dE

df

dE

∣∣Ĝf

RL(t,E)
∣∣2

�̂L�̂R,

L12 = L21 = − T

hT

∫ T

0
dt

∫ +∞

−∞
dE(E − μ)

df

dE

∣∣Ĝf

RL(t,E)
∣∣2

�̂L�̂R,

L13 = −L31 = − T

2πh

∫ T

0
dt

∫ +∞

−∞
dE

df

dE
Im

{[
Ĝf (t,E)�̂

∂Ĝf †(t,E)

∂t
�̂

]
RR

}
,

L22 = − T

hT

∫ T

0
dt

∫ +∞

−∞
dE (E − μ)2 df

dE

∣∣Ĝf

RL(t,E)
∣∣2

�̂L�̂R,

L23 = −L32 = − T

2πh

∫ T

0
dt

∫ +∞

−∞
dE (E − μ)

df

dE
Im

{[
Ĝf (t,E)�̂

∂Ĝf †(t,E)

∂t
�̂

]
RR

}
,

L33 = − T T
8π2h

∫ T

0
dt

∫ +∞

−∞
dE

df

dE
Re

{
Tr

[
∂Ĝf (t,E)

∂t
�̂

∂Ĝf †(t,E)

∂t
�̂

]}
. (D1)

Within the scattering matrix formalism the coefficients read

L11 = − T

hT

∫ T

0
dt

∫ +∞

−∞
dE

df

dE
|ŝRL(t,E)|2,

L12 = L21 = − T

hT

∫ T

0
dt

∫ +∞

−∞
dE(E − μ)

df

dE
|ŝRL(t,E)|2,

L13 = −L31 = − T

2πh

∫ T

0
dt

∫ +∞

−∞
dE

df

dE
Im

{[
ŝ(t,E)

∂ŝ†(t,E)

∂t

]
RR

}
,

L22 = − T

hτ

∫ T

0
dt

∫ +∞

−∞
dE(E − μ)2 df

dE
|ŝRL(t,E)|2,

L23 = −L32 = − T

2πh

∫ T

0
dt

∫ +∞

−∞
dE(E − μ)

df

dE
Im

{[
ŝ(t,E)

∂ŝ†(t,E)

∂t

]
RR

}
,

L33 = − T T
8π2h

∫ T

0
dt

∫ +∞

−∞
dE

df

dE
Tr

[
∂ŝ(t,E)

∂t

∂ŝ†(t,E)

∂t

]
. (D2)

The matrices Â in the Green’s function language and Â in the scattering matrix version in principle seem to contribute to the
coefficient L33. In particular, they appear in an integrand of the form

∑
ij

2Im

{
Aij (t,E)

∂s∗
ij (t,E)

∂t

}
. (D3)
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However, as shown in Ref. [26], due to the unitary condition of the frozen scattering matrix ŝ ŝ† = 1 and the property (C7), such
a term vanishes. In fact, it can be also written as

2Im{Tr[∂t ŝ
†Â]} = −iTr[∂t ŝ

†Â − Â†∂t ŝ]

= −iTr[(ŝ†Â + Â†ŝ)∂t ŝ
†ŝ]

= 1

2ω
Tr[(∂t ŝ

†∂Eŝ − ŝ†∂Eŝ∂t ŝ
†ŝ)∂t ŝ

†ŝ] = 0. (D4)
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