
PHYSICAL REVIEW B 95, 205402 (2017)

Effect of interactions on quantum-limited detectors

Gleb Skorobagatko,1 Anton Bruch,1 Silvia Viola Kusminskiy,1,2 and Alessandro Romito1,3

1Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
2Institute for Theoretical Physics, University Erlangen–Nürnberg, Staudtstraße 7, 91058 Erlangen, Germany

3Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom
(Received 27 September 2016; revised manuscript received 7 February 2017; published 1 May 2017)

We consider the effect of electron-electron interactions on a voltage biased quantum point contact in the
tunneling regime used as a detector of a nearby qubit. We model the leads of the quantum point contact as
Luttinger liquids, incorporate the effects of finite temperature and analyze the detection-induced decoherence
rate and the detector efficiency, Q. We find that interactions generically reduce the induced decoherence along with
the detector’s efficiency, and strongly affect the relative strength of the decoherence induced by tunneling and that
induced by interactions with the local density. With increasing interaction strength, the regime of quantum-limited
detection (Q → 1) is shifted to increasingly lower temperatures or higher bias voltages respectively. For small to
moderate interaction strengths, Q is a monotonously decreasing function of temperature as in the noninteracting
case. Surprisingly, for sufficiently strong interactions we identify an intermediate temperature regime where the
efficiency of the detector increases with rising temperature.
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I. INTRODUCTION

Detecting the state of a quantum system is an invasive
process, which necessarily modifies the system itself. In a
continuous measurement description, the information on the
system’s state is gradually encoded in a classical (macroscopic)
signal of a detector, which at the same time induces a
modification of the state of the system [1,2]. In the simplest
case of measuring an observable A of a two-level system,
where the detector distinguishes the two eigenstates of A, the
process is characterized by a measurement time, τM , after
which the detector’s signals for the different eigenstates can
be resolved from the detector’s noise. From the system’s point
of view, the detector backaction corresponds to a stochastic
component of the state evolution, which asymptotically drives
the system toward one of the measured eigenstates. On
average, this backaction is quantified by the detector-induced
decoherence time, τdech, after which the system is in an
incoherent mixture of eigenstates of A. The fundamental
disturbance associated with measurement in quantum me-
chanics is quantified by the fact that τdech � τM . When the
decoherence rate coincides with the rate of acquisition of
information, backaction is minimal, which is referred to as
quantum-limited detection. This continuous description of
a quantum measurement is in fact appropriate for current
readout methods of a variety of qubits and quantum devices
[3–6].

The significance of quantum-limited detection is apparent
in single shot measurements, as opposed to averaged mea-
surement results. In a single shot measurement a quantum-
limited detector induces a stochastic evolution of the system
without any decoherence, and therefore a pure state remains
as such during the measurement [2,7,8]; decoherence appears
only as a result of averaging over the detector’s outcome.
This observation is at the basis of a number of techniques
for quantum device control [2,9,10], precision measurement
[11–13], and quantum information processing [14–17]. The
experimental implementation of these techniques besides
quantum optics [2] has been initiated in superconducting qubits
where feedback loops [18] and single trajectory mapping [19]

have been reported. Quantum-limited detection is therefore
of interest in solid-state systems at large, where spin, charge,
and topologically protected degrees of freedom are exploited
for new quantum devices. A number of different detection
schemes exist in these contexts. For example, charge sensors
based on transport through semiconductor devices, such as
quantum point contacts (QPCs), are used and proposed as sen-
sors for, e.g., charge [6,20–26], spin [27,28], and topologically
protected qubits [29].

Motivated by the evolution of the measurement process in
solid-state systems, we analyze here the effect of interactions
on quantum measurement, focusing on the detector’s effi-
ciency. Electron-electron interactions are generally important
in solid-state systems. Specifically, we consider a charge
qubit sensed by a nearby quantum point contact in the
tunneling regime, which directly models charge sensing in
experiments, and it can emerge as an effective description of
certain detection schemes of superconducting qubits [30]. We
consider two effects of the electrostatic coupling of the QPC
to the charge state of the qubit: (i) a state-dependent tunneling
term and (ii) a state-dependent coupling to the local density
[31]. In the absence of interactions, the QPC is a quantum-
limited detector for sufficiently low temperature. Both thermal
fluctuations and local density couplings drive the detector
away from its quantum limit working point [7,31–33]. We find
that repulsive electron-electron interactions generically reduce
both the rates of induced decoherence and of acquisition of
information with respect to their noninteracting counterpart,
although in different amounts. This difference is due purely
to the local density interaction term, which contributes to
decoherence but does not participate in the current and hence
provides no information on the system’s state. For increasingly
strong interactions, the renormalization of the rates leads to the
need for lower temperatures in order to reach the quantum limit
of detection. In this case, interactions provide us with a slower
detector. Remarkably, for sufficiently strong interactions we
find an intermediate temperature regime where, as opposed to
the noninteracting case, the measurement efficiency improves
with increasing temperature.
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The paper is organized as follows. In Sec. II we define
the model and present the Hamiltonian of the system in
the Luttinger formalism. Sections III and IV are devoted
to calculating the rates of decoherence and acquisition of
information, respectively. The decoherence rate is obtained
by considering the reduced density matrix of the charge qubit
in the presence of the QPC. We show that the two coupling
mechanisms to the environment are separable and calculate the
tunneling contribution via a cumulant expansion. The rate of
acquisition of information is obtained by considering the full
counting statistics of the problem. The effects of electronic
interactions on the detection efficiency of the QPC are analyzed
in Sec. V. The conclusions are presented in Sec. VI. Lengthy
calculations have been relegated to the Appendixes.

II. MODEL

We consider a double quantum dot (DQD) that realizes a
charge qubit, in proximity of a QPC. The QPC is formed by a
tunneling barrier between two semi-infinite one-dimensional
(1D) quantum wires consisting of spinless interacting elec-
trons, as depicted in Fig. 1. We treat the wires as Luttinger
liquids.

The charge configuration of the DQD affects the tunneling
of electrons at the QPC between right (R) and left (L) Luttinger
liquids. Hence the current through the QPC acts as a charge
detector of the double quantum dot. The total Hamiltonian of
our problem consists of three terms,

H� = HLL + HQD + Hint, (1)

where HLL represents the Hamiltonian of both left and right
Luttinger liquids, HQD that of the DQD, and Hint denotes the
interaction between the two. If we consider the QPC to be
located at x = 0,

HLL = 1

2π

∑
j=L,R

vg

∫ 0

−∞

{
g(∂xϕj )2 + 1

g
(∂xθj )2

}
dx, (2)

FIG. 1. Sketch of the system under consideration. A double
quantum dot is capacitively coupled (wavy lines) to a tunnel junction
between two Luttinger liquids. Two charge configurations, |1〉 (blue
solid) and |2〉 (red shady), for an electron shared between the two
dots induce different tunnel barriers, hence different currents, through
the junction. The electron in the double dot can generically be in a
coherent superposition of these two states, as controlled by external
gate voltages, as sketched in the inset.

where θL (R) and ϕL (R) are the usual charge and phase fields
in the bosonic representation of the Luttinger liquid on the
left (right) side of the QPC, g is the dimensionless interaction
parameter (which for repulsive interactions fulfills 0 < g � 1,
where g = 1 is the noninteracting limit) and vg is the group
velocity of collective plasmonic excitations. We have chosen
the coordinate systems on both left and right such that x

increases from −∞ to zero, where the QPC is located. We
have also set h̄ = 1, which holds hereafter along with kB = 1.

The Hamiltonian of the DQD is

HQD =
∑
n=1,2

εnc
†
ncn + γ (c†1c2 + c

†
2c1), (3)

where c
†
n(cn) are fermionic operators of creation (destruction)

of an electron in the nth quantum dot (n = 1,2), εn are the
electronic level energies (with respect to the Fermi energy of
an external electronic reservoir, which is chosen to be equal
to zero), and γ is the tunneling amplitude between the dot’s
levels. In the following, we assume that the DQD is, besides the
nearby QPC, isolated from the electronic environment, with a
total extra electron shared between the two dots. In this case,
only the energy difference ε2 − ε1 = ε is physical.

We define further the fields θ± = 1/2[θL ± θR] and ϕ± =
1/2[ϕL ± ϕR], and we model the interaction term as (cf.
Appendix A)

Hint =
∑
n=1,2

[a0λn∂xθ+ + λ̃n cos (2ϕ− + eV t)]|x=0c
†
ncn, (4)

where λn represents the electrostatic coupling between the
quantum dot and the Luttinger liquid leads at x = 0, and λ̃n

characterizes the tunneling at the QPC. Both quantities are
assumed to be real and positive, and they depend on the state
of the DQD, n. The parameter a0 is the short-distance cutoff
that goes to zero in the continuum limit. This provides a high-
energy cutoff to the model, �g = vg/a0. Therefore, in our
further analysis all energies fulfill E � �g and all times t �
1/�g . V is an externally applied voltage bias between left
and right Luttinger liquids. In the limit of weak tunneling in
which we are concerned here, this potential difference can
be described by a local voltage drop at the QPC site [34,35].
In what follows, we denote the fields evaluated at x = 0 by
simply omitting the spatial argument.

Note that in the choice of the interaction Hamiltonian,
we have implicitly identified the states |1〉 ≡ c

†
1|0〉 and |2〉 ≡

c
†
2|0〉 as the charge eigenstates of the measurement device.

The detector signal for these two states and the induced
decoherence on their coherent superposition characterize the
tunnel-coupled Luttinger liquids as a detector.

III. DECOHERENCE

In this section, we calculate the decoherence rate caused by
the tunnel-coupled Luttinger liquids on the DQD. To do so,
we assume that at t = 0 the DQD is initialized in a coherent
state |φ0〉 = α|1〉 + β|2〉 and is decoupled from the detector
(i.e., Hint = 0). The state of the detector is determined by
the Hamiltonian HLL in Eq. (2) and by the temperature T

and applied voltage bias V . For t > 0, the coupling Hint is
suddenly switched on and the evolution is determined by the
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DQD interaction with the QPC. Importantly, we assume a
vanishing interdot tunneling γ = 0 in Eq. (3) since we are
interested in the pure decoherence induced by the detector
(without relaxation processes). Let us note that physically
γ �= 0 is needed to create the initial coherent superposition
|φ0〉, and γ can be consistently assumed arbitrarily small so that
the effect of the interdot tunneling is negligible throughout the
relevant time scales of system-detector interactions (t � 1/γ ).
Alternatively, assuming total control of the experimental setup
[22,23], γ can be set to zero after preparing the coherent state.

To quantify the measurement-induced decoherence, we
analyze the DQD reduced density matrix ρ, where the
degrees of freedom of the environment (in this case,
the LL) have been traced out. The initial density matrix
ρ(0) = |φ0〉〈φ0| at t = 0 evolves at time t to ρmn(t) =
e−i(εm−εn)t ρmn(0)〈U †

n(t)Um(t)〉, where m,n = 1,2, HQD|n〉 =
εn|n〉, Un(t) = Tt exp {−i

∫ t

0 dτ H(n)
int (τ )}, and 〈· · · 〉 denotes

the quantum-statistical average over HLL at temperature T .
Tt (T t ) denote time- (anti-time-) ordering operators, and
Hn

int(s) = 〈n|Hint(s)|n〉, whereHint corresponds to Hint written
in the interaction representation with respect to HLL. By using
the equation of motion for the bosonic fields, it can be shown
that Hn

int in Eq. (4) can be written in terms of phase fields only
(see Appendix A),

Hn
int(t) = −g

λn

�g

ϕ̇+(t) + λ̃n cos [2ϕ−(t) + eV t]. (5)

To calculate the time evolution of the reduced density
matrix, we first note that the fields ϕ+ and ϕ− commute at equal
times, [ϕ+(t),ϕ−(t)] = 0, which allows us in the following
to evaluate their vacuum expectation values separately. We
obtain

ρmn(t) = ρ∗
nm(t) = e−i(εm−εn)t ρmn(0)Zmn(t)Z̃mn(t) (6)

with

Zmn =
〈
e
i

g(λn−λm)[ϕ+(t)−ϕ+(0)]
vg

〉
, (7)

Z̃mn = 〈Un(t,0)−1Um(t,0)〉, (8)

with Um(t,0) = Tt e
−iλ̃m

∫ t

0 dτ cos [2ϕ−(τ )+eV τ ]. The two factors
Z̃mn and Zmn correspond to the local density interaction
and tunneling-induced backaction, respectively. The only
nontrivial evolution of the reduced density matrix is in its
off-diagonal terms with m �= n, which take, up to a time-
independent prefactor, the form

Z12 ∝ e−[�(t)+i�(t)]t , (9)

Z̃12 ∝ e−[�̃(t)+i�̃(t)]t . (10)

We identify the respective contributions to the induced energy
shift, �(t) and �̃(t), and decoherence, �(t) and �̃(t). These
are generically time-dependent quantities. In the following,
we will focus separately on these contributions to the induced
total decoherence �tot(t) = �(t) + �̃(t), which characterize
the properties of the QPC as a detector.

A. Local density contribution

The term Z12 = Z∗
21 corresponds to a local change in the

electrostatic potential caused by the DQD (see Appendix A),
a fact known to lead to an “orthogonality catastrophe” in
fermionic systems. The term “orthogonality catastrophe”
refers to the vanishing, in the thermodynamic limit, of the
overlap between the system’s ground states before and after
the change in the potential [36]. The average in Z12 involves
only the ϕ+-dependent part of the free LL Hamiltonian. Since
the latter is quadratic [cf. Eqs. (5) and (2)], we can directly write

Z12(t) = e
− 1

2 [ g(λ2−λ1)
�g

]2〈[ϕ+(t)−ϕ+(0)]2〉
. (11)

The two-point correlation function of ϕ+ is computed
in Appendix B. In the long-time limit t � 1/T , �(t) is
independent of time, and we find that the local-density-induced
decoherence rate is given by

� = g

2
πT

[
(λ2 − λ1)

�g

]2

. (12)

This result is consistent with the known noninteracting (g = 1)
orthogonality exponent in Luttinger systems [31,37]. Hence
we see that for repulsive interactions, the factor g < 1 de-
creases this decoherence rate with respect to the noninteracting
case. In a fermionic picture, the orthogonality catastrophe can
be seen as a consequence of a “shake up” of the Fermi sea due to
a change in the local potential. Intuitively, for strong repulsive
interactions the electrons will redistribute after the potential
change in order to minimize the interaction, consequently
minimizing the effect of the shakeup. As expected, higher
temperatures lead to a higher decoherence rate. The limit
T → 0 leads to the known power-law decay of the coherence
factor, Zmn, and hence to logarithmic corrections to the
total decoherence rate, �tot(t). It should be noted that this
result corresponds to an equilibrium (eV = 0) contribution
to the orthogonality catastrophe. This is due to the separable
character of the reduced density matrix in the weak tunneling
limit [cf. Eq. (6)]. In this limit, nonequilibrium effects are
entirely contained in the tunneling term, as calculated in the
next subsection.

B. Tunneling term

The effect of the change in the transmission of the QPC due
to the charge state of the DQD is encoded in Z̃12 = Z̃∗

21. We
evaluate this quantity via a cumulant expansion. For simplicity
of notation, we introduce the function

Aξ (τ )(τ ) = cos

[
2ϕ−(τ ) + eV τ + ξ (τ )

2

]
, (13)

where ξ is a counting field whose role will be elucidated in the
next section; for the remainder of this section, we set ξ = 0.

We evaluate the time-ordered products to obtain

Z̃12(t) ≈ 1 + λ̃1λ̃2

∫ t

0
dτ

∫ t

0
dτ ′〈A0(τ )A0(τ ′)〉

− λ̃2
1

∫ t

0
dτ

∫ τ

0
dτ ′〈A0(τ )A0(τ ′)〉

− λ̃2
2

∫ t

0
dτ

∫ t

τ

dτ ′〈A0(τ )A0(τ ′)〉. (14)
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FIG. 2. Detection-induced decoherence: total decoherence �tot =
�̃ + � (solid color) and tunneling-induced decoherence �̃ (shaded
color) as a function of (a) voltage bias and (b) temperature—cf.
Eqs. (15) and (12). All plots are for increasing interaction strength
g = 1, 0.9, 0.6, 0.5, 0.3 from light to dark red and from continuous
to coarsely dashed. The local-density-induced decoherence rate � in
our model is independent of bias and proportional to temperature; cf.
Eq. (12). Hence it produces just a constant shift of the total rate �tot in
(a) while it modifies the slope in (b). We have set T

�g
= 0.01 in panel

(a) and eV

�
= 0.01 in panel (b). In all plots, λ̃2 − λ̃1 = λ2 − λ1 = �λ.

As shown in Appendix C, we can express Z̃12(t) in terms
of the well-known time-ordered correlator [38] f T (τ − τ ′) ≡
〈Tt e

2iϕ−(τ )e−2iϕ−(τ ′)〉. In the long-time limit t � 1/T , 1/eV ,
we obtain the contribution to the decoherence,

�̃(t) ≈ 1
2 (λ̃2 − λ̃1)2Re{JC}, (15)

where JC = ∫ ∞
0 ds f T (s) cos (eV s) [see Eq. (C5)]. JC is

evaluated in Appendix D [Eq. (D6)], and it yields the explicit
expression for the (time-independent) decoherence rate,

�̃ = (λ̃2 − λ̃1)2

4�g

(
2πT

�g

)2/g−1

×
∣∣Γ (

1
g

+ i eV
2πT

)∣∣2

Γ
(

2
g

) cosh(eV /2T ), (16)

where Γ (x) is the Gamma function (note the cursive font, not
to be confused with the local-density-induced decoherence rate
�). The behavior of �̃ is plotted in Fig. 2 as a function of bias
voltage and temperature for different values of the interaction
strength g. As expected, �̃ increases both as a function of bias
and temperature, reflecting the increase in shot and thermal
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FIG. 3. Log-plot of the ratio between local-density-induced and
tunneling-induced decoherence as a function of (a) bias voltage and
(b) temperature; cf. Eqs. (12) and (15). For increasing interaction
strength g = 1, 0.9, 0.6, 0.5, 0.3 from light to dark red and from
continuous to coarsely dashed. T

�g
= 0.01 in (a) and eV

�g
= 0.01 in

(b), λ̃2 − λ̃1 = λ2 − λ1 = �λ.

noise, respectively. Upon increasing the interaction strength
(corresponding to decreasing g), however, the decoherence
generally decreases, i.e., electron-electron interactions re-
duce the measurement-induced backaction. Intuitively, this
can be seen as a consequence of an increased “antibunching”
of the electrons with increasing repulsive interactions, which
leads to a suppression of tunneling events between the two
sides of the QPC. Since the tunneling processes control the
system detector coupling, their suppression results in a reduced
backaction onto the DQD. For g = 1, Eq. (16) recovers the
known result for the decoherence induced by noninteracting
electrons in the tunneling regime. In particular, for T � eV ,
�̃ ≈ eV

4πv2
F

(t2 − t1)2 [8,31,33], where tn are the tunneling
strengths introduced in Eq. (4).

C. Total decoherence

From the results presented in the previous two subsections,
we see that the total decoherence �tot is generically suppressed
by increasing repulsive interactions. This is plotted in Fig. 2.
Albeit both � and �̃ are suppressed, this suppression is much
stronger in the tunneling-induced decoherence �̃, leading to
a variation of the ratio �/�̃ by several orders of magnitude
depending on interactions, as shown in Fig. 3. For instance,
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for eV � T � �g , we can analytically approximate

�

�̃
�

(
λ1 − λ2

λ̃1 − λ̃2

)2 2√
π

(
π

T

�g

)2− 2
g √

g, (17)

showing a strong dependence of the ratio on the interactions
(T � �g). The strength of this effect is suppressed at larger
voltage bias or temperature.

The reason behind this behavior is the decreasing strength
of the tunneling term in Eq. (4) as compared to the local
density interaction one in the effective low-energy behavior.
The decoherence is generically dictated by the low-frequency
correlations of the bath coupled to the system [39,40] (in our
case, the Luttinger liquid detector), hence by the dynamics of
the low-frequency modes of the bath. When tracing out the
fast (high-energy) modes of the Luttinger liquid detector, the
effective low-energy tunneling term is suppressed as compared
to the local density term. This suppression is more prominent
for stronger repulsively interacting systems, as shown by
Kane and Fisher [35,41,42]. This leads to a divergent ratio
�/�̃ → ∞ when T → 0 and eV → 0 simultaneously. When
going to higher temperatures or higher voltages, the relative
strength of the two contributions evolves toward comparable
values (set by the bare constants λ̃n,λn).

IV. FULL COUNTING STATISTICS AND RATE
OF ACQUISITION OF INFORMATION

The backaction of the detector on the measured system has
to be compared with the ability of the detector to discriminate
the different charge states of the DQD. For a given charge
eigenstate (n = 1,2) of the double dot, the response of the
detector is fully characterized by the probability distribution
Pn(N,t) of a charge q = eN to be transmitted through the
tunnel junction in a fixed time interval t . The rate of acquisition
of information on the charge state of the DQD is quantified by
the statistical quantity [33]

M(t) ≡ e−W (t)t ≡
∑
N

√
P1(N,t)P2(N,t), (18)

which measures how distinguishable the two distributions are.
The probability distribution Pn(N,t) is equivalently and

conveniently characterized by the corresponding generating
function χn(ξ,t) ≡ ∑

N Pn(N,t)eiξN , the so called full count-
ing statistics (FCS). The generating function can be expressed
directly in terms of quantum averages of the tunneling
operator [43],

χn(ξ,t) = eWn(ξ,t) t =
〈
TK exp

{
iλ̃n

∫
CK

dτ Aξ (τ )(τ )

}〉
, (19)

where the time ordering TK occurs on the Keldysh contour CK ,
and ξ (τ ) = ±ξ is the counting field introduced in Eq. (13).
The FCS of interacting electrons is known in some cases,
e.g., in quantum dots or diffusive conductors [44]. Here we
consider instead Luttinger liquids. In the present situation of
a tunneling Hamiltonian, the counting field enters as a phase
of the tunneling operators [43] t → teiξ (t)/2, t∗ → t∗e−iξ (t)/2.
In this case, the counting field is a pure quantum field, i.e.,
ξ (τ ) = ±ξ is antisymmetric on the forward and backward
branch of the Keldysh contour.

The generating function χn(ξ ) in Eq. (19) is a generalization
of Z̃nn(t) in Eq. (8), which includes the quantum field ξ (τ ). As
we did in the previous section for Z̃12(t), we evaluate χn(ξ )
to second order in a cumulant expansion. In the long-time
limit (t � 1/T ,1/eV ), the Markovian nature of the electron
transfer processes guarantees that the leading contribution
to the cumulant-generating function is linear in time, i.e.,
Wn(ξ,t) ≈ Wn(ξ ) is independent of t . We obtain

Wn(ξ ) = λ̃2
n[(cos ξ − 1)Re{JC} − i sin ξ Im{JS}], (20)

where JS = ∫ ∞
0 ds f T (s) sin (eV s) is calculated in

Appendix D. In this limit, the rate of acquisition of
information W (t) can be expressed directly in terms of Wn(ξ )
as [33]

W (t) = W ≈ − 1
2 min

x∈R
{W1(−ix) + W2(+ix)}, (21)

where W can be directly evaluated from Eq. (20) to be

W ≈ Re{JC}λ̃+ −
√

(Re{JC}λ̃+)
2 − (Im{JS}λ̃−)

2
, with λ̃− ≡

(λ̃2
2 − λ̃2

1)/2, λ̃+ ≡ (λ̃2
2 + λ̃2

1)/2, and 0 < λ− < λ+. From the
expression for JS in Appendix D, we obtain

W = Re{JC}[λ+ −
√

λ2+ − (tanh[eV /2T ] λ−)2]. (22)

In the next section, we discuss the implications of this result
for the quantum measurement process. We note here that the
acquisition of information is independent of the local density
interaction contributions (parametrized by λn), since these do
not affect the current and hence do not contribute to the gain
of knowledge about the charge state of the DQD.

V. EFFECTS ON QUANTUM-LIMITED DETECTION

The efficiency of the quantum measurement is characterized
by the ratio

Q ≡ W/�tot = W/(� + �̃) � 1. (23)

This definition takes into account only the decoherence
on the measured system due to the measurement process,
following the approach used for noninteracting detectors.
Q = 1 corresponds to a quantum-limited detector. External,
system-dependent decoherence mechanisms are outside the
scope of this paper.

The efficiency Q is properly defined for sufficiently
long times t > 1/T , 1/eV , where Zmn(t) and Z̃mn(t) are
exponentially decaying in time and W (t) = W . With the help
of Eqs. (15) and (22), we conveniently rewrite Q as

Q =
1+η2

2η2

[
1 −

√
1 − ( 2η

1+η2 tanh(eV /2T )
)2]

(1 + �/�̃)
, (24)

where η = (λ̃2 − λ̃1)/(λ̃1 + λ̃2) characterizes how strong the
electron tunneling is influenced by the different occupation of
the DQD. It can be shown that Q � 1 and finite for η → 0.

From Eqs. (22) and (15), we note that W ∝ �̃ ∝ Re{JC},
where all interaction effects (characterized by g) are contained
in the function Re{JC}. Therefore, in the absence of a local
density contribution (λ1 = λ2, so � = 0), Q is independent
of g and hence interactions have no effect on the quality of
the detection process. The efficiency Q for � = 0 is plotted
in Figs. 4(a) and 4(b). In particular, for T � eV (and T �= 0)
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FIG. 4. Detector efficiency for the noninteracting case. Total
efficiency, Qtot = W/�tot (solid line), and efficiency without decoher-
ence due to the local density interaction, Q�̃ = W/�̃ (shaded line), as
a function of (a) bias voltage and (b) temperature. Q�̃ is independent
of g and therefore valid also for the interacting case. With η = 0.5,
λ̃2 − λ̃1 = λ2 − λ1, T

�g
= 0.01 in (a), and eV

�g
= 0.01 in (b).

the detector is quantum-limited, Q → 1, and it remains so in
the presence of interactions. Repulsive interactions do have an
effect in reducing the backaction (cf. Fig. 2), but the rate of
acquisition of information is reduced by an equal amount. All
in all, in the absence of a local density interaction, interactions
leave the detector still quantum-limited, but they slow down
the detection process. As for noninteracting QPC detectors,
the efficiency of the detection is controlled only by eV /T ,
and in the limit of high temperature, thermal fluctuations
induce unwanted backaction unaccompanied by information
gain, driving the detector away from its quantum limit
[cf. Figs. 4(a) and 4(b)].

Therefore, the local density interaction is essential to
appreciate the effect of interactions. Once it is taken into
account, lower temperatures are required to bring the detector
to the quantum limit, even in the absence of interactions (see
Fig. 4). This is due to the fact that this term provides no
information gain, but it still induces decoherence in the system
[31]. We showed in Sec. III B that decoherence due to the
local density interactions and decoherence due to tunneling
are diminished by interactions, but in a very unequal way.
The suppression of the tunneling-induced decoherence �̃ due
to electron-electron interactions is much more pronounced
than that of the decoherence caused by the local density
contribution, �. Since W ∝ �̃, the acquisition of information
is suppressed in the same manner. This leads to a strong
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Q

0 0.080.04
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1
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0.2

0.4
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0.6

0.2

0.4

g = 1

g = 0.3

g = 0.55

g = 0.45

FIG. 5. Total detector efficiency Q for the interacting case as a
function of the applied bias (a) and temperature (b). Different curves
from light to dark red and from continuous to coarsely dashed are for
increasing interaction strengths, g = 1, 0.9, 0.6, 0.5, 0.3. The figures
show a strong dependence of Q on g once orthogonality effects
are considered. The inset in (b) shows a zoom-in of the crossover
regime between monotonous and nonmonotonous temperature de-
pendence for g ∼ 0.5 (g = 0.55, 0.525, 0.5, 0.475, 0.45 from light to
dark blue and from continuous to coarsely dashed). We used η = 0.5,
λ̃2 − λ̃1 = λ2 − λ1, and T

�g
= 0.01 in (a), and eV

�g
= 0.01 in (b).

suppression of the measurement efficiency Q [Eq. (24)]
for repulsive interactions with respect to the noninteracting
case. Interaction effects do not eliminate the monotonously
increasing dependence on the voltage bias of Q [cf. Fig. 5(a)],
but they can delay the saturation to the quantum limit Q = 1
to very high voltages or very low temperatures for strongly
repulsively interacting systems.

Surprisingly the temperature dependence of Q shows an
interesting nonmonotonous feature depending on interactions.
For a noninteracting system, Q is a monotonously decreasing
function of temperature, reflecting the fact that increasing
thermal fluctuations induce extra decoherence without a
corresponding gain of information about the system’s state
[cf. Fig. 4(b)]. However, we find that for strong interactions
and at high temperatures with respect to the bias, Q increases
with T in an intermediate regime. Specifically, for 0 < eV �
T <

�g

2π
(

Γ ( 1
g

)
2
(λ̃1−λ̃2)

2

gΓ ( 2
g

)(λ1−λ2)2 )

g

2g−2

� �g , we have

Q �
(λ̃1 − λ̃2)2 Γ

(
1
g

)2

(λ1 − λ2)2(η2 + 1)gΓ
(

2
g

)(
2π

�g

)2/g−2

(eV )2T
2
g
−4

.

(25)
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The expression shows a crossover between an increasing and
a decreasing function of T for g � 1/2 [cf. also the inset
in Fig. 5(b)]. This feature emerges from the competition
between two effects of increasing temperature: (i) an increase
of thermal fluctuations and (ii) a increasing prominence of
the tunneling term compared to the local density one [cf.
Fig. 3(b)]. To highlight these competing effects, we can write
the efficiency in Eq. (24) as Q = Q0/(1 + �/�̃), so that
Q0 is a monotonously decreasing function of temperature.
At low energies, decoherence is dominated by the local
density term due to suppression of tunneling, and we can
roughly write Q ∼ Q0(�̃/�). While the thermal fluctuations
reduce Q, the growing prominence of the tunneling term
increases the weight of the “information carrying” part
of the interaction Hamiltonian, hence increasing Q. When
(ii) is dominant compared to (i), Q increases with temperature.
This is controlled by the parameters of the detector. In
particular, since the temperature dependence of the relative
strength between local density and tunneling contributions in
the detector is strong for strong interaction, the increasing
behavior of Q with T is possible only for sufficiently small g.
The inset in Fig. 5(b) shows a zoom into the critical regime
of the crossover between monotonous and nonmonotonous
temperature dependence.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we analyzed the effects of interactions on the
efficiency of quantum detection. We executed our analysis
for two voltage-biased electron reservoirs connected by a
tunnel junction, whose current serves as a charge detector
of a proximate charge qubit. We included electron-electron
interactions by modeling the leads as Luttinger liquids, and
we incorporated the effects of local density fluctuations due to
the charge qubit, besides its effect on the tunneling amplitude.
The model is of interest both for charge-sensing schemes used
in experiments and as a theoretical paradigm case study.

We found that interactions reduce the induced decoherence
on the measured system, along with the rate of acquisition of
information. In the absence of a local density interaction term,
both acquisition of information and tunneling-induced deco-
herence are suppressed in the same manner by interactions. In
this case, interactions do not alter the efficiency of the detector,
which tends to be quantum-limited at low temperature, but
they slow down its response. Once the local-density-induced
decoherence is considered, interactions do play a role for
the efficiency, reducing it with respect to the noninteracting
case.

The relative contributions of tunneling and local-density-
induced decoherence are strongly affected by interactions,
and the local density contribution can dominate at low
temperature and voltage bias for strong interactions. This is a
consequence of the downward renormalization of the tunneling
term for repulsive interactions at low energies. The same
renormalization is responsible for the slower rate of acquisition
of information in the interacting case. This renormalization is
less pronounced for increasing energy, resulting in a tendency
to an increased acquisition of information rate. As a result
of the interplay between these effects, we have identified
an intermediate temperature regime where, for sufficiently

strong interactions (g � 1/2), the detector efficiency increases
with temperature. This has to be contrasted with the weakly
interacting case in which increasing thermal fluctuations
monotonously reduce the detector’s efficiency. As a function of
the voltage bias, repulsive interactions delay the quantum limit
Q = 1 to increasingly higher voltages (or lower temperatures).
This is purely a consequence of the local density interaction.

Our models captures the effects of interactions in the
simplest experimentally relevant configuration. As such, it
has limitations and poses interesting future challenges, which
we outline briefly here. Our results allow us to assess the
efficiency of the detector due to processes inherent to the
measurement itself, which are unavoidable as long as the
system is coupled to the detector for readout. The readout
efficiency will also be affected by other external decoherence
mechanisms extraneous to the measurement process. These
have to be dealt with separately and are system-specific. For
instance, one can come up with more efficient qubit designs or
environment engineering to minimize the coupling to specific
decoherence sources. Moreover, in our model we assumed
full control of the tunneling matrix element between the dots,
which allowed us to set γ smaller than all the other energies
in the model after preparing the initial coherent state. Our
results are valid for t � 1/γ such that we can effectively
consider γ = 0. Experimentally, the required degree of control
is available for charge qubits, though with more sophisticated
designs than a double quantum dot [21–23], and for spin
qubits whose spin state is read by quantum point contacts via
spin-to-charge conversion mechanisms [25,26]. The protocol
we analyze has to be considered as a test for the detector’s
properties. In fact, based on the results for noninteracting
systems [8], there are reasons to expect that the parameters
for which the detector is found to be quantum-limited in our
paper make the detector quantum-limited also in the presence
of interdot tunneling. The argument is that the efficiency is a
property of the measurement process and the detector, not of
the qubit’s dynamics. A proper analysis of the dot-detector cou-
pling in the presence of finite interdot tunneling is a key future
point to address, especially because this is the regime where
measurement-based control of the qubit dynamics can operate.
One can anticipate, for instance, that pure decoherence will be
accompanied by relaxation processes. We have also modeled
the DQD as single-level dots with a single occupation, which is
the simplest experimentally relevant case. Considering double
occupation requires a treatment with a larger qubit Hilbert
space, and therefore addressing the coherences of different
off-diagonal terms, which is outside of the scope of this paper
but would be an interesting follow-up problem. Lastly, the
nonmonotonic behavior of the efficiency Q with temperature
is present for strong interactions, g � 1/2. Although this is
an experimentally challenging regime, recent experiments in
different platforms have shown evidence of Luttinger liquid
behavior with interactions up to g ≈ 0.2 [46–48].
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APPENDIX A: COUPLING HAMILTONIAN

We model the electrostatic coupling of the DQD to the in-
teracting QPC to include two effects: a coupling of the electron
on the DQD to the local electronic density at the end (x = 0)
of the two Luttinger liquid leads that depends on the charge
state of the DQD, and a state-dependent tunneling between the
two sides of the QPC. To derive the interaction Hamiltonian
Eq. (4), we start from the fermionic representation

Hint =
∑
n,j,c

αn : �
†
c,j�c,j (0,t) : c†ncn

+ [tn : �
†
2,L�1,R(0,t) : +t∗n : �

†
2,R�1,L(0,t) :]c†ncn,

(A1)

where �
†
c,j (x,t) [�c,j (x,t) ] creates (annihilates) an electron

at position x and time t , with chirality c = 1,2 and on side
j = L,R [note that c = 1 (c = 2) indicates moving toward
(away from) the QPC]. n = 1,2 indicates the state of the DQD,
and : · · · : denotes normal ordering. These fermionic fields can
be written in terms of the bosonic operators as

�c,j = ηc,j√
2πa0

eickF xe∓ieV t/2ei(cθj +ϕj ), (A2)

where all fields are evaluated at (x,t). ηc,j are Klein factors, kF

is the Fermi momentum, the ∓ in the exponential corresponds
to R (−) and L (+), and eV = μL − μR .

We consider the tunneling term as a perturbation on the
two (L,R) disconnected LL systems. Without tunneling, the
QPC acts as a strong impurity that imposes that the density
fluctuations vanish at x = 0. This boundary condition results
in [38,42]

θL(x = 0,t) = θR(x = 0,t) = 0 . (A3)

Using this condition together with tn = t∗n and substituting
Eq. (A2) into Eq. (A1), we obtain straightforwardly the second
term in Eq. (4), with λ̃n = tn/(πa0).

It is furthermore convenient to write the bosonic fields
in the interaction representation, in which the bosonic fields
evolve according to the free Hamiltonian HLL, Eq. (2), and
switch to the description in terms of sum and difference
fields, θ± = 1/2[θL ± θR] and ϕ± = 1/2[ϕL ± ϕR]. Using the
commutators (α = ±)

[θα(x),ϕα′ (x ′)] = iπ

4
sgn(x − x ′)δα,α′ ,

[θα(x),∂x ′ϕα′ (x ′)] = − iπ

2
δ(x − x ′)δα,α′ , (A4)

we obtain the free Heisenberg equation of motion

ϕ̇±(x,t) = −vg

g
∂xθ±(x,t), (A5)

θ̇±(x,t) = −gvg∂xϕ±(x,t). (A6)

The first term in Eq. (A1), which is the density-density
electrostatic interaction between the dot and the LL at
x = 0, can easily be bosonized using the identity ρj = ∑

c :
�

†
c,j�c,j := ∂xθj /π for the normal ordered density (i.e., the

density of charge fluctuations). Using Eq. (A5), we can express

∂xθj in terms of ϕ̇j and we obtain the first interaction term in
Eq. (4) with λn = 2αn

πa0
.

Finally, Eq. (A5) allows us to write H̃ n
int = 〈n|H̃int|n〉 in

terms of phase fields only,

H̃ n
int(t) = −g

λn

�g

ϕ̇+(t) + λ̃n cos [2ϕ−(t) + eV t], (A7)

with �g = vg/a0 the high-energy cutoff.

APPENDIX B: CALCULATION OF Z(t)

The detector’s contribution to the evolution of the off-
diagonal terms of the density matrix is expressed in terms
of averages of the detector’s fields in Eqs. (11) and (14). We
compute here these averages, 〈[ϕ±(t) − ϕ±(0)]2〉. An alterna-
tive calculation of the same average can be found in Ref. [38].
To proceed, it is useful to write the phase fields in terms of
bosonic operators in the interacting basis,

ϕ±(x,t) = i

√
π

2Lg

∑
k �=0

e−|k|a0/2

√|k| [e−ipxb
†
k,±(t) − eipxbk,±(t)],

(B1)

where we have introduced the standard high-energy cutoff
exp (−|k|a0/2). The bosonic creation (destruction) operators
b
†
k(t) [bk(t)] are of the form

b
†
k,±(t) = b

†
k,±(0)eivgt |k|,

bk,±(t) = bk,±(0)e−ivg t |k|, (B2)

where b
†
k,±(0) and bk,±(0) fulfill standard bosonic commuta-

tion relations (α,α′ = ±)

[bk,α(0),b†k′,α′ (0)] = δk,k′δα,α′ . (B3)

The free Hamiltonian of the Luttinger liquid in this represen-
tation is simply

HLL =
∞∑

α=±;k=0

vg|k|b+
k,α(0)bk,α(0) (B4)

and the vacuum expectation value

〈b+
k,α(0)bk′,α′ (0)〉 = nb(k)δk,k′δα,α′ , (B5)

where nb(k) = [exp (vg|k|/T ) − 1]−1 is the usual Bose-
Einstein distribution at temperature T , with kB = 1.

Using Eqs. (B1)–(B5), we can perform the vacuum expec-
tation value by going to the continuum limit

〈[ϕ±(τ ) − ϕ±(τ ′)]2〉 = 1

g
I (τ − τ ′)

I (s) = P
∫ ∞

0

dk

k
e−a0k[2nb(k) + 1]

× [1 − cos(vgks)], (B6)

where P denotes the principal value of the integral.
We can divide the integral into a zero-temperature quantum

term and a thermal term proportional to nB(vgk). The quantum
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term can be calculated to be

P
∫ ∞

0

dk

k
e−a0k[1 − cos(vgkτ )] = 1

2
log

[
1 +

(
vg τ

a0

)2
]
.

(B7)

For the thermal contribution in turn we obtain

P
∫ ∞

0

dk

k
e−a0k[1 − cos(vgk τ )]nB(vgk) (B8)

= 1

2
log

⎛
⎝ Γ

(
1 + a0

βvg

)2

Γ
(
1 − i τ

β
+ a0

βvg

)
Γ

(
1 + i τ

β
+ a0

βvg

)
⎞
⎠, (B9)

where Γ is the Gamma function. In the limit a0
βvg

� 1 (β =
1/T ), we obtain

P
∫ ∞

0

dk

k
[1 − cos(vgkτ )]nB(vgk) = 1

2
log

(
sinh

(
πτ
β

)
πτ
β

)
.

(B10)

To obtain Eq. (B10) we used Γ (1 − z)Γ (1 + z) =
zΓ (z)Γ (1 − z) = zπ/ sin(πz). Putting together the two con-
tributions, we obtain

I (τ ) = 1

2
log

[
1 +

(
vg τ

a0

)2
]

+ log

(
sinh

(
πτ
β

)
πτ
β

)
(B11)

� − log

[ πa0
βvg

sinh
(

πτ
β

)
]
, (B12)

where we approximated τ � a0
vg

= �−1
g . Going to large times

τ � β,

I (τ ) ≈ log

[
β�g

2π

]
+ πτ

β
. (B13)

Inserting the average into Zmn(t) = e
− 1

2 [ g(λn−λm)
�g

]
2〈[ϕ+(t)−ϕ+(0)]2〉

leads to

Zmn(t) ≈
(

β�g

2π

)− g

2 [ (λn−λm )
�g

]2

e−�t , (B14)

with the decoherence rate � as given in Eq. (12).

APPENDIX C: CALCULATION OF Z̃12(t) AND χn(ξ,t)

We evaluate here the expressions in Eqs. (14) and (19).
We make use of the fact that in expressions of the form
〈e±2iφ±(τ )e±2iφ±〉, only “neutral” configurations of the kind

f (τ − τ ′) = 〈e2iϕ−(τ )e−2iϕ−(τ ′)〉 = 〈e−2iϕ−(τ )e2iϕ−(τ ′)〉 (C1)

do not vanish [38]. Therefore, from Eq. (14),

Z̃12(t) ≈ 1 + λ̃1λ̃2

2

∫ t

0
dτ

∫ t

0
dτ ′f (τ − τ ′) cos [eV (τ − τ ′)]

− λ̃2
1

2

∫ t

0
dτ

∫ τ

0
dτ ′f (τ − τ ′) cos [eV (τ − τ ′)]

− λ̃2
2

2

∫ t

0
dτ

∫ t

τ

dτ ′f (τ − τ ′) cos [eV (τ − τ ′)].

(C2)

Introducing new variables s = τ − τ ′ and r = (τ + τ ′)/2, we
can perform the integral over r to obtain

Z̃12(t) ≈ 1 + λ̃1

2
(λ̃2 − λ̃1)

∫ t

0
ds (t − s)f (s) cos(eV s)

+ λ̃2

2
(λ̃1 − λ̃2)

∫ 0

−t

ds (t − s)f (s) cos(eV s).

(C3)

We note that

f (−s) = 〈e2iϕ(−s)e−2iϕ(0)〉 = 〈e2iϕ(0)e−2iϕ(s)〉
= 〈e2iϕ(s)e−2iϕ(0)〉∗ = f (s)∗, (C4)

where in the first equality we make use of the fact that the two-
time correlation function depends only on the time difference.
In the long-time limit (t � 1/eV ), we retain only the dominant
contribution for t → ∞, i.e., the terms with the integrand ∝ t

in Eq. (C3). Using f (−s) = f (s)∗, we can rewrite the integral
in the positive domain s > 0 and then replace f (s) by the
time-ordered correlator f T (s) ≡ 〈T e2iϕ(s)e−2iϕ(0)〉, which is
well-known in the literature [38]. We obtain

Z̃12(t) ≈ 1 − (λ̃2 − λ̃1)2

2
t

∫ ∞

0
ds Re{f T (s)} cos(eV s)

+ i

(
λ̃2

2 − λ̃2
1

)
2

t

∫ ∞

0
ds Im{f T (s)} cos(eV s). (C5)

Reexponentiating this expression in the form of Eq. (10)
and disregarding the induced level shift �̃, which leaves the
measurement properties of the device unaffected, leads to
Eq. (15) in the main text.

The calculation for the FCS function Wn(ξ,t) proceeds in
the same manner, replacing A0 → Aξ in Eq. (14) with Aξ

defined in Eq. (13) and taking λ1 = λ2 = λn. We obtain

Wn(ξ,t) t = λ̃2
n

2

∫ t

0
dτ

∫ t

0
dτ ′f (τ − τ ′)

× Re[(e−iξ − 1)eieV (τ−τ ′)], (C6)

which in the long-time limit t � 1/eV leads to Eq. (20) in the
main text.

APPENDIX D: CALCULATION OF Re{JC} AND Im{JS}
In this appendix, we calculate the time integrals JC and JS

in Eqs. (15) and (20). We use the well-known form for the
time-ordered correlation function [38] for positive times,

f T (s > 0) =
(
i πa0

βvg

)2/g

( − sinh
[

π
β

(s − i0+)
])2/g

(D1)

=
(

πa0
βvg

)2/g

∣∣ sinh2
[

π
β
t
]∣∣1/g

e−i(π−0+)/g. (D2)

Alternatively, this result can be obtained from noting that

f (τ − τ ′) = e
− 2

g
I (τ−τ ′)

e2[ϕ−(τ ),ϕ−(τ ′)], where I (s) was calcu-
lated in Appendix B. With this we can evaluate the real part of
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JC , needed for the decoherence Eq. (15). Explicitly,

Re{JC} =
∫ ∞

0
ds Re{f T (s)} cos(eV s)

= 1

2
cos

(
π

g

)(
πa0

βvg

)2/g ∫ ∞

0
ds

1

sinh[π
β
s]2/g

(eieV s + e−ieV s)

= 1

2
cos

(
π

g

)(
2πa0

βvg

)2/g
β

2π

(
Γ

(
1
g

− i
β

2π
eV

)
Γ

(
1 − 2

g

)
Γ

(
1 − 1

g
− i

β

2π
eV

) +
Γ

(
1
g

+ i
β

2π
eV

)
Γ

(
1 − 2

g

)
Γ

(
1 − 1

g
+ i

β

2π
eV

)
)

= 1

2
cos

(
π

g

)(
2πa0

βvg

)2/g
β

2π
Γ

(
1 − 2

g

)
2 Re

(
Γ ( 1

g
+ i

β

2π
eV )

Γ
(
1 − 1

g
+ i

β

2π
eV

)
)

, (D3)

where we dropped the positive infinitesimal 0+ and used∫ ∞

0
ds

1

sinh
[

π
β
t
]2/g

eiωt = 22/g β

2π
B

(
−i

β

2π
ω + 1

g
,1 − 2

g

)
(D4)

with B(x,y) = Γ (x)Γ (y)
Γ (x+y) . Using the general identity of the Γ function, Γ (x)Γ (1 − x) = π

sin (πx) , and some trigonometric identities,
we can write this as

2 cos

(
π

g

)
Γ

(
1 − 2

g

)
Re

(
Γ

(
1
g

+ i eV
2πT

)
Γ

(
1 − 1

g
+ i eV

2πT

)
)

=
∣∣Γ (

1
g

+ i eV
2πT

)∣∣2

Γ
(

2
g

) cosh(eV /2T ), (D5)

which leads to

Re{JC} = 1

2

(
2πa0

βvg

)2/g
β

2π

∣∣Γ (
1
g

+ i eV
2πT

)∣∣2

Γ
(

2
g

) cosh(eV /2T ), (D6)

in accordance with the results in Ref. [45]. From here the form of the decoherence rate �̃, Eq. (16), directly follows.
Similarly, Im{JS} can be calculated to be

Im{JS} =
∫ ∞

0
ds Im{f T (s) sin(eV s)}

= −
(

πa0

βvg

)2/g

sin

(
π

g

)∫ ∞

0
ds

1∣∣ sinh2
[

π
β
t
]∣∣1/g

1

2i
(eieV s − e−ieV s)

= − 1

2i
sin

(
π

g

)(
2πa0

βvg

)2/g
β

2π

(
Γ

(
1
g

− i
β

2π
eV

)
Γ

(
1 − 2

g

)
Γ

(
1 − 1

g
− i

β

2π
eV

) −
Γ

(
1
g

+ i
β

2π
eV

)
Γ

(
1 − 2

g

)
Γ

(
1 − 1

g
+ i

β

2π
eV

)
)

= sin

(
π

g

)(
2πa0

βvg

)2/g
β

2π
Γ

(
1 − 2

g

)
Im

(
Γ

(
1
g

+ i
β

2π
eV

)
Γ

(
1 − 1

g
+ i

β

2π
eV

)
)

.

Using again Γ (x)Γ (1 − x) = π
sin (πx) and some trigonometric identities, we can write this as

−2 sin

(
π

g

)
Γ

(
1 − 2

g

)
Im

(
Γ

(
1
g

+ i eV
2πT

)
Γ

(
1 − 1

g
+ i eV

2πT

)
)

=
∣∣Γ (

1
g

+ i eV
2πT

)∣∣2

Γ
(

2
g

) sinh(eV /2T ), (D7)

which sets the form of Im{JS},

Im{JS} = 1

2

(
2πa0

βvg

)2/g
β

2π

∣∣Γ (
1
g

+ i eV
2πT

)∣∣2

Γ
(

2
g

) sinh(eV /2T ). (D8)
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