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Effects of nonmagnetic disorder on the energy of Yu-Shiba-Rusinov states
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We study the sensitivity of Yu-Shiba-Rusinov states, bound states that form around magnetic scatterers in
superconductors, to the presence of nonmagnetic disorder in both two and three dimensional systems. We
formulate a scattering approach to this problem and reduce the effects of disorder to two contributions: disorder-
induced normal reflection and a random phase of the amplitude for Andreev reflection. We find that both of these
are small even for moderate amounts of disorder. In the dirty limit in which the disorder-induced mean free path
is smaller than the superconducting coherence length, the variance of the energy of the Yu-Shiba-Rusinov state
remains small in the ratio of the Fermi wavelength and the mean free path. This effect is more pronounced in
three dimensions, where only impurities within a few Fermi wavelengths of the magnetic scatterer contribute.
In two dimensions the energy variance is larger by a logarithmic factor because impurities contribute up to a
distance of the order of the superconducting coherence length.
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I. INTRODUCTION

Adding magnetic impurities to an s-wave superconductor
induces bound states, whose excitation energy falls within
the superconducting gap. This prediction goes back to works
of Yu, Shiba, and Rusinov (YSR) in the 1960s [1–3]. In
the meantime, numerous aspects of YSR states have been
considered theoretically [4–15] and YSR states are now
routinely observed by scanning tunneling spectroscopy on
superconductors [16–26].

Interest in YSR states was recently renewed for several
reasons. One reason is that experimental progress admits
measurements of subgap spectra with much higher resolution
than previously possible. This has triggered experimental
and theoretical work exploring the basic properties of YSR
states in more detail. It was recently found that reducing the
dimensionality of the superconducting host from three to two
dimensions greatly increases the observed spatial extent of the
YSR states, which is a consequence of the different power
laws with which the YSR wavefunctions decay away from
the impurity [20,25]. Other recent work traced the origin of
multiple YSR states to the crystal splitting of higher angular
momentum channels [17,21–24].

Another reason is that chains of magnetic adatoms on
superconductors have been proposed as a realization of a
topological superconducting phase which harbors Majorana
bound states at the ends of the chain, motivating several
recent experimental studies of such systems [27–31]. Majorana
bound states are quasiparticles which are their own antipar-
ticles and potential building blocks of a future topological
quantum computer [32,33]. One way to think about this
topological superconducting phase is in terms of an effective
tight-binding model of hybridized YSR states [34–39].

It is an important question to which degree YSR bound
states are sensitive to potential (nonmagnetic) impurities in
the superconductor. In the context of individual magnetic
impurities, strong sensitivity to potential impurities would
make the YSR energies sample specific, reflecting the details
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of the impurity configuration in the vicinity of the magnetic
atom. Similarly, topological superconductivity is known to be
sensitive to disorder. Sensitivity of the YSR state to potential
scatterers in the superconductor could thus be detrimental to
the formation of a topological superconducting phase.

In this work, we characterize the sensitivity of YSR states
in two and three dimensions to potential scatterers. We find
that the YSR states are robust to disorder, even when the
mean free path is shorter than the coherence length of the
superconductor. The major condition for this robustness is
that the disorder induced mean free path is large compared to
the Fermi wavelength which is usually satisfied in conventional
superconductors. Thus, our findings relax previous claims [40]
that ultraclean superconductors are required for disorder to
introduce only a small perturbation. These earlier results do
not include a discussion of the Fermi wavelength, which we
find to be a crucial parameter when considering the robustness
of the YSR energy. We refer to Appendix A for a more detailed
discussion of the origin of the discrepancy with Ref. [40].

This paper is structured as follows. In Sec. II we introduce
the model Hamiltonian on which our analysis is based. In
Sec. III, we review the YSR wave functions in the absence
of disorder and present a perturbative analysis of the effect
of disorder on the YSR energies. Section IV introduces
a scattering approach, which, in an approximate analytical
approach, allows us to reduce the effects of disorder on the
YSR energy to two contributions which can be discussed
qualitatively based on symmetry arguments and a random walk
model. In addition, we also employ the scattering approach
for a numerical calculation beyond perturbation theory and
compare it to the results obtained by perturbation theory.
Finally, we conclude in Sec. V.

II. MODEL

The system we consider is described by the Bogoliubov–de
Gennes Hamiltonian

H =
(

H0 + V↑(r) + U (r) �

� −H0 − V↓(r) − U (r)

)
, (1)
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FIG. 1. Sketch of the model used in this work and the relevant
length scales. A magnetic impurity with a size comparable to
the Fermi wavelength λF is placed inside a superconductor. The
coherence length ξ0 corresponds to the size of Cooper pairs (orange)
that form the superconducting ground state in the absence of disorder.
Adding nonmagnetic disorder (gray circles) introduces a mean free
path �.

where H0 = p2/2m − h̄2k2
F/2m, with m the (effective) mass

and kF the Fermi wave number, � the superconducting order
parameter, which we choose to be real, Vσ (r) the impurity
potential, and U (r) the disorder potential.

Following Refs. [1–3] we take the impurity to be a classical
spin of magnitude S, located at the origin r = 0. Choosing the
spin quantization axis along the impurity spin direction, the
spin-dependent impurity potential has the form

Vσ (r) = (V0 − JSσ )δλ(r). (2)

Here, δλ(r) represents a short-ranged function with unit
integral and range λ ∼ 1/kF, J is the exchange coupling
strength, and V0 is the strength of the potential scattering by
the impurity.

For the disorder potential U (r), we take a Gaussian white
noise model, for which U (r) has zero mean and variance

〈U (r)U (r′)〉 = h̄vF

2πν0�
δλ(r − r′), (3)

where � is the elastic mean free path, vF = h̄kF/m the Fermi
velocity, and ν0 the density of states per spin direction. [In
two dimensions (d = 2) and three dimensions (d = 3), one
has ν0 = kF/2πh̄vF and ν0 = k2

F/2π2h̄vF, respectively.] For
simplicity, we choose the same short-distance cutoff λ for the
disorder potential U (r) and for the impurity potential Vσ (r).

The characteristic length scales of the system are illustrated
in Fig. 1. The superconductor is characterized by the clean-
limit superconducting coherence length ξ0 = h̄vF/�. For
weak-coupling superconductors, one has kFξ0 � 1. Also, in
superconductors that are good metals in the normal state, one
has kF� � 1. We will assume that both inequalities are obeyed
in the considerations that follow, but we will not make any
assumptions concerning the relative magnitude of the mean
free path � and the coherence length ξ0. Superconductors with
� � ξ0 are in the clean limit; superconductors with � 	 ξ0 are
in the dirty limit.

III. PERTURBATIVE APPROACH

In the presence of the impurity potential V , the Bogoliubov–
de Gennes equation

H |ψ〉 = ε |ψ〉 , (4)

with H given by Eq. (1), has a bound-state solution with energy
|ε| < �. In this section, we review Rusinov’s original calcu-
lation of the bound-state energy ε0 for a clean superconductor
[3]. We then use this as a starting point to calculate the shift
δε = ε − ε0 to first order in the disorder potential U .

We start with the general radially symmetric solution of the
Bogoliubov–de Gennes equation (4) for r > λ, where λ is the
range of the potential Vσ (r). For kFξ0 � 1, this reads

|ψ(r)〉 = 1√
ξε

∑
±

a±�±(r)e−r/ξε |±〉 , (5)

where a± are complex coefficients,

ξε = h̄vF√
�2 − ε2

(6)

is the energy-dependent coherence length, �±(r) solves the
radial Schrödinger equation at ε = 0 in the absence of
superconductivity and takes different forms in two and three
dimensions,

�±(r) =
⎧⎨
⎩

√
kF
4 H±

0 (kFr) d = 2,√
k2

F
4π

h±
0 (kFr) d = 3,

(7)

with H± and h± the Hankel and spherical Hankel functions,
respectively, and |±〉 are two-component spinors,

|±〉 = 1√
2

(
1

e∓iη(ε)

)
, (8)

with the Andreev phase

η(ε) = arccos(ε/�). (9)

To determine the coefficients a± we use the boundary con-
dition at r = λ imposed by the magnetic impurity. Following
Rusinov’s original derivation [3], we formulate this boundary
condition in terms of scattering phase shifts φσ for electrons
with spin σ . We may neglect the effect of superconductivity
on the phase shifts φσ since λ 	 ξ0. The scattering phases φσ

can be related to the impurity potential (2) by [3,41,42]

tan φσ = −πν0(V0 − σJS). (10)

We note that in the general solution (5) the upper component
multiplied by a+ (a−) describes a radial wave for an electron
with spin up moving away from (towards) the origin. Hence

a+ = e2iφ↑a−. (11)

Similarly, the lower component multiplied by a+ (a−) de-
scribes a radial wave moving towards (away from) the origin
for a hole in the spin-down band. Taking into account the phase
factors e±iη(ε) in the lower component of the spinor (8), we find
the relation

a−eiη(ε) = e−2iφ↓a+e−iη(ε). (12)

Combining these two equations we find the YSR-state energy

ε0 = ±� cos(φ↑ − φ↓) (13)

for a magnetic impurity in an (otherwise) clean superconduc-
tor. The solution (5) is properly normalized if |a+| = |a−| = 1
(up to corrections that are small in the limit kFξ0, ξ0/λ � 1).
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Note that |ε0| < � if and only if φ↑ �= φ↓), i.e., if the impurity
is magnetic.

We now calculate the change δε of the energy of the YSR
state to first order in the disorder potential U (r). We assume
that U (r) = 0 for r < λ, i.e., the disorder potential does not
overlap with the potential of the magnetic impurity. To first
order in U (r) the change δε is

δε =
∫

dr 〈ψ(r)| U (r)τz |ψ(r)〉 , (14)

where τz is the Pauli matrix in particle-hole space and the
spinor wave function |ψ(r)〉 is given by the general solution
(5), with the coefficients a± satisfying the relations (11) and
(12). Using the relation �+(kFr) = [�−(kFr)]∗ this can be
simplified as

δε = sin η(ε0)
∫

dr U (r)e−2r/ξε0

× Im e−iη(ε0)+2iφ↑ [�+(r)]2. (15)

Using the correlator (3), we obtain the variance

〈δε2〉 = 2h̄vF

πν0�ξ 2
ε0

sin2 η(ε0)

×
∫

dr{Im e−iη(ε0)+2iφ↑ [�+(r)]2}2e−4r/ξε0 . (16)

In two dimensions the main contribution to the integral (16)
comes from r ∼ ξε0 . The integral is convergent at the lower
limit r ↓ 0, so that the short-distance cutoff λ can be taken to
zero. We then find

〈δε2〉 = �2(ξ0/ξε0 )4

πkF�
log(kFξε0 ). (17)

In three dimensions the integral (16) is dominated by short
distances r ∼ λ ∼ k−1

F and the short-distance cutoff λ is
needed to ensure convergence. In this case we find

〈δε2〉 ∼ �2(ξ0/ξε0 )4

kF�
, (18)

where a numerical prefactor depends on the precise way in
which the short-distance regularization is implemented. Note
that in three dimensions and with ε0 well inside the gap such
that ξ0/ξε0 ∼ 1, the variance 〈δε2〉 does not depend on kFξε0 .

In two dimensions the root-mean-square fluctuations are
parametrically smaller than the superconducting gap � if
the condition kF� � log(kFξ0) is met. This condition only
weakly depends on the superconducting coherence length
ξ0. In three dimensions the condition is kF� � 1, which is
independent of ξ0. The latter condition kF� � 1 is typically
met in superconductors that are good metals in the normal
state, such as Pb or Al.

IV. SCATTERING APPROACH

In this section, we present a numerical calculation of the
YSR-state energies that takes higher-order contributions in the
disorder potential U (r) into account. The calculation makes
use of a relation between the YSR-state energy ε and the
scattering matrix S(ε) of the superconductor for radial waves
moving towards and from the origin r = 0. We first describe

this relation and the calculation of S(ε) separately, and then
proceed with a calculation of the variance 〈δε2〉.

A. Relation between YSR-state energy
and scattering amplitudes

To define the scattering matrix S we introduce a narrow
shell r0 < r < r0 + δr around the impurity in which the
superconducting order parameter � as well as the potentials
V and U are set to zero. (At the end of the calculation, we
will send the shell width δr → 0.) We choose r0 ∼ λ � 1/kF.
The solution of the Bogoliubov–de Gennes equation may be
assumed to be radially symmetric, so that it can be expanded
as

|ψ(r)〉 =
∑
±

[ae,± |�e,±(r)〉 + ah,± |�h,±(r)〉], (19)

where |�e,±〉 and |�e,±〉 represent flux-normalized electron-
like (e) and holelike (h) waves propagating radially outward
(+) or inward (−). In two dimensions one has

|�e,±(r)〉 =
√

kF

4vF
H±

0 (kFr)

(
1

0

)
,

|�h,±(r)〉 =
√

kF

4vF
H∓

0 (kFr)

(
0

1

)
, (20)

whereas in three dimensions

|�e,±(r)〉 =
√

k2
F

4πvF
h±

0 (kFr)

(
1

0

)
,

|�h,±(r)〉 =
√

k2
F

4πvF
h∓

0 (kFr)

(
0

1

)
. (21)

The solution of the Bogoliubov–de Gennes equation for
r > r0 + δr yields two linear relations for the four amplitudes
ae,± and ah,±, which have the general form(

ae,−
ah,−

)
= S(ε)

(
ae,+
ah,+

)
, S =

(
ree reh

rhe rhh

)
. (22)

The matrix S is the scattering matrix of the superconductor
for radial waves around the origin r = 0. The coefficients ree

and rhh are the amplitudes for normal reflection of electrons
and holes, respectively, whereas rhe and reh describe Andreev
reflection of electrons into holes and vice versa. Time-reversal
symmetry and particle-hole symmetry enforce the constraints

S(ε) = ST(ε) = τyS(−ε)∗τy, (23)

where τy is a Pauli matrix in particle-hole space.
In the absence of the disorder potential U (r), one has

ree = rhh = 0 and reh = rhe = e−iη(ε), with η(ε) defined in
Eq. (9). This reproduces Eq. (5). In the presence of the disorder
potential U (r), all four coefficients are in general nonzero. As
we will show below, the difference with the clean case is small
when kF� � 1, so that we may write

S(ε) = e−iη(ε)τx(1 − iδA(ε)), (24)
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where δA(ε) is small. The conditions that S(ε) be unitary,
symmetric, and particle-hole symmetric imply

δA(ε) = δA(ε)† = τxδA(ε)Tτx = −τzδA(−ε)τz. (25)

We therefore parametrize

δA(ε) =
(

δη(ε) δr(ε)

δr(ε)∗ δη(ε)

)
, (26)

where δr(ε) is a complex, symmetric function of energy ε,
which represents disorder-induced normal reflection, whereas
δη(ε) is a real, antisymmetric function of ε, which represents
a disorder-induced shift of the Andreev reflection phase η(ε).

As discussed above, the solution of the Bogoliubov–de
Gennes equation for r < r0 yields two additional relations
between the amplitudes ae,± and ah,±,

ae,+ = e2iφ↑ae,−, ah,− = e−2iφ↓ah,+. (27)

Note that, in Eq. (27), we assumed that the size of the
magnetic impurity is small compared to the coherence length,
corresponding to kFξ0 � 1. By taking this limit we can neglect
scattering from electrons to holes at the position of the
impurity.

A nontrivial solution of Eqs. (22) and (27) exists if

det

[(
e2iφ↑ 0

0 e−2iφ↓

)
S(ε) −

(
1 0

0 1

)]
= 0. (28)

This gives

ε = ε0 + δε, δε = ξ0�

ξε0

[δη(ε0) + Re e−i(φ↑+φ↓)δr(ε0)],

(29)

to lowest order in δA. This equation is central to our analysis,
since it allows us to calculate the energy shift δε from the
scattering matrix S.

B. Qualitative discussion

Next, we employ a semiclassical picture to qualitatively
discuss why both δη and δr are expected to be small. Within
this semiclassical picture, Andreev reflection is retroreflection,
i.e., after Andreev reflection a hole retraces the path of the
incident electron (or vice versa). Because the phases of electron
and hole wave functions are correlated, see, e.g., Eq. (5), no
net phase is accumulated, with the exception of the Andreev
phase η(ε). If kF� � 1 this semiclassical picture remains valid
in the presence of a disorder potential U (r). This explains why
δη, corresponding to a shift of the Andreev phase, is small if
kF� � 1.

In fact, since δη(ε) is an antisymmetric function of ε,
one must have δη(0) = 0, so that there is no contribution to
the YSR-state energy shift from the phase shift δη for YSR
states with energy near the center of the superconducting gap.
Instead, for small YSR-state energies, the residual disorder-
induced fluctuations are dominated by the normal reflection
amplitude δr . An estimate of the size of the YSR-energy
fluctuations can be obtained by estimating δr as the amplitude
that a particle returns to the origin r = 0 (up to a distance 1/kF)
within a time ξε/vF. In the two-dimensional case we then find

FIG. 2. Sketch of the numerical method in two dimensions. The
disordered superconductor is cut into thin circular slices (blue), with
infinitesimally thin clean, metallic shells (white) in between. The
scattering matrices of the slices are calculated in the narrow limit and
combined into the full scattering matrix S(ε), which describes the
reflection of spherical symmetric waves (black) that are propagating
from the magnetic impurity into the bulk.

for the dirty superconductor limit ξ0 � �

|δr(ε)|2 ∼
∫ �/vF

λ/vF

dt
1

kF�t
+

∫ ξε/vF

�/vF

dt
2

kF�t

∼ 1

kF�
log

(
kFξ

2
ε /�

)
. (30)

The first integral covers ballistic propagation times t � τ and
the second diffusive times t � τ , where τ = �/vF is the elastic
mean free time. The integrands give the return probabilities
per unit time, which, in the diffusive regime, is multiplied
by a factor two due to coherent backscattering. In the second
line the short-distance cutoff λ was replaced by 1/kF. In the
ultraclean limit ξ0 	 � the second term in Eq. (30) is absent
and the upper integration limit in the first is ξε, which gives

|δr(ε)|2 ∼ 1

kF�
log(kFξε). (31)

In three dimensions, the return probability is dominated by the
ballistic regime t � τ and one finds

|δr(ε)|2 ∼
∫ τ

λ/vF

dt
1

k2
F�vFt2

∼ 1

kF�
. (32)

In three dimensions, the estimate is consistent with the
smallness of the first-order perturbation theory results of
Sec. III. In two dimensions and in the dirty limit, multiple
scattering changes the argument of the logarithm in Eq. (30)
by a factor ξε/� compared to the perturbative result (17).

C. Numerical calculation of the scattering matrix

Our strategy for an efficient numerical calculation can be
outlined as follows. First, we slice the superconductor into thin
circular (d = 2) or spherical (d = 3) pieces, as illustrated in
Fig. 2, and calculate the scattering matrix for each piece. Next,
we add the pieces together by concatenating their scattering
matrices to obtain the total scattering matrix S(ε). Finally,
using Eqs. (24) and (29) we can relate this scattering matrix to
the energy of the YSR state.

Note that, within this approach, we need to include nonzero
angular momentum channels due to two reasons. First, disorder
breaks rotational symmetry thus mixing different angular
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momentum modes. Second, the modes defined in Eq. (21)
describe all propagation modes at radii kFr � 1. There,
nonzero angular momentum modes are evanescent. This can
be seen by considering the spherical representation of the
momentum operator, which results in a repulsive potential
that diverges ∼1/r2 at the origin for all modes but the zero
angular momentum one. However, when going to larger radii
nonzero angular momentum modes start to propagate and thus
cannot be excluded.

Our approach starts by formally inserting a sequence of
N + 1 infinitesimally thin ideal shells into the disordered
superconductor at radii rn, n = 0,1, . . . ,N . Within these shells
the superconducting order parameter � and the impurity
potential U (r) are zero. The distance between the shells
is rn+1 − rn 	 �. In each shell the wave function can be
expanded as [compare with Eq. (19)]

|ψ(r)〉 =
∑

ν

a(n)
ν |�ν(r)〉 , (33)

where ν is a composite index representing particle/hole degrees
of freedom (e or h), propagation direction (radially outward,
+, or inward, −), and the angular momentum label m (in two
dimensions) or the angular momentum labels l, m (in three
dimensions).

The flux-normalized basis functions |�ν〉 are

|�e,m±(r)〉 =
√

kF

4vF
H±

m (kFr)eimϕ

(
1

0

)
,

|�h,m±(r)〉 =
√

kF

4vF
H∓

m (kFr)eimϕ

(
0

1

)
(34)

in two dimensions and

|�e,lm±(r)〉 =
√

k2
F

4πvF
h±

l (kFr)Ylm(θ,ϕ)

(
1

0

)
,

|�h,lm±(r)〉 =
√

k2
F

4πvF
h∓

l (kFr)Ylm(θ,ϕ)

(
0

1

)
(35)

in three dimensions, where the Ylm(θ,φ) are spherical har-
monics and the Hm (h±

l ) are (spherical) Hankel functions. The
solution of the Bogoliubov–de Gennes equation for rn < r <

rn+1 gives a linear relationship between the coefficients a(n)

and a(n+1), which has the form (vector notation is implied for
all indices not listed explicitly)(

a
(n)
−

a
(n+1)
+

)
= S (n)(ε)

(
a

(n+1)
−
a

(n)
+

)
, (36)

where S (n)(ε) is the scattering matrix between the shells at rn

and rn+1.
If rn+1 − rn is much smaller than the mean free path �,

the scattering matrix S (n)(ε) can be calculated using the Born
approximation,

S (n) = [1 − iT (n)/2][1 + iT (n)/2]−1, (37)

with

T (n)
ν ′ν =

∫
rn<r<rn+1

dr 〈ψν ′ (r)| H ′
ε |ψν(r)〉 , (38)

FIG. 3. YSR energy shift (solid lines) versus disorder cutoff
length rN in two dimensions (left panel) and three dimensions
(right panel), obtained from the numerical scattering approach. We
choose ξ/� = 10 with kF� = 100. When including the cutoff rN ,
our perturbative approach (dashed lines) fits well with the numerical
results. The shaded region shows the numerical standard error.

with H ′
ε = �τx + U (r)τz − ε. We refer to the Appendixes for

explicit expressions for the matrices T (n).
To truncate the hierarchy of Eqs. (36) we set the disorder

potential U (r) to zero for r > rN , which gives the relation

a
(N)
− = e−iη(ε)τxa

(N)
+ . (39)

Further, for nonzero angular momentum indices m or l the
Hankel functions Hm and hl diverge for kFr � π |m|/2, kFr �
πl/2, respectively. In that case regularity of |ψ(r)〉 imposes
that the corresponding coefficients a

(n)
+ and a

(n)
− must be equal.

In particular, we have

a
(0)
e,+(l)m = a

(0)
e,−(l)m, a

(0)
h,+(l)m = a

(0)
h,−(l)m (40)

for all m �= 0 (d = 2) or l > 0 (d = 3). Similarly, this
observation allows us to truncate the sum over modes l and m

to the number of propagating angular momentum modes at the
largest distance required for the calculation of S(ε), which is
r ∼ ξε.

Combining Eqs. (36), (39), and (40) we can eliminate all
amplitudes a(n) with n � 1 and calculate the scattering matrix
S(ε) describing the (Andreev) reflection of radially outgoing
waves at the origin. The procedure becomes numerically exact
in the limit rn+1 − rn → 0, rN → ∞. In practice, to achieve
convergence it is sufficient that rn+1 − rn � � and if rN ∼
ξε because of the exponential decay of the wave function in
the superconductor. In the numerical simulations, the short-
distance cutoff is fixed to r0 = 0 in two and r0 = 1/kF in three
dimensions.

Figure 3 shows examples of the convergence behaviors in
two and three dimensions. In two dimensions the numerical
scattering matrix calculation converges slowly, in agreement
with results from perturbation theory which predicts a logarith-
mic convergence at a length scale of the order of the coherence
length. In contrast, our numerical results for three dimensional
systems converge after a few Fermi wavelengths 2π/kF and
also agree well with our results derived by perturbation theory.

In Fig. 4 we show the variance of the YSR energy
for two dimensions. The numerical results confirm that the
fluctuations become small in the limit of large kF�, while
keeping �/ξε constant, quantitatively consistent with the result
of lowest-order perturbation theory in the disorder potential
U (r). Logarithmic corrections to the perturbative results are
expected to occur deep in the dirty limit; see Eq. (30).
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FIG. 4. YSR energy variance versus kFξε in two dimensions. The
data points are for ξε/� = 0.5 (triangles), 1 (circles), and 2 (squares).
The scattering phase shifts φ↑ = −φ↓ are chosen such that YSR
energy in the absence of disorder is ε/� = 0 (left) and ε/� = 0.37
(right). The solid lines show the lowest-order perturbation theory
result from Eq. (17). Error bars are of the size of the markers.

For comparison with the numerical results in three dimen-
sions, we have repeated the perturbative calculation of Sec. III
with the disorder potential set to zero for r < r0 = 1/kF. In
this case we find

〈δε2〉 =�2(ξ0/ξε0 )4

kF�

×
(

c0 + c1 − 2 log(kFξε)

kFξε

− c3 + c4 cos η

k2
Fξ

2
ε

+ · · ·
)

(41)

to second order in 1/kFξε. The coefficients read c0 ≈
0.45, c1 ≈ 2.59, c3 ≈ 5.87, and c4 ≈ 2.71. To leading order
this simplifies to the asymptotic form in Eq. (18). The
agreement of the higher order result (41) with the numerics
is excellent for all values of kFξε considered; the leading order
agrees for large values of kFξε only; see Fig. 5. Additional data
for parameters deeper in the dirty limit and at fixed kF and ξ0

are provided in Appendix B.
Our approach also allows us to separate contributions to

the YSR energy variance arising from fluctuations of the
Andreev phase and normal reflection; see Eq. (29). The two
contributions to 〈δε2〉 are shown in Fig. 6 for ε/� = 0.15.
The figure shows that the main contribution to 〈δε2〉 comes
from normal reflection. This is consistent with the fact that
fluctuations of the Andreev phase η(ε) have an additional
smallness because δη(ε) is an antisymmetric function of
energy.

FIG. 5. YSR energy variance in three dimensions, as a function
of kFξε at fixed ratios ξε/�. The parameters are the same as in Fig. 4.
The dashed and solid curves give the perturbative result (41) and its
leading term, respectively.

FIG. 6. Comparison of the two contributions δr and δη to the
superconductor scattering matrix S(ε), in two (left) and three (right)
dimensions. See Eq. (26). We choose a ratio ξ0/� = 1 and energy
ε/� = 0.15. The contribution from normal reflection dominates in
two as well as in three dimensions.

V. CONCLUSION

In this work we have analyzed the variance of the YSR
energy due to nonmagnetic disorder in both two and three
dimensions. Mapping this problem to a scattering ansatz for
electrons and holes close to the magnetic impurity allowed us
to reduce the effects of nonmagnetic disorder to two separate
contributions.

First, the Andreev phase, which is picked up when an
electron is Andreev reflected as a hole or vise versa, starts
fluctuating as a function of disorder configuration. Using
time reversal and particle hole symmetry, we have argued
that this contribution is expected to be negligible in the
limit kF�, kF ξε � 1. Numerical calculations confirmed this
prediction.

Second, disorder can flip the momentum and lead to
a finite normal reflection amplitude for electrons or holes
propagating from the impurity into the superconductor. We
find that the normal reflection probability is small if kF� �
log [kFξε max(1,ξε/�)] and kF� � 1 in two and three dimen-
sions, respectively. Importantly YSR states can be robust to
disorder even in the limit of a dirty superconductor.

Finally, we found that in three dimensions only disorder
within a few Fermi wavelengths of the magnetic impurity
contributes to the YSR energy variance. This is in contrast
to two dimensions, where disorder from distances up to the
coherence length contributes.

Our results relax earlier claims [40], which suggested that
at � of the order of ξ0 the width of YSR energy distribution
becomes of the order of the superconducting gap. Our findings
show that λF is a crucial parameter to be included into the
discussion and that this typically leads to a negligible influence
of disorder.

Our findings also have implications for one dimensional
topological superconductors, that are formed by dilute clas-
sical adatom chains. These systems can be described by
effective tight-binding models [43]. (Note, however, that
current experiments may well be in a rather different limit
in which the hybridization of the adatom d levels plays an
important role [27–31].) The on-site energies in these models
are immune to disorder, if the conditions are met that we
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derived in this work for the single Shiba states. This leaves
the discussion of the tunneling and pairing strengths. If the
distance d between the impurities is small compared to �,
we expect the influence of disorder on the nearest neighbor
hopping and pairing terms to be suppressed by a factor
d/� ∼ 1/kF�. However, previous studies have shown [35,44]
that, in a clean system with kFξ0 � kFd � 1, tunneling is
following a long-range, 1/r power law. Thus, strictly speaking,
more than nearest-neighbor terms have to be included. If the
length of the chain is smaller than the mean-free path, the
same arguments as for the nearest-neighbor elements apply.
For longer chains, further work is required to investigate the
influence of disorder on long range tunneling and pairing
elements.
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APPENDIX A: RELATION TO REF. [40]

In this section, we discuss the related Ref. [40], which
reports a much stronger susceptibility of the YSR energy to
disorder than we do. We attribute the difference to the two
approximations made in Ref. [40].

Without disorder, the magnetic impurity contributes a delta
function δ(ω − ε0) to the density of states. Including and
averaging over disorder, this contribution is broadened. In
Ref. [40], the width of the peak in the density of states is
used as a measure of the disorder-induced variance 〈δε2〉 of
the YSR energy.

Reference [40] calculates the Green function G(ω) in the
presence of the magnetic impurity and nonmagnetic disorder
in the superconductor and obtains the impurity density of states
from the relation

ρ(ω) = − 1

π
Tr Im〈G(ω)〉, (A1)

where the brackets 〈· · · 〉 refer to the disorder average.
The disorder average 〈G(ω)〉 is then performed with two
approximations. First, Ref. [40] uses the self-consistent Born
approximation (SCBA), which yields a self-consistent equa-
tion for 〈G(ω)〉,

〈G(ω)〉 = {[G(0)(ω)]−1 − �(ω)}−1, (A2)

where G(0)(ω) is the Green function without the nonmagnetic
disorder (but with the magnetic impurity) and

�k,k′(ω) = vF

2πν0�V

∑
p

τz〈Gp+k,p+k′ (ω)〉τz (A3)

is the SCBA self energy (other symbols are defined in Sec. II).
The second approximation in Ref. [40] is based on the fol-

lowing argument. The main contribution of the summation in
the self energy is from momenta p + k and p + k′ at the Fermi
level. Hence, approximately, one can restrict the summation

over p to the manifold defined by |p + k| = |p + k′| = kF. If
k �= k′, these are two independent equations and hence the
manifold has two dimensions less than the dimension of p. If
however k = k′, there is only one constraint and the dimension
of the manifold is only one less than the dimension of p. From
this, the authors of Ref. [40] concluded that the self energy can
be approximated to be diagonal and that it reads

�k,k′ ≈ vF

2πν0�V
δk,k′

∑
p,q

τz〈Gp,q〉τz. (A4)

To facilitate the comparison with our own results, we first
reformulate these in Green function language. In the limit
kF� � kFξ0 � 1 the YSR state is separated from other states
by a finite gap. Hence only the lowest order contributions in
disorder are expected to contribute to a shift in the YSR energy
and, to a good (controlled) approximation, we can rewrite the
low-energy part of Hamiltonian (5) as

H = (ε0 + U0,0) |0〉 〈0| . (A5)

Here, |0〉 is the YSR state derived in the main text, with its
wave function given by Eq. (5). The disorder matrix element
U0,0 = 〈0| U (r)τz |0〉 has a Gaussian distribution with zero
average and a variance 〈U 2

0,0〉 = 〈δε2〉, where the latter was
derived in Eqs. (17) and (18) in the main text. Note that,
due to particle-hole symmetry being present in the physical
problem, there is also a YSR state at −ε0. However, this second
state lives in a disjunct sector of the Hilbert space and hence
it is sufficient to consider only one of the two states when
calculating the spectrum.

The Green function is easily obtained and, within the YSR-
state subspace, reads

G(ω) = 1

ω − ε0 − U0,0 + iη
(A6)

with η ↓ 0. The average density of states reads

ρ(ω) = 1√
2π〈δε〉2

e−(ω−ε0)2/2〈δε〉2
, (A7)

in exact quantitative agreement with the perturbation theory of
Sec. III.

We now investigate the effect of the first approximation in
[40]. For the low-energy Hamiltonian (A5) the expression for
the SCBA self energy reads

�(ω) = 〈δε2〉〈G(ω)〉. (A8)

Solving Eqs. (A2) and (A8) one finds

ρ(ω) =
{√

4〈δε2〉−(ω−ε0)2

2π〈δε2〉 for (ω − ε0)2 < 4〈δε2〉,
0 else.

(A9)

This result disagrees qualitatively from the exact result (A7),
although the order of magnitude of the width of the density of
states peak is still correct.

The second approximation relies on the assumption that
�(ω) and 〈G(ω)〉 are diagonal in momentum space. The latter
assumption is clearly questionable, since the presence of the
magnetic impurity causes the Green function to be nondiagonal
in momentum space. In contrast, replacing the single sum
in Eq. (A3) by the double sum in Eq. (A4) assumes a
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10−2

10−1

δε
2

/Δ
2

10−1 100

10−2

10−1

FIG. 7. Energy variance over mean-free path at fixed kF and ξ0.
The markers show the numerical results in two dimensions (top)
and three dimensions (bottom), with kFξ0 = 50 (blue triangles) and
kFξ0 = 100 (green circles). The lines correspond to the perturbative
results derived in the main text. The scattering phase shifts φ↑ = −φ↓
of the magnetic impurity are chosen such that, in the absence of
disorder, a YSR state forms at ε/� = 0.

diagonal Green function. Taking the double sum greatly
increases the impurity contribution to the diagonal part of
�(ω), whereas the approximation (A4) ignores any impurity-
induced off-diagonal contribution to �(ω). With this second
approximation, the momentum sums can be replaced by energy
integrations. In this step, the dependence on kF� as well as
system dimensionality drops out, leaving a dependence on the
ratio �/ξ0 only, a feature that clearly contradicts the direct
perturbative solution (A7) in the weak-disorder limit ξ0 	 �.

To conclude, while both approximations made in Ref. [40]
are uncontrolled, we believe it is the second approximation
that is responsible for the stark qualitative difference between
that reference and the present results.

APPENDIX B: ENERGY VARIANCE AS A FUNCTION
OF MEAN-FREE PATH

In this section we supplement the numerical results of the
main text by data in the dirty limit, � � ξ0, and for a fixed ξ0

and kF while varying �. The data is shown in Fig. 7, with the
perturbative results taken from Eqs. (17) and (41). The energy
variance is well approximated by the lowest order perturbation
theory in disorder. Deviations occur in two dimensions, when
kF� gets close to one.

Additionally, as shown in Fig. 3, in order for us to reach
convergence in two dimensions we had to let the disorder
cutoff flow to a distance far exceeding the Fermi wavelength.
Here, we supplement the main text plot by a fully converged
plot in the dirty limit, shown in Fig. 8. We note especially
that convergence requires distances of the order of multiple
mean-free paths and thus the final value is expected to contain
contributions from multiple scattering.

APPENDIX C: TRANSFER MATRIX FOR A SINGLE SLICE

In this section we present explicit expressions for the
transfer matrix of a thin, disordered, and superconducting slice.
Using Eq. (37) this enables one to calculate the corresponding
scattering matrix of the thin slice.

0 50 100 150
kFrN

0.0

2.5

5.0

δε
2

/Δ
2

FIG. 8. Convergence of the energy variance with disorder cutoff
rN in the dirty limit and in two dimensions. The parameters are kFξ0 =
300 and ξ0/� = 10, with the same magnetic impurity parameters as
in Fig. 7.

1. Two dimensions

First we consider a two dimensional, circular slice. In this
case, we define the radial part of the propagating waves in
Eq. (34) as

|Rem±(r)〉 =
√

kF

4vF
H (±)

m (kFr)

(
1

0

)

for electrons and

|Rhm±(r)〉 =
√

kF

4vF
H (∓)

m (kFr)

(
0

1

)

for holes.
Within first order Born approximation, for a slice of width

dr , at an energy ε and at a radius rn from the origin, we obtain
the transfer matrix

T (n)
ν ′ν = 〈Rν ′(rn)| dT̂ (n)δm′,m + d�̂

(n)
m′,m |Rν(rn)〉 ,

with the same multi-index ν as in the main text. The term
diagonal in angular momentum reads

dT̂ (n) = (�τx − ε)2πrndr.

For the disorder element we get

d�̂
(n)
m′,m =

√
γ 2πrndrX

(n)
m′−mτz.

The random part is absorbed into

X
(n)
m′−m =

⎧⎨
⎩

Y
(n)
0 for m = m′,

Y
(n)
|m′−m|+i sgn(m′−m)Z(n)

|m′−m|√
2

else,

corresponding to the Fourier transform of white noise. Here
Y (n)

m and Z(n)
m are independent, normally distributed random

variables with zero mean and variance one. Note that not all
elements of X(n) are independent since Xm′−m = X∗

m−m′ .

2. Three dimensions

Next we calculate the transfer matrix of a thin, spherical
slice in three dimensions. In this case, the radial modes are
defined as

|Rem±(r)〉 =
√

k2
F

4πvF
h

(±)
l (kFr)

(
1

0

)
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for electrons and

|Rhm±(r)〉 =
√

k2
F

4πvF
h

(∓)
l (kFr)

(
0

1

)

for holes, with a total angular momentum quantum number l.
Within first order Born approximation and for a spherical

slice of width dr at a radius rn, the transfer matrix reads

T (n)
ν ′ν = 〈Rν ′ (rn)| dT̂ (n)δl′lδm′m + d�̂

(n)
l′m′lm |Rν(rn)〉 ,

similar to Eq. (C1).
The term diagonal in the angular momentum quantum

numbers reads

dT̂ (n) = (�τx − ε)4πr2
ndr

and the disorder element is

d�̂
(n)
l′m′lm = τz

√
γ 4πr2

ndr�l′m′lm.

The random variable �l′m′lm takes a more complicated form
in three than in two dimensions, due to the involvement of
the product of two spherical harmonics in the calculation
of the matrix elements in Eq. (38). These products can be
expressed as a sum over single spherical harmonics for which
explicit expressions are known [45]. For these single spherical
harmonics we can calculate the overlap with the Gaussian

disorder potential. Following this strategy we obtain

�l′m′lm =
∞∑

L=0

c
L, �m
l′m′lmXL,�m,

where the coefficients for the transformation between a single
and the product of two spherical harmonics are

c
L,�m
l′m′lm = (−1)m

√
(2l′ + 1)(2l + 1)

4π (2L + 1)
(C1)

× C
L, 0
l′, 0, l, 0C

L,�m
l′, m′, l, m. (C2)

Here

C
L,�m
l′,m′, l, m = 〈l′,m′, l, m|L,�m〉

are the Clebsch Gordan coefficients [45]. Additionally, the
overlap of the single spherical harmonics with the angular part
of the Gaussian disorder potential yields the random numbers
[46]

X
(n)
L,�m =

⎧⎪⎪⎨
⎪⎪⎩

Y
(n)
L,�m+iZ

(n)
L,�m√

2
for �m > 0,

Y
(n)
L, 0 for �m = 0,

(−1)�mX
(n)
L,−�m for �m < 0.

Here, similar to the two dimensional case, YL,�m and ZL,�m

are independent, normally distributed random variables with
zero mean and variance one.
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