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Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental
observation of the 4π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show
that switching-current measurements provide accessible and robust signatures for topological superconductivity
which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the
phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into
an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue
that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning
rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman
fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave
excitations of short topological Josephson junctions which may complement switching-current measurements.
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I. INTRODUCTION

Topological superconductors with p-wave pairing and
Majorana bound states [1] are currently attracting much
interest, motivated in part by possible applications to topolog-
ical quantum information processing [2]. Several solid-state
platforms have been proposed [3–12] and are vigorously
pursued experimentally [13–24]. A key question of current
research is to develop appropriate detection schemes which
allow one to identify topological superconducting phases and
Majorana bound states.

A particularly striking signature of topological supercon-
ductivity is provided by Josephson junctions formed by a
weak link between two topological superconductors hosting
unpaired Majorana bound states at their ends [1,4]. While for
conventional superconductors, the Josephson current is 2π

periodic in the applied phase difference, the Josephson current
across a junction made from topological superconductors is
predicted to be 4π periodic [1]. This period doubling of
the Josephson current in a topological Josephson junction
[3,4,25–33] is protected by fermion number parity and as such
quite sensitive to quasiparticle poisoning which changes the
occupation of subgap states by inelastic processes involving
the quasiparticle continuum. If the temporal variation of the
superconducting phase difference across the junction is too
slow, quasiparticle poisoning restores the 2π periodicity [4]. If
the phase difference is varied too fast, the periodicity is restored
by diabatic transitions into the quasiparticle continuum [25].

Here, we explore an alternative approach to probe the
phase-dependent subgap spectrum of a topological Josephson
junction, which is inspired by a recent series of remarkable
experiments on conventional Josephson junctions [34–37].
These experiments consider Josephson junctions based on
atomic weak links which host localized subgap Andreev
states. The experiments explore the phase-dependent subgap
spectrum by switching-current measurements as well as
microwave spectroscopy. Here, we establish that analogous
experiments provide a promising technique to distinguish
between conventional and topological Josephson junctions.

We find that this is particularly true in the short-junction limit,
i.e., for junctions which are short compared to the coherence
length of the adjacent (topological) superconductors. An
important advantage of such measurements is that they can
be performed in the presence of quasiparticle poisoning
and in fact explicitly exploit processes that break fermion
parity.

Ideally, Josephson junctions carry a dissipationless super-
current (or Josephson current) as long as the applied current
remains below the critical current and switch to a resistive state
once the current exceeds the critical current [38]. In practice,
the switching current fluctuates about the critical current due
to thermal fluctuations. This has characteristic consequences
in switching- current measurements based on applying short
current pulses. Indeed, the switching probability as a function
of the height of the applied current pulse does not increase
abruptly from zero to one at the critical current, but rather
exhibits a smooth step when accounting for fluctuations arising
from the electromagnetic environment. When the junction
hosts subgap states, their occupations also fluctuate due to
quasiparticle poisoning processes. The current-phase relation
and hence the critical current depend on the occupation of the
subgap states, so that poisoning processes lead to fluctuations
in the switching current.

The effect of poisoning processes is particularly simple
when the current pulses are short compared to typical poison-
ing processes. In this case, the poisoning dynamics determines
the occupation probability of the various subgap states prior
to applying the current pulse but does not modify the state
during the pulse duration. The switching probability becomes
a superposition of step functions corresponding to the various
subgap occupations. When the broadening of the steps is
small compared to the shifts in the switching current between
different occupation states, the measured switching probability
exhibits a sequence of steps, one for each occupation of the
subgap states, with intermediate plateaus. The heights of the
plateaus reflect the occupation probabilities of the various
junction states at the beginning of the current pulse. As a
consequence, the switching probability encodes information
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FIG. 1. Basic setup of the asymmetric SQUID, involving a weak
conventional/topological Josephson junction (blue triangles) and a
strong auxiliary Josephson junction (red checked box) with critical
current I0. The phase δ across the weak junction is linked to the phase
γ across the auxiliary junction and the phase drop φ = 2eϕ/� induced
by the magnetic flux ϕ threading the SQUID loop, δ = φ + γ . The
applied voltage Vb drives a current I through the resistance Rb and
the SQUID.

on the current-phase relations for the various occupation states
of the Josephson junction.

Switching-current measurements on a single Josephson
junction do not provide access to the phase dependence of
the Josephson current, but merely to the maximal Josephson
current and its dependence on the junction occupation. Phase-
dependent information can be obtained by incorporating the
junction of interest into an asymmetric SQUID where the
second auxiliary junction in the SQUID loop has a much
larger critical current and no subgap states [34]. This setup
is illustrated in Fig. 1. The switching current of the SQUID is
shifted away from the switching current of the large junction
by the phase-dependent Josephson current of the weak one,
so that switching current measurements as a function of flux
can provide access to the entire current-phase relation of the
various states of the weak junction of interest.

This makes switching-current measurements suitable to
probe a unique distinction between topological and con-
ventional Josephson junctions. As a function of the phase
difference δ across the junction, the difference in Josephson
currents between different junction states must vanish an even
number of times within a 2π period in a trivial junction, and
an odd number of times in a topological junction.

In this scheme, the initial occupation probability of the
various junction states is assumed thermal. When driving the
system out of equilibrium, switching-current measurements
also provide access to the poisoning dynamics [35]. Imagine
that the system is taken out of equilibrium at some initial
time t = 0 so that the occupation probability of the various
subgap states is no longer thermal. Poisoning processes
will subsequently induce relaxation to equilibrium, and the
rate of this relaxation can be probed by switching-current
measurements after a time delay t . This pump-probe scheme
can either be implemented by a sequence of two current pulses
with time delay t , or by applying an appropriate microwave
pulse at time t = 0 prior to the switching current measurements
at time t .

Microwave irradiation also provides an alternative spec-
troscopic way of measuring the subgap spectrum as it

induces transitions between different occupation states of the
Josephson junction by microwave radiation [37,39–42]. Thus,
evidence for topological superconductivity can be further
strengthened by performing switching-current measurements
in conjunction with microwave spectroscopy. This motivates
us to calculate the admittance of a topological Josephson
junction in the short-junction limit, complementing the results
of Ref. [42] for the long-junction limit.

Such measurements provide various opportunities to distin-
guish topological from nontopological Josephson junctions.
We find that the signatures are particularly distinctive for
short junctions as their subgap spectrum contains only few
Andreev states. Such short topological junctions support only
a single subgap state at energy EM (and its particle-hole
conjugate at −EM ), originating from the hybridization of the
two Majorana bound states. In contrast, a short conventional
junction frequently (but not necessarily) supports additional
Andreev states associated with the spin degree of freedom.
In this case, topological and nontopological junctions can
be distinguished by the number of plateaus in the switching
probability as a function of applied current. Only junctions
with a single plateau are suspects for being topological [see
Fig. 4(a)]. Among these suspects, the subgap spectrum exhibits
a fermion-parity protected level crossing at a phase difference
of δ = π for topological junctions, and an anticrossing for
nontopological junctions. Thus, the Josephson current at a
phase difference of π is maximal for topological junctions
and vanishes for conventional ones. This leads to charac-
teristic differences in the flux dependence of the plateau
width [see Fig. 4(b)]. Finally, even if the anticrossing of
a nontopological junction happens to be too weak to be
resolved, its poisoning dynamics should be characteristically
different. Poisoning dynamics necessarily involves the quasi-
particle continuum for topological junctions while poisoning
processes involving only subgap states can exist for conven-
tional junctions. These signatures based on switching current
measurements can be further corroborated by microwave
spectroscopy.

The paper is organized as follows. In Sec. II, we review
basic considerations on the differences between the topo-
logical and conventional Josephson junctions. Section III
contains the central results of this paper. After introducing
the asymmetric SQUID setup, we discuss the characteristic
distinctions between topological and conventional Josephson
junctions in switching-current measurements, including the
effects of thermal fluctuations in the context of the resistively
and capacitively shunted junction (RCSJ) model. We end this
section with a discussion of pump-probe experiments with
multiple current pulses which provide access to the quasi-
particle poisoning rates. Microwave absorption is discussed
for short topological junctions based on two-dimensional
(2D) topological insulators in Sec. IV. While we discuss
nontopological junctions in the absence of Zeeman fields or
spin-orbit coupling in the earlier sections, these couplings
are typically present in experiments searching for possible
topological superconductivity. We show in Sec. V that the
signatures distinguishing topological from nontopological
junctions remain robust in the presence of these effects when
focusing on the short-junction limit. Finally, we conclude in
Sec. VI.
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II. BASIC CONSIDERATIONS

A. Conventional Josephson junction

To set the stage, we first review the case of a conventional
Josephson junction. As realized in experiment [34–36], we
consider a short junction (i.e., shorter than the supercon-
ducting coherence length) in the single-channel limit. If this
channel has transmission D, the junction binds a single,
spin-degenerate Andreev bound state at subgap energy [43]

EA(δ) = �

√
1 − D sin2

δ

2
. (1)

Here, δ denotes the phase difference across the junction and �

the superconducting gap. Figure 2(a) shows this particle-hole
symmetric pair E = ±EA(δ) of Bogoliubov–de Gennes states
as a function of the phase difference δ.

In the absence of above-gap excitations, these single-
particle subgap states give rise to four many-body states
associated with the Josephson junction. In the ground state,
denoted by |0〉, the positive-energy Andreev bound state is
empty. In addition, there are two degenerate excited states
in which either the spin-up or the spin-down Andreev level
is occupied. We denote these states by |1↑〉 = γ

†
↑ |0〉 and

|1↓〉 = γ
†
↓ |0〉, where γ↑ and γ↓ are the Bogoliubov operators

associated with the Andreev state. Finally, the Andreev state
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FIG. 2. Upper panels: single-particle energies of the subgap state
as a function of the phase difference across the junction for (a)
conventional and (a′) topological Josephson junctions. Lower panels:
supercurrent as a function of phase difference for the various possible
states of (b) conventional and (b′) topological Josephson junctions
(G = e2D/π , D = 0.95). The blue, black, and red curves in (b)
display the currents for the states |0〉, |1,σ 〉, and |2〉, respectively.
The blue and red curves in (b′) display the currents for the states |0〉
and |1〉.

can be doubly occupied, |2〉 = γ
†
↑γ

†
↓ |0〉. Note that the states

|0〉 and |2〉 are even states in terms of fermion parity, while
|1↑〉 and |1↓〉 are odd.

In equilibrium, the Josephson current is governed by the
many-body energy E(δ) of the junction. In the ground state
|0〉, the (phase-dependent) junction energy is given by −EA(δ).
Correspondingly, the two odd states |1↑〉 and |1↓〉 have zero
energy, while the doubly occupied state |2〉 has energy +EA(δ).
This is summarized as

En(δ) = (n − 1)EA(δ), (2)

where n = 0,1,2 denotes the occupancy of the Andreev bound
state. The Josephson current in state |n〉 can be obtained from
the energy as

In(δ) = 2e
∂En(δ)

∂δ
= 2(n − 1)e

∂EA(δ)

∂δ
. (3)

Thus, the Josephson currents of the two states |0〉 and |2〉 have
the same magnitude, but flow in opposite directions, while the
Josephson current vanishes in the odd states |1↑〉 and |1↓〉.
The 2π -periodic supercurrents for these states are shown in
Fig. 2(b).

B. Topological Josephson junction

The corresponding results for topological Josephson junc-
tions differ in several essential ways. Here, we focus attention
on junctions made of topological superconductors which
break time-reversal symmetry and are hence characterized by
unpaired Majorana bound states at their ends. The simplest
realization of such a topological superconducting phase
occurs in spinless p-wave superconductors [1,44,45]. These
phases can for instance be realized experimentally based on
two-dimensional topological insulators proximity coupled to
conventional s-wave superconductors [4] or semiconductor
quantum wires [5,6]. When tuned to the right parameter
regime, these systems realize phases which are adiabatically
connected to the topological phase of spinless p-wave su-
perconductors and are thus promising venues for realizing
the topological Josephson junction setup which we propose.
Indeed, several experiments have already investigated such
Josephson junctions with the goal of identifying signatures of
topological superconductivity [16,19,20,23].

In the following, we assume that any ungapped normal
part of the junction region is short compared to the coherence
length ξ of the adjacent topological superconducting phase.
Then, the subgap spectrum emerges from two overlapping
Majorana bound states localized at the ends of the two
topological superconductors [4–7]. This yields one nondegen-
erate Andreev level EM (δ). While EM (δ) is 4π periodic, the
overall particle-hole-symmetric subgap spectrum ±EM (δ) is
2π periodic. Moreover, the level crossings between EM (δ)
and −EM (δ) at δ equal to odd multiples of π are protected by
conservation of fermion parity. This single-particle spectrum
is shown in Fig. 2(a′).

As the topological Josephson junction has a single nonde-
generate Andreev state, there are only two rather than four
many-body states in the absence of above-gap quasiparticle
excitations. We denote the state in which the Andreev level
EM (δ) is empty (occupied) as |0〉 (|1〉). The two states satisfy
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|1〉 = γ † |0〉, where γ is the Bogoliubov operator associated
with the subgap state EM (δ). We will also refer to |0〉 as having
even fermion parity or the even state and to |1〉 as the odd state.
(In the presence of above-gap quasiparticles, both occupations
are however accessible for any parity of the electron number.
Such processes are known as quasiparticle poisoning.)

The phase-dependent many-body energy of the junction is
equal to −EM (δ)/2 for the even state |0〉 and +EM (δ)/2 for
the odd state |1〉, or

En(δ) = (2n − 1)
EM (δ)

2
(4)

for state |n〉 with n = 0,1 denoting the occupation of the
Andreev state. Just as the Bogoliubov–de Gennes states, the
two many-body states |n〉 become degenerate for δ equal to
odd multiples of π . Notice that the odd state can have lower
energy than the even state as EM (δ) becomes negative, which
cannot happen in a conventional Josephson junction.

The Josephson current follows from the many-body energy
in the usual way, so that

In(δ) = 2e
∂En(δ)

∂δ
= e(2n − 1)

∂EM (δ)

∂δ
. (5)

For fixed fermion parity n, the Josephson current is 4π

periodic, as illustrated in Fig. 2(b′). The two states carry
supercurrents of the same magnitude but of opposite sign.

This implies that there are distinct differences in the
supercurrent carried by conventional and topological Joseph-
son junctions. Unlike a conventional Josephson junction, a
topological Josephson junction does not have states with
zero Josephson current. Moreover, conventional Josephson
junctions can assume three different current states, while
topological junctions are limited to two states. We will explore
experimental consequences of these differences in Sec. III.

C. Excitation spectra

The differences in subgap structures are also reflected
in the excitation spectrum of the junction under microwave
irradiation. Continuing to focus on short junctions, the many-
body energy of a conventional junction can assume three
different values. Correspondingly, the subgap states lead to
three resonances in the differential absorption of microwave
irradiation, as shown in Fig. 3(a) [39]. In the absence of subgap
states, the only excitation process that breaks up a Cooper pair
excites both electrons into the quasiparticle continuum [see
process (1) in Fig. 3], which has a threshold energy of 2�. The
existence of subgap states allows for the following additional
processes. In process (2), a Cooper pair in the condensate is
split, with one of the quasiparticles excited into the bound state
at energy EA and the second into the quasiparticle continuum
above the gap �. This process has threshold energy EA + �.
Process (3) corresponds to a quasiparticle in the bound state
being excited into the continuum. This process has threshold
energy � − EA. Finally, process (4) splits a Cooper pair, with
both quasiparticles getting excited into the bound state. This
process requires a threshold energy of 2EA. The thresholds
of processes (2)–(4) are sketched in Fig. 3(b) as a function of
the phase δ across the junction. We note in passing that these
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FIG. 3. Upper panels: possible quasiparticle processes numbered
by (1)–(4) in (a) conventional and (a′) topological Josephson
junctions. The black dashed lines indicate the many-body ground
state and the upper blue boxes the quasiparticle continuum above the
energy gap �. The red lines indicate the bound state at energies EA or
EM for conventional and topological junctions, respectively. Lower
panels: excitation energies (or energy thresholds) involving the bound
state corresponding to the various processes in panels (a) and (a′).

considerations are valid for zero magnetic field. The more
general case will be considered in Sec. V.

A topological Josephson junction allows fewer microwave-
induced transitions involving subgap states as it can only
assume two possible junction energies [42]. When the junction
is in the even-parity state, a Cooper pair can be split, with one
electron occupying the subgap level and the second getting
excited into the quasiparticle continuum. This process requires
a threshold photon energy of � + EM and is labeled as process
(2) in Fig. 3(a′). When the junction is in the odd-parity state,
the quasiparticle occupying the Andreev state EM (δ) can be
excited to the quasiparticle continuum. This process, labeled as
(3) in Fig. 3(a′), requires a threshold energy of � − EM . While
these two processes are similar to corresponding processes in
conventional Josephson junctions, there is no analog of process
(4). Indeed, there is only a single, nondegenerate Andreev level
in topological Josephson junctions and it is impossible to split a
Cooper pair exciting both electrons into a subgap state. A more
complete theory of the microwave absorption is presented in
Sec. IV.

III. SWITCHING PROBABILITY OF TOPOLOGICAL
JOSEPHSON JUNCTIONS

In this section, we explore the consequences of the
qualitative differences between the subgap spectra of conven-
tional and topological superconductors for switching-current
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FIG. 4. (a) Probability Psw of switching to the resistive state as
a function of current for conventional (left) and topological (right)
Josephson junctions for δ = 0.9π and D = 0.95. The dashed lines
are the switching probabilities for the junction assuming a fixed
occupation state [cf. Eq. (12)]. The black solid curves display the
switching probability Psw in the presence of quasiparticle poisoning,
and can be obtained from a weighted average over the switching
probabilities of the various occupation states [cf. Eq. (13)]. For
the conventional Josephson junction, we choose the weight factors
c0 = 0.5, c1,↑ = c1,↓ = 0.23, and c2 = 0.04. For the topological
Josephson junction, we choose the weight factors c0 = 0.6 and
c1 = 0.4. (b) Width of the plateau �I/I0 as a function of δ = γ + φ

for the case of conventional (red dashed) and topological Josephson
junctions (blue solid) (for Eaux

J /� = 5.7, where Eaux
J = �I0/2e is the

Josephson energy of the auxiliary junction and � the gap of the weak
junction).

measurements of asymmetric SQUIDs. We first present a
heuristic approach in Sec. III A. As illustrated in Fig. 4, we
find that there are characteristic differences between short
topological and conventional junctions both in the number
and the width of the plateaus in the switching probability.
These schematic results are further corroborated by detailed
numerical results in Sec. III C, based on the RCSJ theory
developed in Sec. III B, with the central results shown in Fig. 6.
Finally, in Sec. III D, we propose pump-probe approaches to
the switching probability to explore the poisoning dynamics
and show that this encodes further characteristic differences
between topological and nontopological Josephson junctions.

A. Plateaus in the switching probability

Consider the SQUID device shown in Fig. 1, consisting
of a large auxiliary Josephson junction and the weak junction
of interest which can be either conventional or topological.
The auxiliary Josephson junction is assumed to have a large
critical current I0 and no internal dynamics. The weak junction
of interest has a much smaller critical current and internal
dynamics associated with the bound-state occupation, as
discussed in the previous section. The phase differences across
the large junction (denoted by γ ) and the weak junction

(denoted by δ) are related through

δ = φ + γ, (6)

where φ = 2eϕ/� is the phase drop induced by the magnetic
flux ϕ threading the SQUID loop. (This relation assumes that
the geometric inductance of the SQUID loop can be neglected
as in recent experiments [35].)

The total applied current I flowing through the SQUID
splits between the auxiliary junction with current

Iaux(γ ) = I0 sin γ, (7)

and the weak junction of interest with current In(δ),

I = Iaux(γ ) + In(φ + γ ). (8)

Here, we have used the relation (6) between the phase
differences. For zero applied current I = 0, the current
circulates around the SQUID loop and both junctions carry
the same current, albeit with opposite signs. As the auxiliary
junction has a much larger critical current, its phase difference
γ is small and the phase drop φ due to the flux is applied
almost entirely to the weak junction, i.e., δ � φ.

When a current bias I is applied to the junction, the
auxiliary junction carries most of this current and we can first
focus on its behavior. Then, the phase difference across this
junction is approximately

γ � arcsin
I
I0

, (9)

and the junction becomes resistive when the current exceeds
the critical current Iaux

sw = I0 of the junction. Ideally, this
occurs when γ reaches γsw = π/2.

In the presence of the weak junction, switching occurs for
the value of γ = γsw for which the right-hand side of Eq. (8)
has its maximum. Expanding to linear order in the small current
In, we have

γsw � π

2
+ 1

I0

dIn(φ + γ )

dγ

∣∣∣∣
γ=π/2

(10)

and

Isw � I0 + In(φ + π/2) (11)

for the switching current. This relation implies that the
switching current of the SQUID reflects the current-phase
relation of the weak junction. A measurement of the switching
current of the asymmetric SQUID as a function of flux φ can
therefore be used to measure this current-phase relation.

As shown in Ref. [35] for a nontopological Josephson
junction based on an atomic contact, this can be used to resolve
the current-phase relation of the various many-body states of
the junction. Indeed, if the switching-current measurement is
performed sufficiently fast compared to quasiparticle poison-
ing processes in the weak junction, the switching current of
the SQUID depends on the occupancy n of the Andreev state.
In practice [34–37], this measurement can be performed by
applying short current pulses and measuring the probability
that the SQUID switches into the resistive state as a function
of applied current I. In the simple approximation given here,
this probability has the steplike form

P n
sw(I,φ) = θ [I − I0 − In(φ + π/2)] (12)
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when the weak junction is in state n. The switching proba-
bilities, for fixed n and φ, are illustrated by the dashed lines
in Fig. 4(a), which includes plots for both conventional and
topological Josephson junctions. (The steps in the switching
probability as a function of current are smoothed in this figure,
anticipating the more elaborate model discussed in Sec. III B.)
The critical current Iaux

sw = I0 of the auxiliary junction by itself
is marked on the x axis. According to Eq. (12), the shifts
of the steps away from this value can be interpreted as the
supercurrent flowing through the weak junction of interest.

The dashed lines in Fig. 4(a) assume that the junction
of interest is in a specific state n in the beginning of the
current pulse (and that this charge state does not get modified
during the pulse duration). In practice, the state of the junction
changes statistically due to quasiparticle poisoning processes
and is in general uncontrolled in experiment. Thus, the junction
has probability cn to be in state n at the beginning of the
current pulse. If we keep assuming that the junction does not
switch between states over the duration of the current pulse,
the experimentally measured switching probability

Psw(I,φ) =
∑

n

cnP
n
sw(I,φ) (13)

is a weighted average over the states n of the junction. Such
weighted averages are illustrated by black full lines in Fig. 4(a).

In the simplest approximation, the probabilities cn can be
assumed as thermal. More generally, they can be obtained from
rate equations which describe the relevant poisoning processes
[46,47]. Remarkably, one does not need detailed information
about this poisoning kinetics for establishing robust signatures
of topological superconductivity. Indeed, as illustrated in
Fig. 4(a), the weighted average exhibits plateaus as a function
of current. The number of plateaus increases with the number
of current states of the junction. A conventional Josephson
junction can have three different current states, and will then
exhibit two plateaus in a plot of the switching probability
versus current. In contrast, a short topological junction has only
two current states and thus merely a single plateau. Thus, if all
junction states are occupied with an appreciable probability
cn, topological and nontopological junctions frequently differ
in the number of plateaus.

However, the number of plateaus may also be the same
for topological and nontopological junctions. This happens
when one of the cn is so small (presumably for the |2〉
state) for a conventional junction that only a single plateau
can be resolved, or because the nontopological junction also
has only a single subgap state, as can be the case in the
presence of Zeeman splitting (see Sec. V below for explicit
model calculations). Even in this case, however, there remains
a clear-cut difference between topological and conventional
junctions when considering the width of the plateau as a
function of the flux applied to the SQUID. The width of the
plateau measures the difference in the supercurrents between
the two contributing junction states.

At the flux φ such that the phase across the weak junction
δ is equal to π , the difference in supercurrent is maximal for a
topological junction, but vanishes for conventional junctions.
Correspondingly, the width of the plateau should be maximal
near δ = π for a topological junction, but vanishes for a
conventional junction. This central result of this paper is

illustrated in Fig. 4(b). Note that the experimental control
parameter is φ rather than δ. However, these are simply related
by δ = φ + γsw � φ + π/2 at the position of the steps. It is
useful to mention that the plateau width in the topological case
is linear in the transmission amplitude

√
D. Thus, the lower

the transmission, the narrower the plateau, making it more
difficult to detect and characterize it experimentally.

In the more detailed considerations presented in Sec. III C,
we show that the height and the location of the plateau
provide additional criteria for distinguishing topological and
conventional junctions.

B. RCSJ model

A more accurate description of the asymmetric SQUID is
provided by the RCSJ model [38,48–52], which takes into
account its shunting resistance RS and capacitance C. Starting
from this model and assuming that the weak junction remains
in a particular state n, current conservation and the Josephson
relation imply that the dynamics of the phase γ across the
auxiliary junction is described by

�C

2e
γ̈ = I − I0 sin γ − In(φ + γ ) − �

2eRS

γ̇ + ζ̃ (t). (14)

The term ζ̃ (t) accounts for the thermal fluctuations as-
sociated with the resistance RS and satisfies 〈ζ̃ (t)ζ̃ (t ′)〉 =
(2T /RS)δ(t − t ′) at temperature T . Note that Eq. (14) reduces
to Eq. (8), when neglecting the thermal fluctuations and
searching for a solution with time-independent γ . It is
convenient to introduce new parameters through

m =
(

�

2e

)2

C, η = 1

RSC
, ζ (t) = �

2e
ζ̃ (t)

as well as the effective potential

U (γ ) = −Eaux
J cos γ + En(φ + γ ) − �Iγ

2e
, (15)

where Eaux
J = �I0/2e. Then, the equation for the phase γ takes

the form of a Langevin equation

mγ̈ = −U ′(γ ) − mηγ̇ + ζ (t) (16)

for a “particle” moving in the “tilted washboard” potential
U (γ ) with friction coefficient η and the correlator

〈ζ (t)ζ (t ′)〉 = 2T mηδ(t − t ′) (17)

of the Langevin force.
At zero bias current I = 0, U (γ ) � −Eaux

J cos γ and the
“particle” will most likely remain near the potential minimum
γ � 0 (modulo 2π ). With increasing bias current, the potential
U (γ ) is tilted and the particle eventually escapes from the
minimum (see Fig. 5), with the SQUID developing a voltage
according to the Josephson relation V = �γ̇ /2e.

The probability Psw that a current pulse of duration tp
switches the junction to a finite-voltage state can be expressed
in terms of the escape rate � from the minimum [34–36]

Psw = 1 − exp(−�tp). (18)

To determine �, we consider the overdamped limit of the
Langevin equation

γ̇ = −(mη)−1U ′(γ ) + (mη)−1ζ (t). (19)
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γγb

U (γ)

γa

Eb

Γ

FIG. 5. Sketch of the “tilted washboard” potential governing the
dynamics of the Josephson junction near one minimum.

In this limit, the probability density P(γ,t) of the auxiliary
junction’s phase difference γ is governed by the Smolu-
chowski equation [53]

∂P(γ,t)

∂t
= 1

mη

∂

∂γ

[
U ′(γ )P(γ,t) + T

∂P(γ,t)

∂γ

]
(20)

and the escape rate can be computed by Kramers rate theory
[53,54].

Consider the minimum of U (γ ) at γa and the neighboring
maximum at γb (see Fig. 5). The rate � can be obtained by
solving the stationary Smoluchowski equation at a constant
probability current

j = 1

mη

[
U ′(γ )P(γ,t) + T

∂P(γ,t)

∂γ

]
(21)

with absorbing boundary condition at γ = γ+, P(γ+) = 0.
The position γ+ has to be sufficiently far to the right of γb,
i.e., γ+ > γb, but is otherwise arbitrary. Then, the probability
current j , normalized to the occupation na of the minimum at
γa , describes the rate � at which transitions occur out of the
minimum γa .

Note that the Smoluchowski equation implies that j is
independent of γ for stationary solutions, so that we find

P(γ ) = mηj

T
exp [−U (γ )/T ]

∫ γ+

γ

dy exp [U (y)/T ] (22)

by solving Eq. (21). For γ near γa , we can perform the integral
by saddle-point integration and obtain

P(γ ) � mηj

ωbT

√
2πT

m
exp

(
U (γb)

T

)
exp [−U (γ )/T ]. (23)

Here, we approximate U (γ ) � U (γb) − 1
2mω2

b(γ − γb)2

around γb. The population na in the potential well around
γa is

na �
∫ ∞

−∞
dγ ′ P(γ ′) = 2πηj

ωaωb

exp (Eb/T ), (24)

where the integral should be evaluated with the expres-
sion in Eq. (23). We used the expansion U (γ ) � U (γa) +
1
2mω2

a(γ − γa)2 for γ near γa and introduced the barrier height
Eb = U (γb) − U (γa). Finally, one obtains the Arrhenius-type

expression

� = j

na

= ωaωb

2πη
exp (−Eb/T ) (25)

for the escape rate �.
The two points γa and γb satisfy the condition ∂U (γ )/∂γ =

0, which yields

I0 sin γ + In(γ + φ) = I. (26)

First neglecting the contribution of the weak junction, one has

γa � arcsin
I
I0

; γb � π − arcsin
I
I0

(27)

as well as

ωaωb � Eaux
J

m
| cos γa cos γb|1/2 (28)

and

Eb � Eaux
J (cos γa − cos γb) − �I

2e
(γb − γa). (29)

Then, Eq. (25) yields the phase escape rate

�aux(I) = eI0RS

π�

√
1 − (I/I0)2

× e− �

2eT
{I[2 arcsin(I/I0)−π]+2I0

√
1−(I/I0)2} (30)

by Eq. (18), the switching probability of the auxiliary junction
is

P aux
sw (I) = 1 − e−�aux(I)tp . (31)

P aux
sw has a steplike shape as shown in Fig. 4, with the steps

occurring near Iaux
sw which is generally smaller than I0 due to

the thermal fluctuations.
Now, the weak junction can be readily included to first

order. We first need to solve Eq. (26) for γa and γb. In doing so,
we can replace γ in the argument ofIn by the results in Eq. (27)
for γa and γb to zeroth order. At sufficiently low temperatures,
the junction switches only once the barrier becomes small and
hence when γa and γb are close together (and thus close to
π/2). In computing the switching probability to first order in
In, it is sufficient to set γ � π/2 in the argument of In in
Eq. (26). Then, we can account for the weak junction simply
by shiftingI → I − In(φ + π/2) in the above considerations.
This yields

P n
sw(I) � P aux

sw

[
I − In

(
φ + π

2

)]
(32)

for the switching probability of the asymmetric SQUID.

C. Signatures of topological Josephson junctions

The differences between topological and trivial junctions
are most pronounced in the switching probability Psw as a
function of the flux and the height of the current pulse. We
can use the RCSJ approach developed in the previous section
to calculate Psw in Eq. (13) numerically [see Eq. (32)]. This
leads to Fig. 6 which contains a central result of this paper and
highlights the qualitative difference between topological and
trivial junctions. Figure 6(a) shows a color plot of the switching
probability for a nontopological junction as a function of the
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FIG. 6. Color plot of the switching probability Psw of asymmetric
SQUIDs as a function of flux φ and height I of the current pulse for
(a) a conventional and (b) a topological Josephson junction. The
occupation probabilities of the various junction states prior to the
current pulse are taken to be thermal, with effective temperature
Teff . In (a), parameters are such that the occupation probability of
the doubly occupied Andreev state is negligible. The dashed lines
indicate the switching currents based on the Josephson currents
associated with the various junction states as indicated in the
figure, with the phase difference across the weak junction taken
as δ = φ + π/2. In (a), the purple line corresponds to the ground
state, the black line to the singly occupied Andreev state, and the
orange one to the doubly occupied state. In (b), the purple and
orange lines correspond to the two states of the topological junction.
The parameters were chosen as Rs = 550 �, I0 = 553.7 nA, T =
100 mK, Eaux

J /� = 5.7, tp = 1 μs, and D = 0.95, according to the
parameters used in Ref. [35]. The effective temperature Teff is chosen
as such that Eaux

J /Teff = 10. The gray arrows with labels (i), (ii)
indicate values of φ for which line cuts are shown in Fig. 7.

height I of the current pulse and the flux threading the SQUID.
The dashed lines indicate the switching currents for the various
junction states as obtained on the basis of the current-phase
relation of the weak junction and discussed in Sec. III A. The
purple line corresponds to the ground state of the junction, the
black line to the odd states, and the orange line to the doubly
occupied Andreev level.

For the parameters chosen, double occupation of the An-
dreev level can be neglected so that the switching probability
effectively exhibits only a single plateau as a function of
current. In Fig. 6, this plateau is well resolved for 0 � φ � π ,
corresponding to a phase difference of π/2 � δ � 3π/2 across
the weak junction. Outside this region, the energy of the odd
states becomes too high, and their thermal occupation too low,
so that the corresponding step in the switching probability
is no longer resolved. Obviously, the range over which the
plateau can be resolved depends on the junction parameters
and temperature.

P
sw

I/I0

Conventional Topological

(i)

0.0

0.5

1.0

|0〉

|1, σ〉

(ii)

0.0

0.5

1.0

0.8 0.9 1.0

|0〉

|1, σ〉

(i′)|0〉

|1〉

(ii′)

0.7 0.8 0.9 1.0

|0〉

|1〉

FIG. 7. Switching probability of a conventional (topological)
junction as a function of the applied current for fixed φ. The black
symbols represent Psw along the fixed-φ cuts indicated by gray arrows
in Fig. 6 for conventional junctions: (i) switching probability for
φ = 0.4π ; (ii) for φ = 0.6π . (i′) and (ii′) show the corresponding
plots along the same φ cuts for the topological junction. The dashed
curves denote the switching probability when the weak junction is in
the fixed occupation state as specified in the figure, similar to those
in Fig. 4. Note that for conventional junction, the state with the lower
switching current inverts between (i) and (ii). It is this inversion which
explains the sudden change in the plateau height for (i) φ < π/2 and
(ii) φ > π/2, as discussed in the text. In contrast, there are no such
inversions in the topological case.

The height of the intermediate plateau changes quite
abruptly at φ � π/2, corresponding to a phase difference of
δ = π across the weak junction. This is seen in Fig. 6 and
further illustrated in the line cuts presented in Fig. 7. At δ = π ,
there is a change in sign of the Josephson current flowing
through the weak junction. Consequently, the low-current step
in the switching probability is due to the odd states (ground
state) to the left (right) of φ = π/2, and the step heights
therefore controlled by the low (high) thermal occupations of
these states. Note that this change in the plateau height occurs
at a flux where the width of the plateau goes through zero.

Corresponding results for a topological junction are shown
in Fig. 6(b). The two dashed lines correspond to the expected
switching currents based on the even and odd states of the
topological junction. The plateau in the switching probability
occurs between these two lines. Unlike for the conventional
junction, the width of the plateau is now maximal for
φ = π/2, corresponding to a phase difference of δ = π

across the topological junction. This qualitative difference
between topological and conventional junctions was already
highlighted in Fig. 4. Note also that there is now a rather abrupt
change in the height of the plateau at this point of maximal
plateau width, rather than the point of minimal plateau width
as for conventional junctions.

Finally, there are characteristic differences between conven-
tional and topological junctions based on the flux dependence
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|1〉

|0〉

Γout Γin
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Γin
1

Γin = Γin
1 + Γin

2

Γout
1

Γout
2

Γout = Γout
1 + Γout

2

FIG. 8. Center: parity switching between states |1〉 and |0〉, with
rates �in and �out. Left: quasiparticle processes that contribute to �out.
The top panel shows the breaking of a Cooper pair, with one electron
excited into the subgap state (red line) and the second electron excited
to the continuum (blue box). The bottom panel shows the transition
of a quasiparticle from the continuum into the subgap state. Right:
quasiparticle processes that contribute to �in. The top panel shows
the recombination of quasiparticle excitations from the continuum
and the subgap state into a Cooper pair. The bottom panel shows the
excitation of an excitation from the subgap state into the quasiparticle
continuum.

of the Josephson current. In a conventional junction, one of
the steps of the switching probability as a function of current
is due to the odd state which carries zero Josephson current
for all phase differences. Thus, the position of one of the
steps should be rather insensitive to the flux φ. Conversely,
both occupation states of a topological junction generally
carry Josephson currents, with their currents being equal in
magnitude but opposite in sign. Thus, both steps should depend
on flux in a symmetric manner. This difference is clearly seen
in Fig. 6.

D. Poisoning dynamics

According to Eq. (13), the measured switching probability
is sensitive to the probabilities cn for the various occupation
states n of the junction. As shown experimentally in Ref. [35],
this can be used to extract the poisoning dynamics of the
weak Josephson junction by a “pump-probe” technique. This
technique can be readily extended to topological Josephson
junctions.

The basic idea of the technique [35] is to drive the
occupation probabilities cn out of equilibrium, e.g., by a short
initial current pulse, and to probe the switching current by a
second current pulse at a later time t . With increasing time
delay �t between the current pulses, the junction occupations
relax back towards equilibrium, and this is reflected in the
switching probability Psw, due to its dependence on the cn.

This can be used to extract the dependence of the cn’s on the
time delay �t and hence the poisoning rates by comparison
with a simple rate equation. The dominant poisoning processes
in a short topological junction are shown in Fig. 8. Note that
in short junctions, the presence of above-gap quasiparticles

leaves the Josephson current unchanged. Denoting the occu-
pations of the states |0〉 and |1〉 by p and 1 − p, respectively,
the rate equation takes the form

dp

dt
= −�outp + �in(1 − p). (33)

In equilibrium, this is solved by p = p∞ = �in/(�in + �out),
and this equilibrium is approached with rate � = �in + �out.
Both � and p∞ can be measured, yielding the poisoning rates
�in and �out.

While quasiparticle poisoning frequently suppresses Ma-
jorana signatures such as the 4π -periodic Josephson effect
or the 2e2/h conductance quantization of a Majorana tunnel
junction, measurements of the poisoning dynamics may
actually be helpful in distinguishing between topological and
nontopological junctions. This is related to the fact that a
nontopological junction typically has additional channels of
poisoning dynamics which are absent in a short topological
junction. Specifically, a nontopological junction can have
two pairs of subgap states while a topological junction has
only one. As a result, we can have poisoning processes in
a nontopological junction in which a Cooper pair is split
up between (or recombined from) the two positive-energy
subgap states. No such process exists in a short topological
junction where all poisoning processes necessarily involve the
quasiparticle continuum, as shown in Fig. 8.

This difference becomes particularly dramatic and helpful
at δ = π when the nontopological junction has only weakly
anticrossing Andreev levels. Such a situation is shown in
Fig. 13 in Sec. V. Then, it may be challenging to resolve the
weak splitting in switching-current measurements. However,
the poisoning dynamics of the two settings remains distinctly
different. The fastest rate for the topological junction has an
activated temperature dependence with an activation energy of
the order of the topological superconducting gap. In contrast,
the fastest rate of a nontopological junction should involve a
considerably smaller activation energy which equals the sum
of the energies of the spin-up and -down Andreev levels.

IV. MICROWAVE ABSORPTION

In addition to the switching current, topological and
nontopological Josephson junctions also differ in their mi-
crowave absorption. Microwave absorption was studied for
nontopological junctions by Kos et al. [39] and for long
topological junctions by Väyrynen et al. [42]. Here, we
present corresponding results for short topological Josephson
junctions. (Related results were also obtained very recently in
Ref. [55].) For definiteness, we consider a model Hamiltonian
of a short topological Josephson junction which is appropriate
for a topological Josephson junction based on a proximity-
coupled topological-insulator edge [4]. This model allows us
to explicitly compute the Josephson current and the transi-
tion rates for the various microwave-induced quasiparticle
processes. Related calculations of admittance of topological
wires have been done in Refs. [56,57].

A. Bound states and Josephson current

Consider the Fu-Kane model of a topological Josephson
junction [4]. The banks, consisting of a topological insulator
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edge proximity coupled to a conventional superconductor, are
separated by a section in which the edge state is gapped out
by a Zeeman field or proximity coupling to a ferromagnetic
insulator. The banks are considered to be long enough that
the Majorana bound states at the junction are decoupled from
other Majoranas far from the junction. We also require the
edge state to be well separated so that we can focus on an
individual edge mode.

To model a short junction for which the length L of the
junction is small compared to the superconducting coherence
length, we take the limit L → 0 while keeping R = ML/vF

fixed, where M is the strength of the magnetic gap in the
junction, i.e., we treat the Zeeman field as a δ-function
perturbation. In the Nambu basis � = (ψ↑,ψ↓,ψ

†
↓, − ψ

†
↑)T ,

the Hamiltonian takes the form H = 1
2�†H� with

H = vF pσzτz + �(x)τx + M(x)σx, (34)

where x (p) denotes the coordinate (momentum) along the
topological-insulator edge, vF is the edge-mode velocity, and
σj and τj are Pauli matrices in spin and Nambu (particle-hole)
space, respectively. The proximity-induced superconducting
gap

�(x) = �[θ (−x − L/2) + eiφτzθ (x − L/2)]

→ �eiφ(x)τz (35)

has strength � and a phase difference of φ across the junction
located at x = 0, so that φ(x) = φθ (x). (In this section, we
use φ instead of δ to avoid confusion with the δ function.)
Similarly, the magnetic gap takes the form

M(x) = Mθ (x + L/2)θ (−x + L/2) → vF Rδ(x) (36)

in the short-junction limit.
Thus, we can also write the Hamiltonian as

H = vF pσzτz + �eiφ(x)τzτx + vF Rδ(x)σx. (37)

The spatial dependence of the superconducting phase can be
eliminated by a local gauge transformation U = eiφ(x)τz/2. This
transforms the Hamiltonian into

U †HU = vF pσzτz + �τx + vF

[
φ

2
σz + Rσx

]
δ(x), (38)

which we will denote as H in the following.
The connection formula across the δ function can be readily

derived by rearranging the Bogoliubov–de Gennes equation
Hψ = Eψ as

i
∂ψ

∂x
= − 1

vF

σzτz

[
E − �τx − vF

(
φ

2
σz + Rσx

)
δ(x)

]
ψ.

(39)

By writing the solution as ψ(x) = U (x,x0)ψ(x0) in terms of
the state at some reference point x0, we find

U (x,x0) = P exp

{
i

vF

σzτz

∫ x

x0

dx ′
[
E − �τx

− vF

(
φ

2
σz + Rσx

)
δ(x ′)

]}
, (40)

where P is an ordering operator which moves larger x to the
left. Specifically, we can now compute

U (0+,0−) = e−iφτz/2[cosh R + σyτz sinh R], (41)

which connects the states on the two sides of the δ function
ψ(0+) = U (0+,0−)ψ(0−).

We can use this connection formula to obtain the bound
states localized at the junction. To do so, we match the properly
decaying solutions of the Bogoliubov–de Gennes equation
on the left and right sides of the δ function by means of
the connection formula (41) and obtain one pair of localized
Andreev bound states ±EM (φ) with

EM (φ) = �

cosh R
cos

φ

2
=

√
D� cos

φ

2
. (42)

Here, we have defined the junction transmission D =
1/ cosh2 R. This pair of Andreev bound states emerges from
the pair of coupled Majorana bound states adjacent to the
topological Josephson junction. For completeness, we include
details of this calculation in Appendix A 1.

Combining Eqs. (5) and (42), we can obtain the Josephson
current as

In = e�

2 cosh R
sin

φ

2
(1 − 2n) = πG

2

�2 sin φ

2eEM (φ)
(1 − 2n),

(43)

where n = 0,1 denotes the occupancy of the bound state and
we defined G = e2D/π . For a given junction occupation n,
the Josephson current is 4π periodic in φ and the two states of
the junction carry exactly opposite supercurrents, as shown in
Fig. 2(b′).

B. Linear response to microwave radiation

We model the microwave radiation as an applied time-
dependent bias V (t) which modifies the phase difference
across the junction according to φ → φ − 2φ1(t), where
φ̇1(t) = eV (t). We assume that the microwave radiation of
frequency ω is weak, φ1 ∼ |eV/ω| � 1, so that we can treat
the perturbation

H ′(t ′) = vF [ψ†
+(0)ψ+(0) − ψ

†
−(0)ψ−(0)]φ1(t ′)

= 1

e
I (t ′)φ1(t ′), (44)

in linear response. We note in passing that we neglect the
shift in chemical potential by eV (t). This term yields a purely
real response function and is thus irrelevant for microwave
absorption [39].

Using the Kubo formula, the current response to the
microwave radiation can be expressed as

δ 〈I (t)〉 = −i

∫ t

−∞
〈[I (t),H ′(t ′)]〉 dt ′

= − i

e

∫ t

−∞
〈[I (t),I (t ′)]〉 φ1(t ′)dt ′, (45)

and described by the response function

χ (t) = − i

e
θ (t)〈[I (t),I (0)]〉. (46)
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The admittance Y (ω) of the junction can be written as Y (ω) =
ie
ω
χ (ω), where χ (ω) denotes the Fourier transform of χ (t). The

linear absorption rate W of the microwave radiation becomes
[39]

W = φ2
1

2e2
ω ReY (ω), ω > 0. (47)

This quantity is a measure of the microwave-induced rate of
change of the weight factors cn in Psw as given in Eq. (13).

The admittance can be computed by using the current
operator

I = evF [ψ†
+(0)ψ+(0) − ψ

†
−(0)ψ−(0)], (48)

where ψ±(0) is the annihilation operator for the left/right
moving electron at position x = 0 of the junction. We need
to choose either x = 0+ or 0− for the wave functions to be
well defined. The electron operators can be expressed in terms
of the Bogoliubov quasiparticle operators γν [25]:

ψ+(0) =
∑

ν

u+ν(0)γν − v∗
−ν(0)γ †

ν ,

ψ−(0) =
∑

ν

u−ν(0)γν + v∗
+ν(0)γ †

ν . (49)

Here, we introduced the spinor wave functions �ν =
(u+ν,u−ν,v+ν,v−ν). The Andreev bound state is labeled by
ν = 0 and the continuum states by ν = (E,η,χ ), with η = e,h

and χ = l,r corresponding to the state generated by incoming
electron/hole states from the left/right. The ± label refers to
the two spin components which are locked to the propagation
directions of the edge channel.

By using the explicit expressions for the wave functions of
both bound and continuum states, as calculated in Appendix A,
we can first recover the Josephson current given in Eq. (43).
The corresponding derivation is given in Appendix B. Extend-
ing the calculation to the current-current correlation function
(46), we can then obtain microscopic results for the admittance
of short Josephson junctions, as shown in Appendix C. We
neglect above-gap excitations, as they are suppressed by the
superconducting gap. Then, the real part of the admittance can
be written as a sum of three terms

ReY = ReY1 + (1 − n)ReY2 + n ReY3. (50)

The three terms correspond to three different quasiparticle
processes shown in Fig. 3(a′). Explicitly, ReY1(ω) ∝ θ (ω −
2�) corresponds to the process (1) in which a Cooper
pair is excited into the continuum as two quasiparticles.
This process requires a threshold energy of 2�. ReY2(ω) ∝
θ (ω − � − EM ) describes the process (2), in which a Cooper
pair is split between the Andreev level and the quasiparticle
continuum. This process requires a threshold energy � + EM

and an initially empty Andreev level. Finally, ReY3(ω) ∝
θ (ω − � + EM ) corresponds to the process (3), in which
a quasiparticle is excited from the Andreev level into the
continuum. This requires a threshold energy of � − EM and
an occupied Andreev level. Unlike for conventional Josephson
junctions as discussed in Ref. [39], there is no process with
absorption energy 2EM as the Andreev level is nondegenerate
for a topological Josephson junction.
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ω/Δ

Y2(δ = π)
Y3(δ = π)

Y2(δ = π/2)
Y3(δ = π/2)

FIG. 9. Various contributions to the real part of the admittance
for the Fu-Kane model, based on Eq. (C39), for D = 0.95 and phase
differences φ = π as well as φ = π/2. For φ = π , EA = 0, so that
ReY2 and ReY3 coincide. At phase differences φ away from π , the
two curves differ.

Detailed expressions for these functions are included in
Eq. (C39) in Appendix C. The explicit expressions show
that the thresholds at � + EM and � − EM are sharp in the
sense that their derivatives with respect to ω have square-root
singularities at the threshold. This is shown in Fig. 9, which
plots ReY2 and ReY3 for various phase differences φ across
the junction. These results also allow one to compute the ab-
sorption rate dW/dω according to Eq. (47). A corresponding
color plot as a function of both φ and ω which emphasizes the
threshold energies is shown in Fig. 10. Here, we assume that
both parity states are equally populated, independently of the
applied flux.

V. TOPOLOGICAL VS NONTOPOLOGICAL JUNCTIONS:
EFFECTS OF ZEEMAN FIELD AND

SPIN-ORBIT COUPLING

Potential realizations of topological Josephson junctions
require systems which involve spin-orbit coupling and/or
Zeeman fields. When searching for topological superconduc-
tivity, one is thus dealing with Josephson junctions which are
subject to both of these. Strictly speaking, our considerations
for nontopological junctions in the previous sections did not
include these effects. One may thus worry that their inclu-
sion makes the proposed experimental distinctions between
topological and nontopological junctions less clear cut. This
question is addressed in the present section. Our principal
conclusion is that the signatures remain essentially robust as
long as one considers short Josephson junctions.

Important realizations of topological Josephson junctions
rely on 2D topological insulators [4] or semiconductor
quantum wires [5,6]. In Sec. IV A, we presented microscopic
results for short junctions made of 2D topological insulator
edges, subject to a Zeeman field in the junction region.
These junctions are topological, and their subgap spectrum
agrees with the generic subgap spectrum of short topological

085409-11



PENG, PIENTKA, BERG, OREG, AND VON OPPEN PHYSICAL REVIEW B 94, 085409 (2016)
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FIG. 10. Derivative of the linear absorption rate with respect
to the microwave frequency dW/dω [see Eq. (47)]. For optimal
visibility of the thresholds, we assume an occupation of n = 1

2 in
Eq. (50) independently of flux. While the figure displays the sum of
contributions from Y2 and Y3, the bright curves result predominantly
from Y2 and Y3 as labeled in the figure.

junctions which underlies the considerations of this paper. At
the same time, there is experimental evidence that there can
be edge-state transport even in the trivial regime [58]. For this
reason, in Sec. V A, we study short nontopological junctions
which are one dimensional and subject to a strong Zeeman field
inside the junction region. In Sec. V B, we explore Josephson
junctions based on proximity-coupled semiconductor quantum
wires with Zeeman and spin-orbit coupling. This model
can be explicitly tuned between the topological and the
nontopological phase.

A. Nontopological Josephson junctions with strong
Zeeman field in the junction region

Consider a Josephson junction made from a nontopo-
logical (i.e., nonhelical) one-dimensional channel. In the
short-junction limit, the splitting of Andreev levels due to
spin-orbit coupling is of order �2τdw/� [59–61]. Here, τdw

denotes the dwell time in the junction which approaches zero
in the short-junction regime. Hence, we can neglect spin-orbit
coupling and focus on the Zeeman field. The subgap states
and Josephson current of such junction can quite generally
be obtained by scattering theory [43] (see Appendix D for
a detailed calculation). Figure 11 shows two typical subgap
spectra as a function of the phase difference across the junction
in the case of a short nontopological junction with Zeeman field
inside the junction region.

We observe that in short junctions, the main consequence of
Zeeman and spin-orbit coupling in the junction region is that
the odd-parity state spin splits. This implies that the odd-parity

-1.0

-0.5

0.0

0.5

1.0

0 1 2

E
σ ±
/Δ

φ/π
0 1 2

φ/π

(a) (b)

FIG. 11. Subgap energies of a short conventional Josephson
junction as a function of the phase difference, in the presence of
Zeeman field applied in the junction region. The orange solid curves
are the spectra for spin up with Nambu spinor (ψ↑,ψ

†
↓)T . The blue

dashed lines are the corresponding spectra for spin down following
from particle-hole symmetry. The panels illustrate the two types of
typical behaviors, with parameters chosen as (a) η̃ = 0.5 and (b)
η̃ = 2.8, with D = 0.6 and R cos γ̃ = 0.2 in both panels.

states carry nonzero supercurrent, leading to an additional
plateau in the switching probability. This actually enhances
the contrast with the short topological junctions which exhibit
a single plateau. Even if this additional plateau is not resolved,
however, we find that the supercurrent still vanishes when φ is
an odd multiple of π . Thus, the behavior of the plateau width
with phase difference remains as discussed in Sec. III.

The spin splitting of the odd-parity states also modifies
the behavior in microwave absorption. Let us denote the
two positive-energy Andreev levels as E±. Then, transitions
appear when the microwave frequency equals (i) E+ + E−,
generalizing the line at 2EA in the absence of the Zeeman
field, (ii) � ± E+ or � ± E−, generalizing the lines at
� ± EA to the spin-split case, and (iii) E+ − E−. The latter
is visible only due to spin-orbit coupling and should therefore
be weak. Thus, the magnetic field and spin-orbit coupling
introduce additional absorption lines in microwave absorption,
while short topological Josephson junctions have only two
absorption lines.

B. Josephson junctions based on proximitized
Rashba nanowires

Nontopological junctions based on proximity-coupled
Rashba nanowires include both Zeeman and spin-orbit cou-
pling also in the superconducting leads. Here, we explore
the corresponding modifications for short junctions and show
that both switching-current and ac-absorption measurements
continue to provide clear-cut distinctions between topological
and nontopological junctions.

The explicit Hamiltonian and the bulk dispersions for this
system are given by Eq. (E1). We compute the spectrum of
the Hamiltonian (E1) numerically by discretizing the model
into a finite-difference representation. The results are shown
in Figs. 12 and 13. In Fig. 12, we fix the chemical potential
to μ = 0. Results for a short junction are shown in panels
(a)–(c), with the Zeeman field increasing from (a) to (c).
Far on the nontopological side of the topological phase
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FIG. 12. Low-energy spectra of Hamiltonian (E1) as a function
of phase difference ϕ, for various Zeeman fields and junction lengths.
The results are obtained numerically for finite-length samples,
showing all levels which become subgap states at least for some range
of phase differences. Energies corresponding to the quasiparticle
continuum of infinite wires are shown in gray. We choose a chemical
potential μ = 0, spin-orbit interaction mα2 = �, and a total length
60ξ of the system, with ξ = 2α/� the bulk coherence length of
the superconductor when B = 0. Results for a short junction with
L = 0.05ξ are shown in (a)–(c) for increasing Zeeman field: (a)
nontopological junction, B = 0.2�; (b) nontopological junction,
B = 0.8�; (c) topological junction, B = 2.0�. The subgap spectrum
behaves in a qualitatively similar manner in intermediate length
junctions with L = 0.5ξ . Results for junctions of this length are
shown in (d)–(f), with the other parameters equal to those of panels
(a)–(c). Additional subgap states emerge only in long junctions, as
shown in panels (g) and (h) for L = 2ξ , and other parameters again
as in (a)–(c). The numerical results are obtained by discretizing
the Hamiltonian (E1) with a minimal spacing of 0.025ξ and an
eighth-order approximation to the Laplacian.

transition [Fig. 12(a)], the results differ from those for the
simplified model of a nontopological junction in that the
subgap states are spin split, leading to four subgap states.
As argued in Sec. V A, this leads to additional plateaus in
the switching probability and additional lines in microwave
absorption, which enhances the central distinctions between
short topological and nontopological junctions.

When approaching the topological phase transition by
increasing the Zeeman field, the bulk gap � − B becomes
smaller and two of the subgap states merge with the continuum.
This is shown in Fig. 12(b). Thus, the switching probability is
expected to exhibit only a single plateau, as in the topological
phase. However, the plateau width remains distinctly different
as the Josephson current vanishes at φ = π where it becomes
maximal in a topological junction. The latter can be seen from

E
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φ/π
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FIG. 13. Low-energy spectra of Hamiltonian (E1) as a function
of phase difference ϕ, for fixed Zeeman fields B = 2.0� and
junction length L = 0.5ξ . The results are obtained numerically for
finite-length samples, showing all levels which become subgap states
at least for some range of phase differences. Energies corresponding
to the quasiparticle continuum of infinite wires are shown in gray.
We choose a spin-orbit interaction of mα2 = � and a total length
of 60ξ of the system, with ξ = 2α/� the bulk coherence length of
the superconductor when B = 0. (a) Nontopological junction with
μ = 3.0�. (b) Topological junction with μ = 1.0�. Panels (c) and
(d) are for parameters as in (a) and (b), respectively, but with an
additional potential barrier of height 3� in the junction region, which
reduces the junction transmission. The numerical results are obtained
by discretizing the Hamiltonian (E1) with a minimal spacing of
0.025ξ and an eighth-order approximation to the Laplacian.

Fig. 12(c) which shows the subgap spectrum in the topological
phase.

The results in Figs. 12(a)–12(c) were obtained for a very
short junction with a length of L = 0.05ξ , where ξ is the
superconducting coherence length for B = 0 and μ = 0.
Qualitatively the same results are found for intermediate
length junctions with L = 0.5ξ , as shown in Figs. 12(d)–12(f).
Additional subgap states appear only for even longer junctions
of length L = 2ξ , as shown in Figs. 12(g)–12(i).

We can also tune the junction across the topological phase
transition by varying the chemical potentials μ. Corresponding
results are shown in Fig. 13 for a junction of moderate length,
L = 0.5ξ . Figure 13(a) corresponds to a nontopological junc-
tion with spin-split subgap states and vanishing supercurrent
for φ = π . Figure 13(b) corresponds to a topological junction
with maximal supercurrent at φ = π . Potential scattering in the
junction region reduces the junction transmission which opens
a gap between subgap states and quasiparticle continuum in
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the topological case while leaving the behavior near φ = π

qualitatively unchanged. Corresponding numerical subgap
spectra are shown in Figs. 13(c) and 13(d).

VI. CONCLUSION

The most immediate detection of a topological Josephson
junction relies on the 4π -periodic Josephson effect. Its ob-
servation is, however, complicated by quasiparticle poisoning
and diabatic effects. In this paper, we showed that topological
Josepshon junctions can be identified even in the presence
of quasiparticle poisoning. The proposed technique relies on
switching-current measurements. While such measurements
may be interesting even for the Josephson junction by itself,
they provide much more information when including the
junction into an asymmetric SQUID, together with an auxiliary
junction with much larger critical current. Most importantly,
incorporation into an asymmetric SQUID allows for phase-
resolved measurements of the Josephson junction of interest.

Rather than measuring the 4π periodicity of individual
subgap levels, the proposed switching-current measurements
probe the existence of a protected level crossing at a certain
phase difference δ. While in a topological junction, this
level crossing is protected by fermion parity, there is no
corresponding protection in nontopological junctions. For
a particular junction state, the Josephson current is corre-
spondingly maximal in magnitude at the protected crossing
of a topological junction, but vanishes in a nontopological
junction. We showed that this has striking manifestations in
the switching probability of the junction as a function of the
height of the applied current pulse, as illustrated in Figs. 4
and 6.

Specifically, our considerations focused on short Josephson
junctions for which the number of subgap states is limited
and the differences between topological and nontopological
junctions are most pronounced. Especially, near degeneracies
of subgap levels are quite unlikely in short nontopological
junctions, as we show by explicitly calculating the subgap
spectra for specific models based on topological-insulator edge
modes or semiconductor quantum wires.

The proposed measurements are not only tolerant of (and in
fact exploit) quasiparticle poisoning, but also provide access to
the poisoning dynamics. The poisoning rates can be extracted
by means of a pump-probe technique with multiple current
pulses offset in time. As we showed, this is particularly useful
to identify nontopological junctions with anomalously weak
anticrossings of the Andreev levels. Microwave irradiation
may be another useful technique in probing the poisoning
dynamics as it also drives the system out of equilibrium.
Moreover, microwave absorption provides access to the
subgap spectrum of Josephson junctions, providing additional
signatures which differentiate topological from nontopological
junctions.

Throughout our discussion, we focused on the Majoranas
which are localized at the junction and did not consider
additional Majoranas located far from the junction. This is
justified when the overlap between these additional outer
Majoranas and the junction Majoranas can be neglected.
Then, the subgap states resulting from the outer Majoranas
are independent of the phase difference across the junction

and the Josephson currents remain unaffected. Similarly, the
transition matrix elements vanish for microwave processes
involving both these and the junction Majoranas.

It is interesting to consider how our results become modified
when there is substantial overlap between the junction and
outer Majoranas. A topological junction would now have a
“counterpart” of process (4) in Fig. 3, yielding an absorption
line at the energy EM plus the small splitting of the outer
Majoranas (as opposed to 2EA for a nontopological junction).
In addition, there should also be an absorption feature with
a threshold near �, which distinguishes this case from
conventional Andreev states. Both additional features should
be much dimmer than other features as they require overlap
of the outer and junction Majoranas. In switching current
measurements, the signature in Fig. 4(b) weakens a bit: In
an exponentially narrow window around φ = π , the plateau
width would go to zero even in the topological phase. The
signature in Figs. 6(a) and 6(b) would only be weakly affected.
In particular, the fact that in Fig. 6(b) the plateau in Psw is
centered around the same current should be quite robust.

Thus, we conclude that the proposed signatures remain
quite useful in the presence of weak coupling to the outer
Majoranas. An exception is the discussion at the end of
Sec. III D concerning poisoning processes. With coupling to
outer Majoranas, the activation energy of the poisoning rates
of topological junctions would no longer be necessarily larger
than the gap, and a measurement without this overlap has clear
benefits.

Combined switching-current and microwave absorption
measurements on the same Josephson junction should thus
be a powerful combination to identify topological Josephson
junctions. In view of the fact that corresponding measurements
have already been carried out successfully on nontopological
junctions based on atomic point contacts [34–37], we hope
that the proposed measurements can be readily implemented
for topological junctions.
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APPENDIX A: CALCULATION OF WAVE FUNCTIONS

In this appendix, we derive the wave functions for the bound
states (Appendix A 1) and continuum states (Appendix A 2)
of the Fu-Kane model in the short-junction limit. The Hamil-
tonian is given in Eq. (38).

1. Andreev bound state with |E| < �

For E < �, we write the left (x < 0) and right (x > 0) wave
functions which are solutions to the Hamiltonian H without
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the δ-function term,

�L(x) = eκx(aA0,B0,A0,aB0)T , x < 0
(A1)

�R(x) = e−κx(C0,aD0,aC0,D0)T , x > 0

where κ(E) = √
�2 − E2/vF and a(E) = E/� −

i
√

1 − E2/�2. The connection condition in Eq. (41)
leads to

eiφ/2C0 = aA0 cosh R − i sinh RB0,

e−iφ/2C0 = a−1A0 cosh R + i sinh RB0,
(A2)

eiφ/2D0 = i sinh RA0 + a−1 cosh RB0,

e−iφ/2D0 = −i sinh RA0 + a cosh RB0,

which can be further simplified to become

C0 = E

�
A0

cosh R

cos φ/2
= A0,

D0 = E

�
B0

cosh R

cos φ/2
= B0, (A3)

C0 = −
√

D sinh RB0√
1 − D cos2 φ

2 + √
D sin φ

2

.

These equations are a set of homogeneous linear equations
for the coefficients A0, B0, C0, and D0. The condition to have

nonzero solutions leads to the Andreev bound-state energy

EM (φ) = � cos

(
φ

2

)/
cosh R =

√
D� cos

(
φ

2

)
(A4)

given in Eq. (42).
To obtain the bound-state wave function, we note that the

coefficients fulfill A0 = C0 and

B0 = D0 =
⎛
⎝

√
1 − D cos2 φ

2 + √
D sin φ

2√
1 − D cos2 φ

2 − √
D sin φ

2

⎞
⎠

1/2

A0. (A5)

Imposing the normalization condition∫
dx �†(x)�(x) = 2

κ

(∣∣A0

∣∣2 + ∣∣B2
0

∣∣) = 1, (A6)

and using

|A0|2 + |B0|2 =
2
√

1 − D cos2 φ

2√
1 − D cos2 φ

2 − √
D sin φ

2

|A0|2 (A7)

as well as

κ(EM ) = �

vF

√
1 − D cos2

φ

2
, (A8)

we obtain

|A0|2 = �

4vF

(√
1 − D cos2

φ

2
−

√
D sin

φ

2

)
,

|B0|2 = �

4vF

(√
1 − D cos2

φ

2
+

√
D sin

φ

2

)
. (A9)

2. Continuum state with |E| � �

For E � �, we have four kinds of wave functions �
(η,χ )
E :

�
(e,l)
E = J (E)[eipx(1,0,a,0) + e−ipx(aA(e,l),0,A(e,l),0)T + e−ipx(0,B(e,l),0,aB(e,l))T ]θ (−x)

+ J (E)[eipx(C(e,l),0,aC(e,l),0) + eipx(0,aD(e,l),0,D(e,l))]θ (x), (A10a)

�
(h,l)
E = J (E)[eipx(0,a,0,1) + e−ipx(aA(h,l),0,A(h,l),0)T + e−ipx(0,B(h,l),0,aB(h,l))T ]θ (−x)

+ J (E)[eipx(C(h,l),0,aC(h,l),0) + eipx(0,aD(h,l),0,D(h,l))]θ (x), (A10b)

�
(e,r)
E = J (E)[e−ipx(aA(e,r),0,A(e,r),0)T + e−ipx(0,B(e,r),0,aB(e,r))T ]θ (−x)

+ J (E)[e−ipx(0,1,0,a)T + eipx(C(e,r),0,aC(e,r),0) + eipx(0,aD(e,r),0,D(e,r))]θ (x), (A10c)

�
(h,r)
E = J (E)[e−ipx(aA(h,r),0,A(h,r),0)T + e−ipx(0,B(h,r),0,aB(h,r))T ]θ (−x)

+ J (E)[e−ipx(a,0,1,0)T + eipx(C(h,r),0,aC(h,r),0) + eipx(0,aD(h,r),0,D(h,r))]θ (x), (A10d)

where η = e,h denote electron or hole source, χ = l,r denote the source field coming from left or right,

p(E) =
√

E2 − �2

vF

, a(E) = E

�
−

√
E2

�2
− 1, (A11)

and J (E) = [2πvF (1 − |a|2)]
−1/2

is the normalization constant. These coefficients for the continuum wave functions can be
obtained by using the connection condition in Eq. (41), which will be shown in the following.
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a. Electron source from left

For electron source from left, the wave function fulfills⎛
⎜⎜⎝

C(e,l)

aD(e,l)

aC(e,l)

D(e,l)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

e−iφ/2 cosh R −e−iφ/2i sinh R 0 0
e−iφ/2i sinh R e−iφ/2 cosh R 0 0

0 0 eiφ/2 cosh R eiφ/2i sinh R

0 0 −eiφ/2i sinh R eiφ/2 cosh R

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 + aA(e,l)

B(e,l)

a + A(e,l)

aB(e,l)

⎞
⎟⎟⎠, (A12)

A(e,l) = A = E
(
E2

M − �2
) − iEM

√
E2 − �2�

√
D sin φ

2

�(E2 − E2
M )

,

B(e,l) = B = −iE
√

E2 − �2 tanh R

E2 − E2
M

. (A13)

b. Hole source from left

For hole source from left, the wave function fulfills⎛
⎜⎜⎝

C(h,l)

aD(h,l)

aC(h,l)

D(h,l)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

e−iφ/2 cosh R −e−iφ/2i sinh R 0 0
e−iφ/2i sinh R e−iφ/2 cosh R 0 0

0 0 eiφ/2 cosh R eiφ/2i sinh R

0 0 −eiφ/2i sinh R eiφ/2 cosh R

⎞
⎟⎟⎠

⎛
⎜⎜⎝

aA(h,l)

a + B(h,l)

A(h,l)

1 + aB(h,l)

⎞
⎟⎟⎠, (A14)

A(h,l) = B, B(h,l) = A∗. (A15)

c. Electron source from right

For electron source from right, the wave function fulfills⎛
⎜⎜⎝

C(e,r)

1 + aD(e,r)

aC(e,r)

a + D(e,r)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

e−iφ/2 cosh R −e−iφ/2i sinh R 0 0
e−iφ/2i sinh R e−iφ/2 cosh R 0 0

0 0 eiφ/2 cosh R eiφ/2i sinh R

0 0 −eiφ/2i sinh R eiφ/2 cosh R

⎞
⎟⎟⎠

⎛
⎜⎜⎝

aA(e,r)

B(e,r)

A(e,r)

aB(e,r)

⎞
⎟⎟⎠, (A16)

A(e,r) = C = − iEM

√
E2 − �2 tanh R

E2 − E2
M

,

B(e,r) = D∗ = (E2 − �2)EM + iE
√

E2 − �2�
√

D sin φ

2

�(E2 − E2
M )

. (A17)

d. Hole source from right

For hole source from right, the wave function fulfills⎛
⎜⎜⎝

a + C(h,r)

aD(h,r)

1 + aC(h,r)

D(h,r)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

e−iφ/2 cosh R −e−iφ/2i sinh R 0 0
e−iφ/2i sinh R e−iφ/2 cosh R 0 0

0 0 eiφ/2 cosh R eiφ/2i sinh R

0 0 −eiφ/2i sinh R eiφ/2 cosh R

⎞
⎟⎟⎠

⎛
⎜⎜⎝

aA(h,r)

B(h,r)

A(h,r)

aB(h,r)

⎞
⎟⎟⎠, (A18)

A(h,r) = D, B(h,r) = C. (A19)

APPENDIX B: DERIVATION OF JOSEPHSON CURRENT

In this appendix, we derive the Josephson current formula in Eq. (43) in Sec. IV A. By using Eq. (49), we can write the field
operators for left/right moving electrons in terms Bogoliubov quasiparticle operators, in terms of coefficients of wave functions
derived in the previous section:

ψ+(0−) =
∫

dE J (E)[(1 + aA)γ(E,e,l) + aBγ(E,h,l) + aCγ(E,e,r) + aDγ(E,h,r)

− aB∗γ †
(E,e,l) − (1 + aA)γ †

(E,h,l) − aDγ
†
(E,e,r) − aC∗γ †

(E,h,r)] + a(EM )A0γ0 − a(EM )∗B∗
0 γ

†
0 , (B1)

ψ−(0−) =
∫

dE J (E)[Bγ(E,e,l) + (a + A∗)γ(E,h,l) + D∗γ(E,e,r) + Cγ(E,h,r)

+ (a + A∗)γ †
(E,e,l) + B∗γ †

(E,h,l) + C∗γ †
(E,e,r) + D∗γ †

(E,h,r)] + B0γ0 + A∗
0γ

†
0 . (B2)
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At zero temperature, all continuum states with negative eigenvalues of the Bogoliubov–de Gennes Hamiltonian are occupied,
and all continuum states with positive eigenvalues are empty. The occupation of the Andreev bound state is n = 0,1, depending
on the fermion parity of the system. This leads to the Josephson current, by using Eq. (48),

〈I 〉 = evF

[|A0|2 − ∣∣B2
0

∣∣](2n − 1)

= e�

2

√
D sin

φ

2
(1 − 2n)

= πG

2

�2 sin φ

2eEM (φ)
(1 − 2n), G = e2D/π. (B3)

To obtain the above equation, we have used the identity

|A|2 + |B|2 + |C|2 + |D|2 = 1. (B4)

APPENDIX C: DERIVATION OF ReY (ω)

In this appendix, we apply linear response theory to derive the real part of the admittance via the response function given in
Eq. (46) of Sec. IV B. The response function χ (t) can be written as

χ (t) = −iθ (t)ev2
F {〈[ψ†

+(t)ψ+(t),ψ†
+ψ+]〉0 + 〈[ψ†

−(t)ψ−(t),ψ†
−ψ−]〉0}

+ iθ (t)ev2
F {〈[ψ†

+(t)ψ+(t),ψ†
−ψ−]〉0 + 〈[ψ†

−(t)ψ−(t),ψ†
+ψ+]〉0}. (C1)

As a function of Matsubara frequency, it can be written as

χ (i�n) = ev2
F [G1(i�n) + G2(i�n) − G3(i�n) − G4(i�n)] (C2)

and the frequency-dependent response function follows from it by analytical continuation.

1. G1(i�n)

For τ � 0,

G1(τ ) = −〈T ψ
†
+(τ )ψ+(τ )ψ†

+ψ+〉0 = −〈ψ†
+(τ )ψ+〉0〈ψ+(τ )ψ†

+〉0 + 〈ψ†
+(τ )ψ†

+〉0〈ψ+(τ )ψ+〉0. (C3)

By using the relation between electron operators and Bogoliubov quasiparticle operators in Eq. (49), at T = 0, we have

〈ψ†
+(τ )ψ+〉0 =

∫
dE P (E)e−Eτ + |B0|2e−EMτ (1 − n) + |A0|2eEMτn, (C4)

〈ψ+(τ )ψ†
+〉0 =

∫
dE P (E)e−Eτ + |A0|2e−EMτ (1 − n) + |B0|2eEMτn, (C5)

〈ψ†
+(τ )ψ†

+〉0 = −B0A
∗
0[e−EMτ (1 − n) + eEMτn], (C6)

〈ψ+(τ )ψ+〉0 = −A0B
∗
0 [e−EMτ (1 − n) + eEMτn], (C7)

with

P (E) = 1

2πvF

E
√

E2 − �2

E2 − E2
M

. (C8)

Hence,

G1(τ ) = −〈T ψ
†
+(τ )ψ+(τ )ψ†

+ψ+〉0

= −
∫

dE1dE2 P (E1)P (E2)e−(E1+E2)τ − (|A0|2 + |B0|2)

[∫
dE (1 − n)P (E)e−(E+EM )τ +

∫
dE nP (E)e−(E−EM )τ

]
.

(C9)

Finally, we obtain

G1(i�n) =
∫

dE1dE2
P (E1)P (E2)

i�n − E1 − E2
+ (|A0|2 + |B0|2)

∫
dE P (E)

[
(1 − n)

i�n − E − EM

+ n

i�n − E + EM

]
. (C10)

2. G2(i�n)

For τ � 0,

G2(τ ) = −〈T ψ
†
−(τ )ψ−(τ )ψ†

−ψ−〉0 = −〈ψ†
−(τ )ψ−〉0〈ψ−(τ )ψ†

−〉0 + 〈ψ†
−(τ )ψ†

−〉0〈ψ−(τ )ψ−〉0. (C11)
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Consider T = 0,

〈ψ†
−(τ )ψ−〉0 =

∫
dE P (E)e−Eτ + |A0|2e−EMτ (1 − n) + |B0|2eEMτn, (C12)

〈ψ−(τ )ψ†
−〉0 =

∫
dE P (E)e−Eτ + |B0|2e−EMτ (1 − n) + |A0|2eEMτn, (C13)

〈ψ†
−(τ )ψ†

−〉0 = A0B
∗
0 [e−EMτ (1 − n) + eEMτn], (C14)

〈ψ−(τ )ψ−〉0 = A∗
0B0[e−EMτ (1 − n) + eEMτn]. (C15)

Thus, we have

G2(i�n) = G1(i�n) =
∫

dE1dE2
P (E1)P (E2)

i�n − E1 − E2
+ (|A0|2 + |B0|2)

∫
dE P (E)

[
(1 − n)

i�n − E − EM

+ n

i�n − E + EM

]
.

(C16)

3. G3(i�n)

For τ � 0,

G3(τ ) = −〈T ψ
†
+(τ )ψ+(τ )ψ†

−ψ−〉0 = −〈ψ†
+(τ )ψ−〉0〈ψ+(τ )ψ†

−〉0 + 〈ψ†
+(τ )ψ†

−〉0〈ψ+(τ )ψ−〉0. (C17)

Consider T = 0, we have

〈ψ†
+(τ )ψ−〉0 = −

∫
dE M(E)e−Eτ − a(EM )A∗

0B0e
−EMτ (1 − n) + a(EM )∗A∗

0B0e
EMτn, (C18)

〈ψ+(τ )ψ†
−〉0 =

∫
dE M(E)e−Eτ + a(EM )A0B

∗
0 e−EMτ (1 − n) − a(EM )∗B∗

0 A0e
EMτn, (C19)

〈ψ†
+(τ )ψ†

−〉0 = −
∫

dE Q(E)∗e−Eτ − a(EM )|B0|2e−EMτ (1 − n) + a(EM )∗|A0|2eEMτn, (C20)

〈ψ+(τ )ψ−〉0 =
∫

dE Q(E)e−Eτ + a(EM )|A0|2e−EMτ (1 − n) − a(EM )∗|B0|2eEMτn, (C21)

where

M(E) = 1

2πvF

iE
√

E2 − �2 tanh R

E2 − E2
M

,

Q(E) = 1

2πvF

EM

√
E2 − �2

E2 − E2
M

. (C22)

Hence,

G3(τ ) =
∫

dE1dE2 e−(E1+E2)τ [M(E1)M(E2) − Q∗(E1)Q(E2)]

+ (1 − n)a(EM )
∫

dE e−(E+EM )τ [M(E)(A∗
0B0 + A0B

∗
0 ) − Q(E)|B0|2 − Q(E)∗|A0|2]

+ na(EM )∗
∫

dE e−(E−EM )τ [Q(E)|A0|2 + Q(E)∗|B0|2 − M(E)(A∗
0B0 + A0B

∗
0 )], (C23)

G3(i�n) =
∫

dE1dE2
Q∗(E1)Q(E2) − M(E1)M(E2)

i�n − E1 − E2

+ (1 − n)a(EM )
∫

dE
Q(E)|B0|2 + Q(E)∗|A0|2 − M(E)(A∗

0B0 + A0B
∗
0 )

i�n − E − EM

+ na(EM )∗
∫

dE
M(E)(A∗

0B0 + A0B
∗
0 ) − Q(E)|A0|2 − Q(E)∗|B0|2

i�n − E + EM

. (C24)

4. G4(i�n)

For τ � 0,

G4(τ ) = −〈T ψ
†
−(τ )ψ−(τ )ψ†

+ψ+〉0 = −〈ψ†
−(τ )ψ+〉0〈ψ−(τ )ψ†

+〉0 + 〈ψ†
−(τ )ψ†

+〉0〈ψ−(τ )ψ+〉0. (C25)
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By using the zero-temperature averages of electron operators

〈ψ†
−(τ )ψ+〉0 =

∫
dE M(E)e−Eτ − a∗(EM )A0B

∗
0 e−EMτ (1 − n) + a(EM )A0B

∗
0 eEMτn, (C26)

〈ψ−(τ )ψ†
+〉0 = −

∫
dE M(E)e−Eτ + a∗(EM )A∗

0B0e
−EMτ (1 − n) − a(EM )A∗

0B0e
EMτn, (C27)

〈ψ†
−(τ )ψ†

+〉0 =
∫

dE Q(E)∗e−Eτ + a∗(EM )|A0|2e−EMτ (1 − n) − a(EM )|B0|2eEMτn, (C28)

〈ψ−(τ )ψ+〉0 = −
∫

dE Q(E)e−Eτ − a∗(EM )|B0|2e−EMτ (1 − n) + a(EM )|A0|2eEMτn, (C29)

we obtain

G4(τ ) =
∫

dE1dE2 e−(E1+E2)τ [M(E1)M(E2) − Q∗(E1)Q(E2)]

− (1 − n)a(EM )∗
∫

dE e−(E+EM )τ [M(E)(A∗
0B0 + A0B

∗
0 ) + Q(E)|A0|2 + Q(E)∗|B0|2]

+ na(EM )
∫

dE e−(E−EM )τ [Q(E)∗|A0|2 + Q(E)|B0|2 + M(E)(A∗
0B0 + A0B

∗
0 )], (C30)

G4(i�n) =
∫

dE1dE2
Q∗(E1)Q(E2) − M(E1)M(E2)

i�n − E1 − E2

+ (1 − n)a(EM )∗
∫

dE
M(E)(A∗

0B0 + A0B
∗
0 ) + Q(E)|A0|2 + Q(E)∗|B0|2

i�n − E − EM

− na(EM )
∫

dE
Q(E)∗|A0|2 + Q(E)|B0|2 + M(E)(A∗

0B0 + A0B
∗
0 )

i�n − E + EM

. (C31)

5. ReY (ω)

Plug the expressions for G1, G2, G3, and G4 into Eq. (C2), and make analytical continuation i�n → ω + iη, where η → 0+,
we obtain the retarded response function

χ (ω + iη) = χ1(ω + iη) + (1 − n)χ2(ω + iη) + nχ3(ω + iη) (C32)

with

χ1(ω + iη) = 2ev2
F

∫
dE1dE2

P (E1)P (E2) + M(E1)M(E2) − Q∗(E1)Q(E2)

ω + iη − E1 − E2

= eD

2π2

∫ ∞

�

dE1dE2

(E1E2 − EM )
√

E2
1 − �2

√
E2

2 − �2

(ω + iη − E1 − E2)(E2
1 − E2

M )(E2
2 − E2

M )
, (C33)

χ2(ω + iη) = 2ev2
F

∫
dE

(|A0|2 + |B0|2)P (E) + Re{a(EM )[M(E)(A∗
0B0 + A0B

∗
0 ) − Q(E)|B0|2 − Q(E)∗|A0|2]}

ω + iη − E − EM

= eD

π

∫ ∞

�

dE

√
E2 − �2

√
�2 − E2

M

(ω + iη − E − EM )(E + EM )
, (C34)

χ3(ω + iη) = 2ev2
F

∫
dE

(|A0|2 + |B0|2)P (E) + Re{a(EM )[Q(E)|B0|2 + Q(E)∗|A0|2 + M(E)(A∗
0B0 + A0B

∗
0 )]}

ω + iη − E + EM

= eD

π

∫ ∞

�

dE

√
E2 − �2

√
�2 − E2

M

(ω + iη − E + EM )(E − EM )
. (C35)
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To obtain the above expressions, we have used

2 Re[M(E)(A∗
0B0 + A0B

∗
0 )] =

−E
√

E2 − �2
√

�2 − E2
M (1 − D)

2πv2
F �

(
E2 − E2

M

) , (C36)

2 Re[Q(E)|B0|2 + Q(E)∗|A0|2] = Q(E)|B0|2 + Q(E)∗|A0|2 =
EM

√
E2 − �2

√
�2 − E2

MD

2πv2
F �

(
E2 − E2

M

) , (C37)

2P (E)(|A0|2 + |B0|2) =
E

√
E2 − �2

√
�2 − E2

M

2πv2
F �

(
E2 − E2

M

) . (C38)

By using the relation ReY = −(e/ω)Imχ , we obtain the real part of the admittance:

ReY1 = e2D

2πω
θ (ω − 2�)

∫ ω−�

�

dE

[
E(ω − E) − E2

M

]√
E2 − �2

√
(ω − E)2 − �2

(E2 − E2
M )

[
(ω − E)2 − E2

M

] , (C39a)

ReY2 = e2Dθ (ω − EM − �)

√
(ω − EM )2 − �2

√
�2 − E2

M

ω2
, (C39b)

ReY3 = e2Dθ (ω + EM − �)

√
(ω + EM )2 − �2

√
�2 − E2

M

ω2
. (C39c)

APPENDIX D: ZEEMAN FIELD INSIDE A
NONTOPOLOGICAL JUNCTION

In this appendix, we provide some technical details underly-
ing the results presented in Sec. V A. As long as we can neglect
spin-orbit and Zeeman coupling in the superconducting leads
(but not in the junction region), the subgap spectrum of a non-
topological junction can be obtained from the condition [43]

det
(
1 − α2

Ar∗
ASerASh

) = 0. (D1)

Here, Andreev reflection from the superconductors is
described by

αA = E

�
− i

√
�2 − E2

�
, rA = eiφρz/2, (D2)

with φ the phase difference between the two superconductors
and ρj Pauli matrices in left/right space. The normal section
of the junction is characterized by the electron and hole
scattering matrices Se and Sh. In the presence of Zeeman
and spin-orbit coupling, the electron and hole scattering
matrices Se and Sh are 4 × 4 matrices describing the normal
section coupled to normal-metal leads and relating outgoing
to ingoing channels, with the four components corresponding
to left and right channels of either spin. The hole scattering
matrix Sh is related to the electron scattering matrix through

Sh = σy(Se)∗σy, (D3)

which follows by particle-hole symmetry. (This uses the same
Nambu basis as in Sec. IV A.)

In the short-junction limit, Se and Sh can be evaluated
at zero energy. In this limit, spin-orbit coupling leaves the
spin degeneracy of the Andreev levels unchanged [59–61].
Choosing the spin quantization axis along B, the scattering
matrices Se and Sh are diagonal in the spin indices, with the
diagonal entries labeled by Sσ

e and Sσ
h (with σ = ↑,↓). Then,

Eq. (D1) breaks up into two separate determinant equations
for the spin components.

For a single spin channel with transmission Dσ = 1 − Rσ ,
the scattering matrices can be parametrized as

Sσ
e = eiησ (

√
Rσρze

iρzγσ +
√

Dσρx). (D4)

Exploiting unitarity and Eq. (D3), we obtain

det
(
Sσ̄

e − α2r∗
ASσ

e rA

) = 0 (D5)

with σ̄ = −σ . Focusing on σ =↑ and the Nambu spinor
(ψ↑,ψ

†
↓)T , the determinant condition becomes

cos(2α̃ + η̃) = R cos γ̃ + D cos φ, (D6)

where η̃ = η↑ − η↓, γ̃ = γ↑ − γ↓, D = √
D↑D↓, R =√

R↑R↓, and α = exp (iα̃). This equation was derived in
Ref. [59]. The corresponding results for σ =↓ with Nambu
spinor (ψ↓, − ψ

†
↑)T follow by particle-hole symmetry. If we

denote the subgap eigenstates for spin σ by Eσ
n (φ), we have

E
↓
n (φ) = −E

↑
n (φ).

For spin-independent scattering matrices, one has η̃ = 0
and R + D = 1, and recovers the Andreev bound state given
in Eq. (1). When the two spin channels are subject to different
scattering potentials, we have R + D < 1 and the energies of
the Andreev bound states can be written as

E±(φ) = � Sgn

[
sin

(
η̃

2
± χ

)]
cos

(
η̃

2
± χ

)
, (D7)

where

χ = 1
2 arccos (R cos γ̃ + D cos φ). (D8)

APPENDIX E: JUNCTION BASED ON PROXIMITIZED
RASHBA NANOWIRES

In this appendix, we provide some technical details under-
lying Sec. V B. Consider a Josephson junction formed by two
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semiconductor nanowires with Rashba spin-orbit coupling,
proximity coupled to s-wave superconductors and subject to a
Zeeman field B. For a phase difference of φ, the corresponding
Hamiltonian takes the form [5]

H =
(

− ∂2
x

2m
+ iασy∂x − μ

)
τz + Bσx + �θ

(
x − L

2

)
τx

+�θ

(
−x − L

2

)
(cos φτx + sin φτy), (E1)

where α denotes the strength of the Rashba spin-orbit coupling,
μ the chemical potential, m the effective mass, L the length
of the junction, and � the induced pairing strength. We also
introduced the Pauli matrices σj and τj in spin and Nambu
space, respectively.

The bulk dispersion of the model is

E±(p)2 = B2 + �2 + ξ 2
p + (αp)2

± 2
√

B2�2 + B2ξ 2
p + (αp)2ξ 2

p, (E2)

where ξp = p2

2m
− μ. For finite B and �, gaps open at p = 0

and p = ±kF , where

kF =
√

2m(mα2 +
√

m2α4 + B2). (E3)

The gap

Egap(p = 0) = |B −
√

�2 + μ2| (E4)

at p = 0 closes for B =
√

�2 + μ2 indicating the topological
phase transition, with the topological (nontopological) phase
corresponding to B >

√
�2 + μ2 (B <

√
�2 + μ2). The gap

Egap(p = ±kF ) =
√

�2 + 2ξ 2
kF

− 2
√

B2�2 + ξ 4
kF

(E5)

at ±kF remains finite throughout.
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