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We study the energy distribution in the extended resonant level model at equilibrium. Previous investigations
[Phys. Rev. B 89, 161306 (2014); 93, 115318 (2016)] have found, for a resonant electronic level interacting with a
thermal free-electron wide-band bath, that the expectation value for the energy of the interacting subsystem can be
correctly calculated by considering a symmetric splitting of the interaction Hamiltonian between the subsystem
and the bath. However, the general implications of this approach were questioned [Phys. Rev. B 92, 235440
(2015)]. Here, we show that, already at equilibrium, such splitting fails to describe the energy fluctuations, as
measured here by the second and third central moments (namely, width and skewness) of the energy distribution.
Furthermore, we find that when the wide-band approximation does not hold, no splitting of the system-bath
interaction can describe the system thermodynamics. We conclude that in general no proper division subsystem
of the Hamiltonian of the composite system can account for the energy distribution of the subsystem. This also
implies that the thermodynamic effects due to local changes in the subsystem cannot in general be described by
such splitting.
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I. INTRODUCTION

The estimation of the performance and dynamical prop-
erties of nanoscale devices requires an accurate description
of the quantum mechanical properties of the system, as well
as of its interaction with the environment. The latter issue
is particularly important when the system-bath interaction is
strong, forbidding a perturbative treatment of the problem and
invalidating standard arguments (e.g., surface-volume scaling)
for focusing on properties that characterize the system itself.
This ambiguity in the unique definition of the subsystem
concerns both classical and quantum systems, but takes a
special form in quantum thermodynamics [1–5], where the
system-bath interaction is manifested not only in the rates
but also in the broadening of energy levels. Studies of model
systems such as a nonequilibrium spin boson [6,7], two-level
quantum heat machines [8,9], a quantum particle interacting
with a harmonic oscillator bath [10], and a resonant level
embedded in a continuous band [11], were used to discuss
the issue.

The resonant level model, a single electronic level con-
necting between two free-electron reservoirs, can serve as a
platform for the understanding of larger and more realistic
systems involving electron transport. An extended system that
includes a fraction of the system-bath interaction Hamiltonian
has been used as a strategy to describe this model under
slow driving [11,12], in an attempt to identify the portion
of energy transferred that corresponds to heat. An alternative
approach to the quantum thermodynamics of the system
has been formulated in terms of a renormalized spectral
function [1], leading to a promising description of the entropy
production of the system under slow driving, but departing
from the expected form for the energy and particle number at
equilibrium. In a recently proposed third approach [13], the
evolution of the composite system as a whole is followed, and

“system thermodynamic quantifiers” are identified as parts of
the corresponding properties of the whole composite system
that depend on local system parameters. Due to the strong
hybridization of the single level to the fermionic bath(s),
such quantifiers include contributions not only of exclusive
system variables, but also contributions from the surrounding
electronic baths. The corresponding composite was coined the
extended resonant level. This approach provides a consistent
dynamic and thermodynamic description under slow driving
that is reconcilable with the equilibrium limit. Interestingly,
the investigations by Ludovico et al. [11] as well as those by
Bruch et al. [13] suggest that the equilibrium energy of the
extended resonant level can be represented by the expectation
value of the level energy plus half the energy contribution
of the interaction term. This interesting observation raises
the question whether this separation reflects a fundamental
underlying principle, that is, is it possible to identify an
effective (or extended) system Hamiltonian that governs
system behavior and properties in a consistent manner. The
details of this separation, if it does indeed exist, may depend
on the model used: It has been already shown in Ref. [12]
that the symmetric splitting found in Refs. [11,13] leads
to a thermodynamically consistent definition of heat under
slow driving only if one assumes the wide-band limit and
time-independent coupling to the reservoirs. Still, the possible
existence of such a consistent separation, not necessarily
symmetric, is by itself of interest. We note that such splitting
naturally arises in molecular dynamics simulations when
considering the local energy of single atomic sites [see, e.g.,
Eq. (11) in Ref. [14] and subsequent discussions, Eq. (2) in
Ref. [15], and Sec. 3 in Ref. [16]]. In addition, considerations of
the consequence of assigning part of the interaction energy in
the definition of the system internal energy in the calculation of
the heat capacity were also made in Ref. [10], for the particular
case of an individual particle interacting with a harmonic bath.
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In this paper, we study the equilibrium energy distribution
of the extended resonant level, henceforth sometimes referred
to as an “extended dot,” and compare this with the predictions
made on the distribution by adopting a specific splitting of
the interaction term. We find that even in the simple case of
a single resonant level interacting with a wide-band bath, an
effective system Hamiltonian based on symmetric splitting of
the system-bath interaction describes only average properties,
that is, the first moment of thermodynamic observables, but
fails to describe the observables that correspond to higher
moments of the equilibrium distribution. In particular, we
find that this effective Hamiltonian underestimates the energy
fluctuations in the extended system and fails to reproduce the
energy of the extended resonant level beyond the wide-band
limit.

In Sec. II we introduce the model, and in Sec. III we
calculate the fluctuations as well as the skewness of the energy
distribution (second and third central moments) and show that
they cannot be accounted for by assigning part of the overall
Hamiltonian to the extended dot. Next, in Sec. IV we discuss
the equilibrium energy of the resonant level interacting with a
bath with finite bandwidth, and reach similar conclusions. We
summarize and conclude in Sec. V.

II. THE MODEL

We consider a single electronic level interacting with a
fermionic bath. The Hamiltonian Ĥ for this system is the sum
of the independent Hamiltonians for the single level ĤD , the
fermionic bath ĤB , and the interaction between them V̂ :

Ĥ = ĤD + ĤB + V̂ , (1)

ĤD = ε̂d d̂†d̂, (2)

ĤB =
∑

k

εkĉ
†
kĉk, (3)

V̂ =
∑

k

Vkd̂
†ĉk + V ∗

k ĉ
†
kd̂, (4)

where d̂† (d̂) creates (annihilates) an electron in the level, ĉ
†
k

(ĉk) creates (annihilates) an electron in state k of the bath,
while εd and εk are the corresponding single electron energies.
The parameter Vk represents the strength of the system-bath
interaction.

For the statistical description of the equilibrium system
defined by the Hamiltonian (1) we adopt a grand canonical
ensemble and consider initially the grand canonical partition
function

� =Tr{e−β(Ĥ−μN̂)}, (5)

and the total grand canonical potential �tot,

�tot =− 1

β
ln �. (6)

Here, N̂ represents the number operator, μ the chemical
potential, β = (kBT )−1, T the absolute temperature, and kB

the Boltzmann constant. In the free-electron model, �tot can

be explicitly calculated

�tot =− 1

β

∫
dε

2π
ρ(ε) ln(1 + e−β(ε−μ)), (7)

as an integral in energy involving the density of states
ρ(ε,εd,�). It can be shown [13] that ρ(ε) = ρεd

(ε) + ν(ε),
where ν(ε) is the density of states of the free bath while ρεd

(ε)
is a contribution arising from the dot and the dot-bath coupling.
The latter is given by [13]

ρεd
(ε) =Ã(ε)[1 − ∂ε�(ε)] − Re Gr∂ε�(ε), (8)

where Ã(ε) is the level spectral function given by

Ã(ε) = �(ε)

[ε − εd − �(ε)]2 + [�(ε)/2]2
, (9)

and Re Gr (ε) is the real part of the retarded Green’s function

Re Gr (ε) = ε − εd − �(ε)

[ε − εd − �(ε)]2 + [�(ε)/2]2
. (10)

Here, � = 2π
∑

k |Vk|2δ(ε − εk) is the decay rate and �(ε) is
the Lamb shift. Consequently, we identify the εd -dependent
part of the grand canonical potential � and notice that, in
the wide-band approximation (WBA), ρεd

(ε) is the spectral
function A(ε,εd,�) of the dot electrons given by

A(ε,εd,�) = �

(ε − εd )2 + (�/2)2
. (11)

Consequently, the εd -dependent part of the grand potential �tot

in the WBA is

�εd
=− 1

β

∫
dε

2π
A(ε,εd,�) ln(1 + e−β(ε−μ)). (12)

Henceforth, only this part, Eq. (12), of the grand potential will
appear in our calculations, and we will omit the subscript εd

from it and from the thermodynamic functions and expectation
values of operators calculated from it, keeping in mind that we
always refer to the εd -dependent parts of these functions and
expectation values.

Note that in the WBA the integral that defines the grand
potential in Eq. (12) is divergent. This results from the slow
decay at negative energy values of the spectral function A

and the asymptotic behavior of the logarithmic term (ln(1 +
exp{−β(ε − μ)}) → −βε as ε → −∞). In order to avoid this
divergence, we introduce a lower bound M for the relevant
energies, with M � |εd |, �, T , μ, and define

�M = − 1

β

∫ ∞

−M

dε

2π
A(ε,εd,�) ln(1 + e−β(ε−μ)). (13)

The asymptotic behavior of the integrand in Eq. (12) leads to
the approximate relation � ∼ �M + (2π )−1

∫ −M

−∞ dε εA, and
we can interpret the second term as the energy contribution
of the semi-infinite lower part of the bath spectrum, which is
infinite and responsible of the divergence. It is easily seen that
the internal energy and the particle number, derived from �M

and �, approach each other as M → ∞.

〈E〉M = ∂

∂β
β�M−μ

β

∂

∂μ
β�M=

∫ ∞

−M

dε

2π
εA(ε)f (ε), (14)

〈N〉M = ∂

∂μ
β�M =

∫ ∞

−M

dε

2π
A(ε)f (ε), (15)
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where f (ε) = {1 + exp[β(ε − μ)]}−1 is the Fermi function.
In particular, 〈N〉M approaches the exact value 〈N〉 as 1/M .
The internal energy in Eq. (14) thus depends on the choice
of the lower bound. However, in the present analysis we
are only interested in the dependence of the thermodynamic
observables on local system properties, here, the dot energy
εd , and these do not diverge in absence of a lower bound and
approach cutoff-independent values in the limit M → ∞. For
example, the contribution from the semi-infinite lower part to
the internal energy can be estimated as∣∣∣∣ ∂

∂εd

∫ −M

−∞

dε

2π
A(ε)ε

∣∣∣∣ �
∣∣∣∣
∫ −M

−∞

dε

2π

2�(ε − εd )ε

(ε − εd )4

∣∣∣∣
∼ �

πM

M→∞−−−→ 0, (16)

which implies that the diverging term in the system energy does
not depend on local dot properties. In the following, we write
integrals without explicitly expressing the limits of integration,
keeping in mind that they refer to quantities derived from �M

in Eq. (13). At the same time, whenever integration by parts is
required, constants of integration associated with the artificial
lower bound M are disregarded because they decay as 1/M or
do not depend on εd . We note that thermodynamic observables
derived in this way satisfy standard thermodynamics laws [13].

III. FLUCTUATIONS AND ENERGY DISTRIBUTION

As discussed above, an interesting observation about this
model is that when the metal is described in the wide-band
approximation, the εd -dependent part of the energy can be
identified as the energy of an effective subsystem characterized
by the Hamiltonian [13]

Ĥeff = ĤD + (1/2)V̂ . (17)

This observation was made on the average energies of the
system and its environment. It leaves open the question
whether Ĥeff has an intrinsic fundamental meaning as the
subsystem Hamiltonian, or is it only 〈Ĥeff〉 that happens to
yield the εd -dependent part of the energy for this model. It
is also interesting to explore the possibility that such splitting
(not necessarily symmetric) may lead to a consistent ther-
modynamic theory in more general situations. In this section
we explore the static properties of the energy distribution for
the composite system described in Sec. II and, in particular,
consider higher moments of the system energy.

We can compute the second moment of the energy distri-
bution, and therefore calculate the fluctuations with respect to
its mean value, by introducing a rescaling parameter λ in the
Hamiltonian

Ĥ (λ) = λ(ĤD + V̂ + ĤB), (18)

with the consequent rescaling of the partition function
�(λ) = Tr{e−β(λĤ−μN̂)} and grand canonical potential �(λ) =
−β−1 ln �(λ). As illustrated in Appendix A, rescaling in the
Hamiltonian amounts to rescaling A(ε). The energy fluctuation
for the extended dot is obtained by differentiation of the grand
canonical potential

〈Ĥ 2〉 − 〈Ĥ 〉2 = − 1

β

∂2

∂λ2
�

∣∣∣∣
λ=1

, (19)

which can be computed after one makes the observation that

∂

∂λ
A = −�

∂

∂ε
Re Gr − εd

∂

∂ε
A. (20)

Taking into account only the εd -dependent part of the grand
canonical potential in Eq. (12), we obtain

〈Ĥ 2〉 − 〈Ĥ 〉2 =
∫

dε

2π
ε2A(ε)f (ε)[1 − f (ε)]. (21)

In a similar fashion, one can determine the energy fluctua-
tions for subsystems associated with part of the Hamiltonian.
To this end, we use the rescaled Hamiltonian

Ĥ (λD,λB,λV ) = λDĤD + λBĤB + λV V̂ . (22)

Using this in Eqs. (5) and (6) readily yields

− 1

β

∂2

∂λ2
i

�

∣∣∣∣
λ→1

= 〈
Ĥ 2

i

〉 − 〈Ĥi〉2. (23)

Parameters in the spectral function A defined in Eq. (11)
change accordingly, i.e., A → A(ε,λDεd,λ

−1
B λ2

V �) (see
Appendix A). Direct computation yields

∂

∂λD

A = −εd

∂

∂ε
A, (24)

∂

∂λB

A = λ−2
B λ2

V �
∂

∂ε
Re Gr, (25)

∂

∂λV

A = −2λ−1
B λV �

∂

∂ε
Re Gr. (26)

Equations (13) and (23) then lead to

〈
H 2

D

〉 − 〈HD〉2 = ε2
d

∫
dε

2π
A(ε)f (ε)[1 − f (ε)]. (27)

As discussed above and in Ref. [13], the average thermo-
dynamic properties of the extended dot subsystem can be
accounted for in this model by assigning to it the effective
Hamiltonian Ĥeff defined in Eq. (17), corresponding to a
symmetric splitting of the interaction Hamiltonian between
the system and environment. Such symmetric splitting was
also found to lead to a consistent heat current under ac driving
of the dot level [11]. Next, we check if fluctuations in the
energy derived from Ĥeff are equivalent to those given by
Eq. (21) as far as their dependence on εd is concerned. To this
end, we adopt a rescaling of the form

Ĥ (λeff,λB,λ′
V ) = λeffĤeff + λBĤB + (1/2)λ′

V V̂ , (28)

and find that parameters in the spectral function change as A =
A(ε,λeffεd,λ

−1
B (λeff + λ′

V )2(1/4)�). In addition, the identity

∂A

∂λeff
= −λ−1

B �
(λeff + λ′

V )

2

∂

∂ε
Re Gr − εd

∂A

∂ε
(29)

holds. Implementing Eq. (23) for this choice leads to

〈(Ĥeff)
2〉 − 〈Ĥeff〉2 =

∫
dε

2π
ε2A(ε)f (ε)[1 − f (ε)]

− 1

2β

∫
dε

2π
(ε − εd )A(ε)f (ε). (30)

If the Hamiltonian ĤD was a consistent choice for the
extended dot Hamiltonian when coupled to its environment,
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the εd dependence of Eqs. (21) and (27) (i.e., their derivatives
with respect to εd ) should have been the same. Similarly, if Ĥeff

of Eq. (17) was such a choice, the εd dependence of Eqs. (21)
and (30) would have been the same. Writing the difference
between Eqs. (21) and (30) as a function of the level energy

g2(εd ) = 1

2β

∫
dε

2π
(ε − εd )A(ε)f (ε), (31)

and calculating its derivative respect to εd ,1

∂g2(εd )

∂εd

= 1

2

∫
dε

2π
(εd − ε)A(ε)f (ε)[1 − f (ε)], (32)

we find that the effective Hamiltonian Ĥeff predicts a different
behavior in the fluctuations upon changes in local parameters
of the extended dot.

The discrepancy between the thermodynamic energy dis-
tribution of the extended dot, as described by the grand
potential Eq. (12), and the one of the effective Hamiltonian
Eq. (17), appears also in higher-order moments of the energy
distribution. For example, the dependence on εd of the third
moment (skewness) for the extended dot can be calculated
using the rescaling for the Hamiltonian in Eq. (18) and by
differentiation with respect to λ of the rescaled grand potential
in Eq. (6),

〈(Ĥ − 〈Ĥ 〉)3〉 = 1

β2

∂3�

∂λ3

∣∣∣∣
λ→1

,

and in terms of the εd -dependent part of the grand potential in
Eq. (12),

〈(Ĥ − 〈Ĥ 〉)3〉 =
∫

dε

2π
ε3A(ε)f (ε)[1 − f (ε)][1 − 2f (ε)].

(33)

This result can be compared to that obtained from the
third moment of the energy distribution associated with the
“effective dot Hamiltonian” Eq. (17). The latter is obtained
using the rescaling for the Hamiltonian in Eq. (28) and by
differentiation with respect to λeff,

〈(Ĥeff − 〈Ĥeff〉)3〉 = 1

β2

∂3�

∂λ3
eff

∣∣∣∣
λ→1

=
∫

dε

2π
ε3A(ε)f (ε)[1−f (ε)][1−2f (ε)]

− 3

2β

∫
dε

2π
ε(ε−εd )A(ε)f (ε)[1−f (ε)].

(34)

Once again, a direct comparison between Eqs. (33) and
(34) demonstrates that the effective Hamiltonian Ĥeff does not
constitute a consistent choice for the extended dot Hamiltonian

1The derivative is taken in order to focus on the part of this difference
that is associated with the extended dot and to discard parts that
are independent of εd and thus irrelevant for the description of the
extended dot. The derivative would be zero if the presence of the dot
had the same effect on the fluctuations described by Eqs. (21) and
(30).

and, in fact, the difference g3(εd ) of the third moment of
the energy of the extended dot and the one of the effective
Hamiltonian and its derivative with respect to εd ,

g3(ε) = 3

2β

∫
dε

2π
ε(ε − εd )A(ε)f (ε)[1 − f (ε)], (35)

∂

∂εd

g3(ε) = 3

2β

∫
dε

2π
(ε − εd )A(ε)f (ε)[1 − f (ε)]

− 3

2

∫
dε

2π
ε(ε−εd )A(ε)f (ε)[1−f (ε)][1−2f (ε)],

(36)

reveal that upon driving in the level energy, the εd -dependent
part of the skewness is incorrectly predicted by Ĥeff.

IV. ENERGY SPLITTING BEYOND THE
WIDE-BAND LIMIT

The effective Hamiltonian in Eq. (17) was found to correctly
represent the dependence of the average system energy on εd in
the wide-band approximation. We now consider the extended
resonant level model when this approximation regarding the
bath is relaxed. In this case the retarded self-energy of the
dot electrons becomes a complex function of the energy, with
a finite real part (Lamb shift �(ε)) and an energy-dependent
imaginary part, that is, the energy-dependent decay rate �. The
εd -dependent part of the grand potential reads

�̃ =− 1

β

∫
dε

2π
ρεd

(ε) ln(1 + e−β(ε−μ)), (37)

with ρεd
(ε) given by Eq. (8), setting the form of the complete

equilibrium thermodynamics of the extended resonant level.
In particular, the εd -dependent part of the internal energy E

can be calculated from �̃ as follows:

E =
(

∂

∂β
− μ

β

∂

∂μ

)
β�̃ =

∫
dε

2π
ερεd

(ε)f (ε). (38)

The important observation (see Appendix B)

∂

∂εd

ρεd
(ε) = − ∂

∂ε
Ã(ε) (39)

has the consequence that the quasistatic work,

dW = dεd

∂

∂εd

�̃ = dεd

∫
dε

2π
Ã(ε)f (ε), (40)

connects correctly to the force experienced by external driving
also beyond the WBA. That can be seen by considering that
the time-dependent dot level is associated with some external
coordinate, in which case the quasistatic work is the work
done by the external coordinate against the quasistatic part of
the adiabatic reaction forces generated by the coupling to the
electronic system [17,18].

Next, we address the question whether in this situation
beyond the WBA a splitting of the interaction Hamiltonian
between the effective bath and effective system can properly
account for the internal energy of the extended resonant level.
If some consistent, not necessarily symmetric, splitting exists,
then we can reproduce this energy as the expectation value of
the effective Hamiltonian 〈ĤD + α1V̂ 〉 = E. Using Eq. (38)
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FIG. 1. Splitting factors α1 (blue, dashed) and α2 (red, solid)
defined in Eqs. (41) and (43), respectively, as a function of the energy
level εd for a resonant level with Lorentzian decay rate � and the
corresponding Lamb shift [Eqs. (46) and (47)]. Parameters for this
model: �o = 0.1 eV, μ = 0, W = 0.5 eV, EB = 0.2 eV, T = 10 K.

for E and solving for α1 yields

α1 =
∫

dε
2π

ερεd
(ε)f (ε) − 〈ĤD〉
〈V̂ 〉 , (41)

where the resulting α1 should be constant (εd independent).
Alternatively, the validity of the splitting would be implied by
a weaker criterion—that the dependence on εd of the averaged
effective Hamiltonian and of E [Eq. (38)] are the same. This
implies

∂

∂εd

〈ĤD〉 + α2
∂

∂εd

〈V̂ 〉 = ∂

∂εd

E. (42)

This leads to2

α2 =
∂

∂εd

∫
dε
2π

ερεd
(ε)f (ε) − ∂

∂εd
〈ĤD〉

∂
∂εd

〈V̂ 〉 . (43)

Again, if splitting works, the resulting α2 would be a constant,
independent of εd . The expectation values of ĤD and V̂ can
be either calculated from the grand potential �̃ as described in
Appendixes B and C, respectively, or directly by computing
〈ĤD〉 and 〈V̂ 〉 within the Green’s function formalism. They
take the form

〈ĤD〉 = εd

∫
dε

2π
Ã(ε)f (ε), (44)

〈V̂ 〉 = 2
∫

dε

2π
(ε − εd )Ã(ε)f (ε). (45)

In the wide-band limit, ρεd
(ε) → A(ε) and Ã(ε) → A(ε) leads

to α1 → 1/2 in Eq. (41) (which can be used to show that also
α2 → 1/2), independent of local parameters. Figure 1 shows
the splitting factors α1 and α2 calculated from Eqs. (41) and
(43) plotted against εd , for a model with a Lorentzian form of

2Note that the attempt to reproduce the quasistatic heat current by
leaving the extended dot via the energy flow into the effective bath
ĤB + (1 − α2)V̂ leads to the same equation for α2, Eq. (43) [13].

the decay rate. For this model the Lamb shift is given by

�(ε) = �o

W 2

W 2 + (ε − EB)2
, (46)

�(ε) = �o

2

W (ε − EB)

W 2 + (ε − EB)2
, (47)

where W and EB are the width and the center of the band,
respectively, and �o is the decay rate at the center of the band.
Clearly, the symmetric splitting suggested in the WBA fails
to predict the εd dependence of the system energy. Moreover,
the fact that the calculated splitting parameters depend on the
dot level εd implies that there does not exist a splitting factor
that can be used to write an effective dot Hamiltonian in the
general non-wide-band model.

V. CONCLUSIONS

For the resonant level model, Eqs. (1)–(4), splitting the
system-bath interaction symmetrically and taking Eq. (17) to
represent the system Hamiltonian has been useful in analyzing
the average thermal properties of this model [11,13] in the
wide-band approximation. The present analysis indicates that
this symmetric splitting does not reflect any fundamental
physics and fails when considering higher moments of the
energy distribution even in the wide-band limit. In particular,
we observe that energy fluctuations and the asymmetry of the
distribution are incorrectly estimated by this choice. There-
fore, using the fluctuation-dissipation theorem for evaluating
transport coefficients with fluctuations in the properties of
the effective system should be done with care. Consistent
equilibrium thermodynamics for the strongly coupled resonant
level model can be extended to situations beyond the WBA.
However, a simple representation of the dependence of the
system internal energy on local dot parameters in terms of
the expectation value of an effective system Hamiltonian that
splits the coupling Hamiltonian between the system and bath
does not generally exist. The correct energy distribution at
equilibrium and its dependence on local dot properties can be
obtained outside the WBA only by studying the full system.
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APPENDIX A: DERIVATION OF EQS. (19) AND (21)

In this Appendix we derive the expression for the local
energy fluctuations of the extended dot. We consider the
rescaled Hamiltonian in Eq. (18) and grand canonical potential
in Eq. (6), with rescaling parameter λ and evaluate

− 1

β

∂2

∂λ2
�(λ) = − 1

β2

(
1

�

∂�

∂λ

)2

+ 1

β2

1

�(λ)

∂2�(λ)

∂λ2
. (A1)
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Setting λ = 1, we obtain Eq. (19). Next, we notice that
the rescaled Hamiltonian has an effective level energy λεd ,
system-bath coupling parameter λVk , and bath electron en-
ergies λεk . Accordingly, the rescaled electron decay rate
�̃ in the WBA is �̃ = 2π

∑
k |λVk|2δ(ε − λεk) = 2πλ2 ×

(λ−1)
∑

k |Vk|2δ(λ−1ε − εk) = λ�, and the level spectral func-
tion depends on λ as follows:

A = λ�

(ε − λεd )2 + (λ�/2)2
. (A2)

Evaluating the derivatives of A with respect to λ, as well as the
derivatives of A and Re Gr with respect to the energy ε, we
obtain Eq. (20). Also, Eqs. (13), (19), and (20) readily yield

∂2

∂λ2
�

∣∣∣∣
λ=1

=
∫

dε

2π
ε2A

∂

∂ε
f (ε), (A3)

which is essentially Eq. (21).
More generally, the above discussion shows that by

identifying how the parameters of the Hamiltonian change
after rescaling, we can determine the functional form of the
spectral function A on the rescaling parameters λi , then use
its derivatives with respect to these scaling parameters to find
averages and higher moments of other relevant local quantities
expressed in terms of the energy derivatives of A and Re Gr ,
and the resulting expression used in the computation of local
quantities.

APPENDIX B: DERIVATION OF EQS. (39) AND (44)

Here, we derive the relation ∂
∂εd

ρεd
(ε) = − ∂

∂ε
Ã(ε) used in

Sec. IV. Let B(ε) = (ε − εd − �)2 + (�/2)2, such that Ã =
�/B and Re Gr = (ε − εd − �)/B. Thus

∂

∂εd

Ã = 1

B2
2(ε − εd − �)�, (B1)

∂

∂εd

Re Gr = 1

B2
{(ε − εd − �)2 − (�/2)2}. (B2)

The energy derivative of the extended dot spectral function Ã

is

∂

∂ε
Ã = 1

B2
{[(ε − εd − �)2 + (�/2)2]∂ε�

− [2(ε − εd − �)(1 − ∂ε�)� + 2(�/2)2∂ε�]} (B3)

= ∂ε�
∂

∂εd

Re Gr − (1 − ∂ε�)
∂

∂εd

Ã (B4)

= − ∂

∂εd

ρεd
(ε), (B5)

where we used Eqs. (B1) and (B2) in (B3) in order to identify
ρεd

(ε) as given by Eq. (8).

To obtain 〈ĤD〉 in Eq. (44), just notice that 〈ĤD〉 =
εd〈d̂†d̂〉 = εd∂εd

�̃ = εd

∫
dε
2π

Ãf (ε), where we have used (39).

APPENDIX C: DERIVATION OF EQ. (45)

To obtain the expression for 〈V̂ 〉 in Eq. (45) we defined the
rescaled Hamiltonian

Ĥ (λ) = ĤD + λV̂ + ĤB, (C1)

and observe that � and � rescale as � = λ2� and � =
λ2�, respectively. The rescaled retarded Green’s function and
spectral density are

Re Gr (ε,εd,�,�; λ) = ε − εd − λ2�

(ε − εd − λ2�)2 + (λ2�/2)2
, (C2)

Ã(ε; εd,�,�; λ) = λ2�

(ε − εd − λ2�)2 + (λ2�/2)2
, (C3)

and the derivative of ρεd
with respect to the rescaling parameter

λ is

∂

∂λ
ρεd

(ε) =
(

∂

∂λ
Ã

)
(1 − ∂ε�) − Ã(2/λ)∂ε�

−
(

∂

∂λ
Re Gr

)
∂ε� − Re Gr (2/λ)∂ε�. (C4)

Equations (C2)–(C4) lead to

∂

∂λ
ρεd

(ε) = 2

B2
�(ε − εd − �)(2/λ)�(1 − ∂ε�)

− (2/λ)
∂

∂ε
(Ã�) + (2/λ)�

(
∂

∂ε
Ã

)

− (2/λ)
∂

∂ε
(� Re Gr )

− 1

B2
(2/λ)[(ε − εd − �)2 − (�/2)2]�∂ε�.

(C5)

The first, third, and fifth terms on the right-hand side of
Eq. (C5) mutually cancel. Therefore,

∂

∂λ
ρεd

(ε) = −2

λ

{
∂

∂ε
(� Re Gr ) + ∂

∂ε
(Ã�)

}
. (C6)

Finally, the expression in Eq. (C6) can be used to calculate
〈V̂ 〉:

〈V̂ 〉 = ∂

∂λ
�̃

∣∣∣∣
λ=1

(C7)

= − 1

β

∫
dε

2π

(
∂

∂λ
ρεd

(ε)

)
λ=1

ln(1 + e−β(ε−μ)) (C8)

= 2
∫

dε

2π
(ε − εd )Ãf (ε), (C9)

which is the result in Eq. (45). This result can also be derived
from the nonequilibrium Green’s function formalism (see
Ref. [13]).
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