PHYSICAL REVIEW B 96, 205413 (2017)

Braiding by Majorana tracking and long-range CNOT gates with color codes

Daniel Litinski and Felix von Oppen

Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universitdt Berlin, Arnimallee 14, 14195 Berlin, Germany

(Received 29 August 2017; published 8 November 2017)

Color-code quantum computation seamlessly combines Majorana-based hardware with topological error
correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of
the Majoranas’ non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of
color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying
their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever
performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an
entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer
measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For
Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery
for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the
physical distance separating control and target qubits. With the addition of magic state distillation, our architecture
describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana
box qubits, but can also be applied to nontopological qubit platforms.
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I. INTRODUCTION

The scalable fabrication of high-fidelity qubit platforms is
necessary for large-scale quantum computation. In topologi-
cal quantum computing [1-3], Majorana-based architectures
[4-8] have been proposed as candidates for such high-fidelity
qubits. Among the advantages that Majorana-based qubits may
offer in comparison to conventional qubits are long coherence
times, high-fidelity single-qubit Clifford gates by braiding, and
ancilla-free stabilizer measurements for quantum error cor-
rection. Recent experiments have demonstrated considerable
progress towards realizing Majorana zero modes (Majoranas)
in topological superconductors [9-13], but topological qubits
are yet to be implemented and their advantages remain to be
confirmed experimentally.

As Majorana-based qubits are still expected to have a
finite lifetime [14—17], quantum error correction is necessary
for fault-tolerant quantum computation [18-25]. In a recent
work [26], we have argued that Majorana-based qubits are
particularly well suited for quantum error correction with
topological color codes [27,28]. Unlike in surface codes
[3,29,30], the Clifford gates are transversal in two-dimensional
color codes. Thus logical Clifford gates are implemented on
the code level by performing independent Clifford gates on
all (pairs of) physical qubits that make up the logical qubit(s).
Importantly, this transversal gate set enables the use of braiding
for logical gates, thereby fully exploiting the topological
protection provided by Majorana-based hardware. Moreover,
the existence of transversal gates has additional advantages.
Independent operations on the physical qubit do not spread
errors during gate operations and minimize the time overhead
by allowing parallel implementation.

We discussed a physical implementation of a Majorana
color code which relies on topological superconductor net-
works, where Majoranas are braided by moving them through
branched geometries. Moving Majoranas was also necessary
for lattice surgery [31,32] and magic state distillation [33],
which are required to complete the universal gate set. However,
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current experiments where proximity-coupled quantum wires
are driven into the topological phase require an external
magnetic field in the direction of the wire. This might constitute
a significant obstacle for all braiding protocols that rely on
the movement of Majoranas in branched geometries [34—37].
Moreover, movement of Majoranas has also been shown to
be susceptible to thermal noise [38]. To overcome these
problems, recent works have proposed architectures that avoid
T junctions, and are instead based on arrays of parallel
nanowires [22,23,39—41]. In this work, we show that Majorana
color codes can be naturally implemented in such setups,
thereby entirely avoiding T junctions and explicit movement
of Majoranas.

An important aspect of the recent works on implementing
topological qubits in arrays of parallel wires is that braiding
is no longer performed by moving Majoranas or coupling
Majoranas in judicious ways, but instead by measuring a
sequence of two-Majorana parity operators [41,42]. Thus these
architectures shift the experimental challenge away from the
fabrication of branched geometries and towards the access to
measurements of various local Majorana parity operators. It
was pointed out that, in this setting, single-qubit Clifford gates
can be implemented by an entirely classical software-based
procedure [41,43,44], which we refer to as Majorana tracking.
This procedure obviates explicit hardware operations and,
similar to Pauli tracking, only requires appropriate updates
of the qubit’s reference frame. We show that the transversal
gates of color codes take Majorana tracking to the level of
logical qubits, and thereby reduce the overhead of logical
single-qubit Clifford gates to a (classical) minimum. The
only required hardware operation is the measurement of
certain local Majorana parity operators corresponding to the
stabilizers of the quantum error-correcting code.

Universal fault-tolerant quantum computation can be
achieved by implementing two more logical gates: the
controlled-NOT (CNOT) gate and the 7' gate. While logical
CNOTs can in principle be implemented transversally using
physical CNOTs, this requires nonlocal physical gates. Instead,
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it is more convenient to implement logical CNOTs via lattice
surgery [31], which only requires local operations. Here, we
present a scheme for logical CNOTs which combines color
codes with surface code ancillas and employs color-to-surface-
code lattice surgery [45]. This protocol implements the CNOT
gate without the need for any movement of Majoranas while
retaining the long-range communication between color-code
qubits of our earlier implementation. This also provides us
with a long-range multitarget CNOT, which is an essential
part of magic state distillation protocols, thereby completing
the universal gate set.

Here, we are mainly interested in providing a proof-
of-principle implementation of Majorana-based color-code
quantum computation in a network of tetrons [41]. However, it
should be emphasized that the combination of Majorana-based
hardware with color-code error correction transcends our
specific implementations. It seems likely that this combination
can be used to one’s advantage in many, if not all, future
implementations of fault-tolerant Majorana-based quantum
computation. In fact, our lattice-surgery-based scheme can
in principle be applied even to nontopological qubit archi-
tectures. Nevertheless, the robustness of physical single-qubit
Clifford gates and the ease of stabilizer measurements are key
advantages of Majorana-based qubit platforms.

II. MAJORANA TRACKING AND COLOR CODES

A Majorana-based qubit can be defined using three Majo-

rana fermions yy, y», and y3, with {y;,y;} = 28; jand y; = yiT.

Since Majorana fermions in physical systems always come in
pairs, it is convenient to define the qubit using four Majoranas
with fixed total parity —y;y»y3y4 = 1, such that all two-
Majorana parity operators i y,, ¥, of a qubit can be expressed in
terms of the first three Majoranas. In the Schrodinger picture,
a qubit is defined using two computational states |0) and |1) in
the o, basis. For our purposes, it will be instead more useful to
express the qubit in the Heisenberg picture, where we define
the qubit by its o,- and o,-Pauli operators, which in their
default state are

o, =iV1V2, Ox =IiV2Vs. (1

Consequently, the remaining Pauli operatoris o, = iy;y3. One
can check that these operators square to unity and fulfill the
commutation relations of Pauli operators [0;,0;] = 2i€;;0%.
Two Pauli operators are sufficient to define a qubit, as any
single-qubit unitary operator can be expressed in terms of o,
and o, via the Euler decomposition.

The basic framework of our architecture is nanowire
arrays, which are two-dimensional networks of Majorana-
based physical qubits. Several proposals for implementations
of such nanowire arrays can be found in Refs. [22,23,39-41].
Based on these proposals, we assume that the following basic
operations can be implemented in the nanowire array.

(i) Measurements of local 2n-Majorana fermion parity
operators i" [T, y:.

(i) Some nonrobust implementation of a possibly faulty
T gate (;r /8 gate) on physical qubits.

As already emphasized above, we do not require that the
Majoranas can be moved through the network.
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FIG. 1. (a) Majorana-based qubit consisting of three Majoranas
and an example for Majorana tracking. Starting from the default
encoding o, = iy, and o, = iy,y3, an S gate changes the encoding
to o, =iy1y» and o, =iy;ys. A subsequent H gate changes it to
o, =iy1ys and o, = iy,y,. Keeping track of the current encoding
for each physical qubit via a classical computer is referred to as
Majorana tracking. (b) Triangular color-code qubits can be defined
on a hexagonal lattice, where each vertex is a Majorana-based qubit
comprised of three Majoranas (or four Majoranas with fixed total
parity). Each face corresponds to two stabilizers ¢®” and o®".
Products of o, and o, operators along any one of the three boundaries
correspond to logical Z; and X operators. (c) In surface code qubits,
on the other hand, the support of X and Z stabilizers does not coincide,
and the two different edges correspond to the Z; and X, operators,
respectively.

A. Physical single-qubit Clifford gates: Majorana tracking

The first operation includes the measurement of all
two-Majorana parity operators—and therefore all Pauli
operators—of a physical qubit. This enables the use of
Majorana tracking for a particularly simple implementation of
the single-qubit Clifford gates as pioneered in Refs. [41,43].
These gates map Pauli operators onto other Pauli operators
and are products of Hadamard (H) and phase (S) gates.
Specifically, the action of these two gates on the Pauli operators
is

H 0, —> Oy, Oy —> Og,

2

S: o0,—> o0, o0, i00;.

Since the H and S gates can be implemented by braiding,
their application simply redefines the Majoranas involved in
the corresponding two-Majorana parity operator. Thus, instead
of physically braiding Majoranas, one can alternatively keep
track of the Majorana operators that define the o, and o, of
each physical qubit using a classical computer. In analogy to
Pauli tracking [46], we refer to this procedure as Majorana
tracking.

As a concrete example, consider the sequence of operations
shown in Fig. 1(a). Starting from the default encoding in
Eq. (1), an S gate takes the encoding to o, = iy ), and o, =
iy1y3. A subsequent H gate will exchange these two operators
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to o, =iy y3 and o, =iy y,. So instead of initializing the
qubit in a o, eigenstate, physically performing the two gates,
and then reading out the qubit in the o, basis, one can simply
initialize the qubit in a o, eigenstate and then measure the
0, = iy|Yy3 operator.

It should not be surprising that Clifford gates can be treated
entirely classically, as these gates can be efficiently simulated
on a classical computer by virtue of the Gottesman-Knill
theorem [47]. As this classical tracking of Pauli operators
can also be done with nontopological, e.g., superconducting,
qubits, it would appear that Majorana tracking does not
utilize braiding. However, conventional qubits still require a
hardware operation for the rotation of the Pauli basis during
readout. While for conventional qubits the angle of rotation
is susceptible to errors, with Majorana tracking the angle
is robust. Even though Majorana tracking eliminates any
hardware operation for single-qubit Clifford gates, it leads
to the same robust gates as braiding. In this sense, Majorana
tracking is braiding.

Therefore, Majorana tracking can also be used to probe the
non-Abelian statistics of Majorana zero modes. With Majorana
tracking, a fusion-rule detection experiment in the spirit
of Ref. [37] would correspond to alternating measurements
of o, and o,. If Majorana zero modes are present, the
measurement results will be entirely uncorrelated, whereas
repeated measurements of o, will always yield the same result.
In this way, the fusion-rule detection experiment probes the
robustness of the single-qubit Clifford gates.

B. Logical single-qubit Clifford gates: Color codes

The gates that can be implemented by Majorana track-
ing are physical gates on physical qubits. However, these
Majorana-based qubits only have a finite lifetime which is
set by processes that introduce errors, such as quasiparticle
poisoning. In order to quantum compute beyond the coherence
time of physical qubits, a quantum error-correcting code needs
to be used. This allows for fault-tolerant quantum computing,
which relies on combining many physical qubits into one
logical qubit. This not only replaces the physical error rate
by an (in principle) arbitrarily low logical error rate, but also
substitutes physical gates with logical gates.

It is desirable to use Majorana tracking for logical gates in
order to minimize the overhead of single-qubit Clifford gates.
But this can only be done if these gates are transversal gates of
the error-correcting code, i.e., if the logical H and S gates are
H; = H®" and §; = $®", where n is the number of physical
qubits in a logical qubit. This is precisely the reason why color
codes are a natural choice for Majorana-based qubits [26], as
their set of transversal gates are the Clifford gates.

Using triangular color codes [27,28], a logical qubit is
encoded by n physical qubits located at the vertices of
the triangle with hexagonal tiling shown in Fig. 1(b). The
figure shows a specific qubit with code distance d = 5, but
this construction can be generalized to arbitrary odd code
distances. As described above, each physical qubit effectively
corresponds to three Majorana fermions. The logical qubit is
initialized in the logical |0, ) state by initializing the n physical
qubits in the |0) state by measuring iy;y, of all physical
qubits, and then measuring the stabilizers of the code. These
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n — 1 stabilizers are defined by the faces of the hexagonally
tiled triangle, with each face defining an X-type stabilizer
Ox = 02" and a Z-type stabilizer Oz = o®", where m is
the number of qubits that are part of a face. In analogy to
Majorana surface codes [22,23], one can represent color codes
as Majorana fermion codes by identifying o, = iy;y, and
oy = iy»y3. Thus the stabilizers in Fig. 1(b) are products of
8 or 12 Majorana fermions. A color-code qubit can be read
out in any Pauli basis by measuring all physical qubits in the
corresponding basis.

Quantum error-correcting codes typically operate in cycles.
In each code cycle, the stabilizers are measured to determine
the error syndrome, errors are corrected, and logical gate
operations are performed. The single-qubit logical Clifford
gates are transversal in color codes, i.e., a logical H gate
corresponds to physical H gates on all qubits, whereas a logical
S gate is acombination of physical S and S' gates. For instance,
a conventional procedure for a logical S gate would be to
measure and correct the error syndrome, transversally perform
physical S and ST gates (e.g., by braiding), and again measure
the error syndrome and correct errors. With Majorana tracking,
the physical gate operations are replaced by an update of the o,
and o, operators of all physical qubits. While the o, operators
are unaffected by the S and ST gates, the o, operators are
changed from iy, y3 in the default encoding to =iy 3. In other
words, Majorana tracking modifies which Majorana fermions
are part of the stabilizer measurements. In the case of an S gate,
the X-type stabilizers 0 ®° are replaced by Y-type stabilizers
of,% in the following rounds of syndrome measurement, i.e.,
the X-type stabilizers are changed from products of iy, )3 to
products of i y;ys.

In this way, keeping track of the current Majorana com-
position of o, and o, for each physical qubit implements
logical single-qubit Clifford gates with Majorana color codes.
However, considering that, in the default encoding, the mea-
surement of X- and Z-type stabilizers automatically measures
the Y-type stabilizers as their product, it iS not necessary to
actually change the measured stabilizers after the application
of single-qubit Clifford gates. This is due to the fact that the
support of X and Z stabilizers of color-code qubits coincides.
Instead, Majorana tracking on the level of logical qubits,
similar to the tracking procedure on physical qubits, merely
updates the Majoranas measured during qubit readout. In
the previous example of a logical S gate, tracking changes
the X;-basis readout from a measurement of iy,y3 to the
measurement of iy;y;3 of all physical qubits. An appropriate
update of certain stabilizer operators will be necessary as soon
as CNOT gates are involved, because this introduces X and
Z stabilizers whose support does not coincide, as we discuss
in Sec. IV A.

Previously [26], we argued that Majorana-based qubits and
color codes are a natural fit, as transversal Clifford gates allow
for the use of braiding for logical gates. In the context of
the present work, this statement takes the equivalent form:
owing to braiding by Majorana tracking, Majorana-based
qubits can be read out in every Pauli basis without the need for
intermediate hardware operations. Similarly, due to transversal
Clifford gates, color-code qubits can be measured in every
logical Pauli basis without requiring intermediate logical gates.
Thus color codes in combination with Majorana-based qubits
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FIG. 2. (a) Single tetron [41] consists of two topological superconducting nanowires hosting four Majoranas y; . . . y4. The two wires are
bridged by an ordinary superconductor which fixes the total parity sector —y;y,y3ys. In addition, a coherent link formed by a topological
superconducting nanowire hosting Majoranas y,, and y,, with a fixed parity is part of the basic building block. The three Majorana nanowires
are connected to a semiconducting nanowire network via gate-tunable tunnel couplings. (b) A network of tetrons forms a square lattice of
physical qubits. (c) In such a square lattice, a triangular color-code qubit can be defined in a brick wall geometry. (d) Configurations of the
tunnel couplings used to measure three different stabilizers, which are either products of y;y» of each tetron, or y,y3, or y;1y3. One can verify
that, in all three cases, the circular paths only contain the corresponding Majoranas of each tetron and Majoranas that belong to coherent links.

reduce the overhead of logical single-qubit Clifford gates to a
minimum.

III. IMPLEMENTATION WITH TETRONS

In this section, we present a proof-of-principle imple-
mentation of a Majorana color code in a nanowire array,
which differs from our earlier setup [26] in two essential
ways. First, the present implementation relies on recent
suggestions to realize Majorana-based topological qubits using
only parallel topological superconducting nanowires. Second,
as a consequence of implementing braiding at the code level
by Majorana tracking, Majoranas no longer need to be moved
within the network.

Specifically, we present an implementation in a network
of tetrons. A tetron [39,41] is a qubit [Fig. 2(a)] that
consists of two topological superconducting nanowires with
four Majoranas y; ...ys with fixed total parity —y1y2y3V4.
The fixed parity sector not only protects the qubit from
quasiparticle poisoning, but also enables the use of the fourth
Majorana y4 for quantum computation. In the even parity
sector, we can identify o, = iy, = iysysand o, = iyys =
iy1y4. Furthermore, each tetron contains a third floating
Majorana nanowire with Majoranas y, and y,, and fixed parity
iy,Yp acting as a coherent link. Gate-tunable tunnel couplings
connect the three topological superconducting nanowires to
a semiconductor network. The network of tetrons shown in
Fig. 2(b) corresponds to the architecture described in Ref. [41],
but with two vertical semiconductor wires between adjacent
tetrons, instead of just one. (However, this is not a requirement,

as the implementation of a color code is also possible in the
setup described in Ref. [41]; see Appendix A.) The tetron
qubits form a square lattice which can be used to encode
color-code qubits in a brick wall geometry; see Fig. 2(c).

With tetrons, 2n-Majorana parity operators are measured by
opening tunnel couplings between tetrons such that they form
a closed path, as discussed in Ref. [41]. The semiconducting
segments that couple neighboring tetrons form quantum dots.
Their energy levels are shifted by virtual processes that tunnel
electrons around this closed path. As these processes involve
each Majorana operator along this path exactly once, the
energy shift depends on the product of the Majoranas, i.e.,
on the 2n-Majorana parity. Suitable spectroscopy on the dots
can thus be used to measure this parity. Essentially, this mea-
sures the product of all Majoranas along a closed loop formed
by the gate-tunable tunnel couplings, thereby implementing
local 2n-Majorana parity measurements.

Consider the configuration of the tunnel couplings in the
left panel of Fig. 2(d). The circular path formed by the coupled
tetrons involves the y; and y, Majoranas of each tetron, and
four Majoranas that belong to coherent links. Since the parity
of the coherent links is known, this configuration can be used to
measure the 12-Majorana operator that corresponds to o*z®6 in
the default encoding. The center panel shows a configuration
that measures the product of y, and y3; Majoranas of each
tetron, corresponding to a o ®° operator in the default encoding.
Note that since the total parity sector of each tetron is fixed,
iy2y3 = iy1ys. It is also possible to measure 0;8’6 stabilizers,
whose configuration is shown in the right panel of Fig. 2(d)
and does not require the use of coherent links.
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o®4:

FIG. 3. Tetron tunnel coupling configurations for the measure-
ment of the four-qubit stabilizers of the surface code.

IV. UNIVERSAL QUANTUM COMPUTATION

Having discussed logical single-qubit Clifford gates, two
more gates are required for universal quantum computation: a
logical controlled-not (CNOT) gate and a logical T gate, where
T = exp(io,/8). As discussed in Ref. [26] for topological
superconductor networks with branched geometries, these
operations can be implemented by lattice surgery and magic
state distillation, respectively. Here, we adapt this scheme to
architectures where Majoranas cannot be moved, such that
only the aforementioned stabilizer measurements and physical
T gates are required.

A. Long-range CNOT gates

A logical CNOT gate between two color-code qubits can
be implemented using lattice surgery with the help of an
ancilla qubit [32]. This scheme effectively realizes the circuit
identity shown in Fig. 4(a) using an ancilla qubit initialized
in the o, eigenstate |4). A CNOT gate corresponds to a
Z Z-parity (o, ® o,) measurement between the control qubit
and the ancilla, a subsequent X X -parity measurement between
ancilla and target, and a final o, measurement of the ancilla
qubit. Note that the protocol requires parity measurements
between logical qubits. Lattice surgery is a fault-tolerant
protocol for such parity measurements requiring only the
measurement of additional stabilizer operators straddling the

(a) CNOT by parity measurement

(1 2)
‘ control ‘ target
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adjacent boundaries of two logical qubits. Essentially, lattice
surgery measures the product of the logical operators defined
on the two boundaries.

These boundary operators depend on the kind of logical
qubit that is used. Triangular color-code qubits have three
boundaries: a red, a green, and a blue edge. Strings of o, and
o, operators along any of these edges are logical Z; and X,
operators, respectively, as illustrated in Fig. 1(b). Surface code
qubits, on the other hand, have pairs of opposing X and Z
edges, also referred to as rough and smooth edges, and are
drawn as gray and purple edges in Fig. 1(c). The logical Z;
operator is a product of o, operators along any of the two
purple boundaries, whereas X, is a string of o, operators
along a gray boundary. With tetrons, the measurement of the
four-qubit surface code stabilizer operators 02?3’4 and o®* is
similar to the color-code stabilizer measurements, as shown
in Fig. 3. In the following protocols, we use surface codes
instead of color codes to encode ancilla qubits, as the CNOT
protocol does not require the use of any transversal Clifford
gates on the ancillas. Apart from lattice surgery, the only
required surface code operations are the initialization in a
o,-basis eigenstate, and a 0, -basis measurement, both of which
amount to o, and o, measurements of all physical qubits, and to
stabilizer measurements. The main advantage of using surface
code ancillas for CNOTs between color-code qubits is that,
compared to color-code ancillas, they require fewer qubits and
feature lower-weight stabilizers, as we discuss in Appendix B.

We first discuss logical CNOT gates between neighboring
color-code qubits; see Fig. 4(b). The shape of the surface code
qubit is chosen such that one Z boundary is adjacent to the
control qubit and an X boundary is next to the target qubit.
In the first step (b2), the X stabilizers along the boundary
with the control qubit are merged to form six-qubit stabilizers
(dark gray) and new Z stabilizers (light purple) are introduced.
While this is not evident from the figure, the boundary
Z stabilizers of the color-code qubit remain unchanged. In
the new configuration (b2), all stabilizers commute, and the
number of stabilizers has increased by one, i.e., one bit of
information is measured. As the gray boundary stabilizers
are merely the product of the previously known boundary
stabilizers, the only nontrivial measurement outcome is given
by the purple boundary stabilizers. Since they contain each
boundary qubit exactly once, their product is precisely the

(b) Nearest-neighbor CNOT

—

[t)

FIG. 4. (a) Quantum circuit corresponding to the logical CNOT gate between a control |c) and target |¢) by lattice surgery, using an ancilla
qubit initialized in the |+) state. First, the ZZ parity o, ® o, between control and ancilla is measured. Next, the X X parity o, ® o, between
ancilla and target is measured, and the ancilla is read out in the o, basis. The three measurement outcomes are used to determine a final Pauli
correction. (b) Nearest-neighbor CNOT between color-code qubits using a surface code ancilla. Lattice surgery between the green color-code
boundary and the purple surface code boundary (b2) measures the ZZ parity, whereas surgery with the gray surface code boundary (b3)

constitutes an X X -parity measurement.
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FIG. 5. Tetron tunnel coupling configurations to measure the
lattice surgery boundary stabilizers between control and ancilla qubit
for the case of a preceding H gate on the control qubit. The measured
operators are o.®? ® o.®? (light purple) and 6®* ® o (dark gray).
This effectively describes a logical o, ® o, measurement between
control and ancilla. This protocol can be straightforwardly adapted to
measure any other product of two logical Pauli operators.

ZZ parity between control and ancilla. Thus lattice surgery
provides a fault-tolerant logical parity measurement. Similarly,
in the next step (b3), lattice surgery merges the Z stabilizers
along the X boundary of the surface code ancilla and a
boundary of the target qubit. The product of gray boundary
X stabilizers yields the X X parity. Finally, the surface code
ancilla can be measured in the o, basis by measuring all
physical qubits and applying classical error correction, thereby
completing the protocol of Fig. 4(a).

The role of Majorana tracking in this protocol is to appropri-
ately update the composition of the stabilizers measured during
lattice surgery. The protocol introduces X and Z stabilizers
with noncoinciding support along the boundaries of the qubits.
Thus these stabilizers need to be appropriately updated by
the tracking procedure described in Sec. II B. For instance,
a preceding H gate on the control qubit in Fig. 4 would
change the light purple boundary stabilizers in (b1) from 0z®4 to
o ¥? ® 02, Accordingly, tracking would also change the dark
gray boundary stabilizers to az®4 ® 0 ®? and the red four-qubit
boundary stabilizers of the control qubit to o®*. In Fig. 5,
we show the tetron tunnel coupling configurations used to
measure these updated stabilizers for this particular example,
but the procedure straightforwardly generalizes to all other
possible cases. An update for the nonboundary color-code
stabilizers unaffected by lattice surgery can still be avoided,
as their X- and Z-stabilizer support still coincides during the
lattice surgery protocol.

Surface code ancillas are also useful for CNOT gates
between color-code qubits that are far away from each other.
Lattice surgery can be used to measure the Z Z parities between
the control qubit and multiple ancilla qubits simultaneously
[31], thereby initializing multiple ancillas at the same time.
Consider the situation in Fig. 6(a), where the distance between
two separated color-code qubits is bridged by two surface code
ancillas. Lattice surgery (a2) can simultaneously measure the
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Z Z parities between control and first ancilla and between both
ancillas. This is equivalent to parity measurements between
control and both ancillas, as the the ZZ parity between
control and second ancilla is given by the product of both
measurements. Since the two Z boundaries of the long ancilla
are at opposite ends of the qubit, this lattice surgery step
prepares an ancilla qubit adjacent to the distant target qubit for
the next X X-parity measurement. Thus this protocol yields a
long-range CNOT gate between arbitrarily distant qubits with
essentially the same time overhead as the nearest-neighbor
CNOT. The unused long ancilla qubit cannot be discarded right
away, as it is still entangled with the control qubit, but needs
to be read out in the o, basis with outcome m by measuring
all physical qubits in the o, basis, leading to a o] correction
on the control qubit.

B. Multitarget CNOTSs for magic state distillation

Clifford gates and physical T gates are sufficient for
universal quantum computing. One type of protocol using
these ingredients for logical T gates is magic state distillation,
whose precision scales with the protocol length. In such
protocols, a physical magic state is initialized by applying
a physical T gate to a physical qubit in the [+) state.
With tetrons [41], physical T gates can be implemented
via a measurement-based analog of the parity echo protocol
introduced in Ref. [48]. The resulting physical magic state is
converted into a (faulty) logical magic state by code injection
[26,32], which requires only stabilizer measurements. Magic
state distillation protocols convert many faulty magic states
into fewer magic states with higher fidelity. Typically, these
protocols rely on multitarget CNOT gates, i.e., CNOTs with
one control qubit but multiple target qubits. For instance,
the circuit corresponding to the 15-to-1 distillation protocol
[28,33] consists of 34 CNOT gates. But since many of these
CNOTs have the same control qubit, the protocol actually
requires only five multitarget CNOTs.

Fortunately, lattice surgery can be used to implement
multitarget CNOTs with the same time overhead as single
CNOTs, as we show in Fig. 6(b). Here, lattice surgery measures
the ZZ parities between the control and each ancilla qubit
(b2). Therefore, each of the ancillas is treated like an ancilla
qubit after step (2) of the protocol in Fig. 4(a), but for
multiple simultaneous CNOT protocols. After the X X-parity
measurements between ancillas and their targets (b3), the
ancillas that were used for CNOTs are read out in the o, basis,
whereas the ancillas that were used to bridge long distances
are read out in the o, basis.

In this way, we establish color-to-surface code lattice
surgery as a useful tool for fault-tolerant long-range multitarget
CNOT gates between color-code qubits. Importantly, for a
fixed code distance, the overhead of our protocol scales very
favorably with the control-target separation s. As to the space
overhead, strings of errors that connect the gray edges (or
X boundaries) of the long surface code qubit during the
measurement of the ZZ parities can lead to errors in the
CNOT protocol. While these error strings are suppressed
exponentially in the width of the surface code qubits, the
number of possible strings grows linearly with their length.
Thus the width needs to increase with O(Ins) in order to
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FIG. 6. (a) By simultaneously measuring the ZZ parities between the control and two ancillas (a2), one can use a long ancilla qubit for
long-range CNOTSs. The unused long ancilla is read out in the o, basis. (b) The same protocol can be used for long-range multitarget CNOTs,
where multiple ZZ- and X X-parity measurements (b2),(b3) are carried out simultaneously. All protocols have a space overhead that scales
with O(s Ins) of the control-target separation s, and a time overhead that scales with O(In s).

maintain the same CNOT accuracy. With a linearly growing
length of the surface code qubits, the space overhead of
the lattice surgery CNOT protocol is O(s Ins). For the time
overhead, one needs to take the classical overhead of decoding
and the effect of measurement errors during syndrome readout
into account. There exist surface code decoders with a runtime
of O(Ins) [49]. The correction of measurement errors requires
recording multiple rounds of syndrome extraction for one code
cycle, depending on the measurement fidelity [50], effectively
extending the code into a third time dimension. These “time
errors” are suppressed exponentially with the number of
measurement rounds, but the number of possible error strings
increases linearly with s. Thus, similar to the space overhead,
measurement errors increase the time overhead by O(In s), and
the total time overhead is still only O(In s).

Note that the code distances (given by the width) of the
ancilla qubits need not be as high as the code distance
of the color-code qubits, since the ancillas only need to
survive for the few code cycles of the CNOT protocol, as
opposed to data qubits that may need to survive for the entire
quantum computation. In our example, the ancilla qubits have
distances d = 3, d = 4, and d = 5 in the protocols in Figs. 4
and 6. However, we expect that for most practical quantum
computations, the entire space allocated for CNOT ancillas
will be in use for different CNOTs essentially for the entire

duration of the computation. Thus, for most practical purposes,
the width of the ancilla qubits and the code distance of the
color-code qubits can be chosen to be equal [as in Fig. 6(b)],
and the logarithmic scaling of the ancilla width can be ignored.
With this approach, all parts of the code are protected against
error strings of length (d — 1)/2 during each code cycle.
The logarithmic scaling merely implies that for a quantum
computation involving n logical qubits, the necessary code
distance to reach a target error probability at the end of the
quantum computation scales with O(In n). Again, we point out
that by identifying two copies of surface code qubits as one
color-code qubit [51], this CNOT protocol can be done entirely
using color codes, as we show in Appendix B. However, this
uses more physical qubits than the surface code approach, and
requires the measurement of eight-qubit stabilizers.

Both surface and color codes can be implemented on the
square lattice of tetrons shown in Fig. 2, since lattice surgery
only requires the measurement of additional stabilizers, i.e., the
measurement of 4-, 8-, and 12-Majorana operators. While our
examples have illustrated logical qubits arranged on a line, this
protocol can be straightforwardly extended to two-dimensional
arrangements of logical qubits. One possible 2D arrangement
of color-code qubits is shown in Fig. 7, where qubits are
arranged in blocks of six. The figure also shows two surface
code ancilla qubits that can be used for a CNOT between
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FIG. 7. Example of a two-dimensional arrangement of color-code qubits on a square lattice, and an example of surface code ancillas used
for a long-range CNOT between distant qubits. For the next CNOT gate, these ancillas are discarded and the space between qubit blocks can
be used to initialize different ancillas. The separation between blocks of color-code qubits dictates the maximum code distance of the surface
code ancillas and influences the number of CNOT gates that can be performed in parallel. With larger separation, multiple “lanes” of ancilla
qubits can fit between blocks, allowing for multiple overlapping multitarget CNOT gates.

distant color-code qubits. In this way, lattice surgery can
provide long-range communication between any two logical
qubits with essentially constant time overhead.

V. CONCLUSION

Current ideas for realizing a Majorana-based quantum
computer rely on nanowire arrays such as networks of
tetrons that only allow for local Majorana parity operator
measurements and physical 7 gates. Here, we have shown how
Majorana-based qubits can be combined with color codes for
universal fault-tolerant quantum computation without the need
for moving Majoranas. In our architecture, logical single-qubit
Clifford gates are implemented by Majorana tracking, which
minimizes their overhead. Furthermore, we combine surface
codes with color codes using surface-to-color-code lattice
surgery, which yields long-range multitarget CNOT gates with
a time overhead that scales only with O(Ins) of the distance
s between the control and target qubits and a space overhead
that scales with O(s Ins). Moreover, this approach features a

lower space overhead and lower-weight stabilizers compared
to a purely color-code-based scheme.

Logical T gates are the most expensive operation in this
scheme, as they require magic state distillation. Their overhead
can be reduced by improving the fidelity of physical 7' gates,
and by exploring faster distillation protocols and alternatives
to magic state distillation. As to the concrete physical imple-
mentation, there are several proposals for architectures that
implement the two operations required of nanowire arrays.
Still, none of these architectures are particularly optimized
towards error correction with color codes. Optimizing for fast
stabilizer measurement, high measurement fidelity, and low
physical error rate is crucial to ensure scalability. Exploring
efficient decoding schemes for color and surface code qubits
can further reduce the classical overhead.

What is more, our scheme can also be applied to nontopo-
logical architectures, such as superconducting qubits, albeit
without the advantages of robust physical single-qubit Clifford
gates and ancilla-free syndrome readout. For this reason,
these architectures usually favor surface codes over color
codes due to the easier four-qubit stabilizer measurements of

0®6 Hl 1Y5,175,2 U®6 Hl 175,274,3 0®6 H ZFYj,lfy],
J J
X : ']
: | Jj.c | : | ;1' | |
. | |
. | . | ﬁt |
: il
—1 | | | |

FIG. 8. Tunnel coupling configurations for color-code stabilizer measurements with tetrons that feature only one vertical semiconductor

wire between tetrons, as in the architecture of Ref. [41].
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surface codes compared to the weight-six stabilizers of color
codes. Even though surface codes do not feature transversal
single-qubit Clifford gates, they can still be used to implement
single-qubit Clifford gates with zero time overhead [43,52,53]
by encoding logical qubits in surface code twist defects [54].
Still, surface code qubits in this scheme suffer from a lack of
easy o, measurements, and require ~d? physical qubits for
each logical qubit, while the color-code approach discussed in
this work only requires N%dz physical qubits to achieve the
same code distance d.

We note that the twist-based triangle codes presented in
Ref. [52] also feature a space overhead of ~§d2 and manage
to implement easy o, measurements, but they encode the
logical oy, oy, and o, information in each of the three sides
of the triangles separately. Therefore, these qubits cannot be
packed as densely as the color-code qubits in Fig. 7, since all
three sides of each triangle need to be accessible by lattice
surgery. This either implies an increased space overhead by
requiring some free space as padding around the triangles, or
it introduces a time overhead for logical single-qubit Clifford
gates by requiring code operations for the reorientation of
triangle qubits.

The spatial overhead of the color-code scheme, on the other
hand, can be reduced even further to N%dz by using 4.8.8 color
codes [28] instead of the 6.6.6 color codes discussed in this
work. However, this comes at the price of a higher-weight
stabilizer, as 4.8.8 color codes feature eight-qubit stabilizers,
instead of just six-qubit stabilizers. If higher-weight stabilizers
are not significantly more difficult to measure, which could
hold true for Majorana-based qubits, it is advantageous to use
the color-code-based scheme instead of a pure surface code
architecture in order to reduce the overhead of fault-tolerant
quantum computing.
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APPENDIX A: STABILIZER MEASUREMENTS
WITH SINGLE-WIRE TETRONS

Here, we show how the measurement of the color-code
stabilizers shown in Fig. 2 can be implemented in a network
of tetrons that features only one vertical semiconductor
wire between tetrons, which is the architecture discussed in
Ref. [41]. The corresponding tunnel coupling configurations
in this architecture are shown in Fig. 8.

In the configuration of Fig. 2 with two vertical wires, all
stabilizers of the same color can be measured simultaneously.
This is no longer the case in Fig. 8, as these measurements

PHYSICAL REVIEW B 96, 205413 (2017)

long color code ancilla

FIG. 9. (a) Qubit arrangement for long-range CNOTs by lattice
surgery using a color-code ancilla. (b) The long color-code qubit used
in this protocol actually encodes two logical qubits, as it has two red
boundaries and two green boundaries. Red-to-red strings define the
logical operators Z(Ll) and X (Lz)’ while green-to-green strings are the
o 2 (1)

perators Z;” and X .

use a vertical wire or a coherent link of a neighboring six-
qubit block. In particular, the oz®6 and 0®® measurements
overlap with their left (or right) neighbors, whereas the 0;86
measurement overlaps with the upper neighbor. Therefore,
syndrome extraction requires two measurement rounds for the
measurement of each stabilizer type, as opposed to just one.

APPENDIX B: LATTICE SURGERY WITH
COLOR-CODE ANCILLAS

The long-range CNOT protocol can also be done using
color-code ancillas. Here, the long surface code qubit is
replaced by a long color-code qubit; see Fig. 9(a). This is
a color-code qubit with two red and two green boundaries, as
shown in Fig. 9(b). It is defined by n physical qubits and n — 2
stabilizers, and therefore encodes two logical qubits. However,
since the code distance of such a qubit is always even, the
support of the X; and Z; operators of the individual logical
qubits cannot coincide. Instead, strings of Pauli operators
that connect two green boundaries encode the operators X (Ll)

and Z(Lz), and red-to-red strings are X (Lz) and Z(Ll), where the
superscript labels the logical qubit.

In this way, long color-code qubits are equivalent to two
surface code qubits on top of each other with a relative rotation
of 90°. Therefore, the long-range CNOT protocol is the same
as for surface code ancillas, but only uses one of the two
encoded logical qubits. This redundancy is also manifested in a
higher number of physical qubits than in surface code ancillas.
Moreover, lattice surgery between color codes requires eight-
qubit stabilizer measurements.

[1] A. Kitaev, Fault-tolerant quantum computation by anyons,
Ann. Phys. (NY) 303, 2 (2003).

[2] C.Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D. Sarma,
Non-Abelian anyons and topological quantum computation,
Rev. Mod. Phys. 80, 1083 (2008).

[3] B. M. Terhal, Quantum error correction for quantum memories,
Rev. Mod. Phys. 87, 307 (2015).

[4] L. Fu and C. L. Kane, Superconducting Proximity Effect and
Majorana Fermions at the Surface of a Topological Insulator,
Phys. Rev. Lett. 100, 096407 (2008).

205413-9


https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/RevModPhys.87.307
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.100.096407

DANIEL LITINSKI AND FELIX VON OPPEN

[5] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids and
Majorana Bound States in Quantum Wires, Phys. Rev. Lett.
105, 177002 (2010).

[6] R. M. Lutchyn, J. D. Sau, and S. D. Sarma, Majorana
Fermions and a Topological Phase Transition in Semiconductor-
Superconductor Heterostructures, Phys. Rev. Lett. 105, 077001
(2010).

[7] J. Alicea, New directions in the pursuit of Majorana fermions in
solid state systems, Rep. Prog. Phys. 75, 076501 (2012).

[8] C. W.J. Beenakker, Search for Majorana fermions in supercon-
ductors, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).

[9] V. Mourik, K. Zuo, S. M. Frolov, S. R. Plissard, E. P. a. M.
Bakkers, and L. P. Kouwenhoven, Signatures of Majorana
fermions in hybrid superconductor-semiconductor nanowire
devices, Science 336, 1003 (2012).

[10] A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, and H.
Shtrikman, Zero-bias peaks and splitting in an Al-InAs nanowire
topological superconductor as a signature of Majorana fermions,
Nat. Phys. 8, 887 (2012).

[11] S. M. Albrecht, A. P. Higginbotham, M. Madsen, F. Kuemmeth,
T. S. Jespersen, J. Nyg, P. Krogstrup, and C. M. Marcus,
Exponential protection of zero modes in Majorana islands,
Nature (London) 531, 206 (2016).

[12] M. Deng, S. Vaitiekénas, E. Hansen, J. Danon, M. Leijnse,
K. Flensberg, J. Nygard, P. Krogstrup, and C. Marcus, Majorana
bound state in a coupled quantum-dot hybrid-nanowire system,
Science 354, 1557 (2016).

[13] H. J. Suominen, M. Kjaergaard, A. R. Hamilton, J. Shabani,
C. J. Palmstrgm, C. M. Marcus, and F. Nichele, Zero-Energy
Modes from Coalescing Andreev States in a Two-Dimensional
Semiconductor-Superconductor Hybrid Platform, Phys. Rev.
Lett. 119, 176805 (2017).

[14] D. J. van Woerkom, A. Geresdi, and L. P. Kouwenhoven,
One minute parity lifetime of a NbTiN Cooper-pair transistor,
Nat. Phys. 11, 547 (2015).

[15] A. P. Higginbotham, S. M. Albrecht, G. KirSanskas, W. Chang,
F. Kuemmeth, P. Krogstrup, T. S. Jespersen, J. Nygard, K.
Flensberg, and C. M. Marcus, Parity lifetime of bound states
in a proximitized semiconductor nanowire, Nat. Phys. 11, 1017
(2015).

[16] S. M. Albrecht, E. B. Hansen, A. P. Higginbotham, F.
Kuemmeth, T. S. Jespersen, J. Nygard, P. Krogstrup, J. Danon,
K. Flensberg, and C. M. Marcus, Transport Signatures of
Quasiparticle Poisoning in a Majorana Island, Phys. Rev. Lett.
118, 137701 (2017).

[17] D. Rainis and D. Loss, Majorana qubit decoherence by quasi-
particle poisoning, Phys. Rev. B 85, 174533 (2012).

[18] J. Preskill, Reliable quantum computers, Proc. R. Soc. London
A 454, 385 (1998).

[19] S. Bravyi, B. M. Terhal, and B. Leemhuis, Majorana fermion
codes, New J. Phys. 12, 083039 (2010).

[20] S. Vijay, T. H. Hsieh, and L. Fu, Majorana Fermion Surface Code
for Universal Quantum Computation, Phys. Rev. X 5, 041038
(2015).

[21] S. Vijay and L. Fu, Physical implementation of a Majorana
fermion surface code for fault-tolerant quantum computation,
Phys. Scr. T168, 014002 (2016).

[22] L. A. Landau, S. Plugge, E. Sela, A. Altland, S. M. Albrecht,
and R. Egger, Towards Realistic Implementations of a Majorana
Surface Code, Phys. Rev. Lett. 116, 050501 (2016).

PHYSICAL REVIEW B 96, 205413 (2017)

[23] S. Plugge, L. A. Landau, E. Sela, A. Altland, K. Flensberg, and
R. Egger, Roadmap to Majorana surface codes, Phys. Rev. B 94,
174514 (2016).

[24] S. Vijay and L. Fu, Quantum error correction for complex and
Majorana fermion qubits, arXiv:1703.00459.

[25] M. B. Hastings, Small Majorana
arXiv:1703.00612.

[26] D. Litinski, M. S. Kesselring, J. Eisert, and F. von Oppen,
Combining Topological Hardware and Topological Software:
Color-Code Quantum Computing with Topological Supercon-
ductor Networks, Phys. Rev. X 7, 031048 (2017).

[27] H. Bombin and M. A. Martin-Delgado, Topological Quantum
Distillation, Phys. Rev. Lett. 97, 180501 (2006).

[28] A. J. Landahl, J. T. Anderson, and P. R. Rice, Fault-tolerant
quantum computing with color codes, arXiv:1108.5738.

[29] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.
Cleland, Surface codes: Towards practical large-scale quantum
computation, Phys. Rev. A 86, 032324 (2012).

[30] E. T. Campbell, B. M. Terhal, and C. Vuillot, Roads towards
fault-tolerant universal quantum computation, Nature (London)
549, 172 (2017).

[31] C. Horsman, A. G. Fowler, S. Devitt, and R. V. Meter, Surface
code quantum computing by lattice surgery, New J. Phys. 14,
123011 (2012).

[32] A.J. Landahl and C. Ryan-Anderson, Quantum computing by
color-code lattice surgery, arXiv:1407.5103.

[33] S. Bravyi and A. Kitaev, Universal quantum computation with
ideal Clifford gates and noisy ancillas, Phys. Rev. A 71, 022316
(2005).

[34] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A.
Fisher, Non-Abelian statistics and topological quantum infor-
mation processing in 1D wire networks, Nat. Phys. 7, 412
(2011).

[35] B. Van Heck, A. Akhmerov, F. Hassler, M. Burrello, and C.
Beenakker, Coulomb-assisted braiding of Majorana fermions
in a Josephson junction array, New J. Phys. 14, 035019
(2012).

[36] T.Hyart, B. van Heck, I. C. Fulga, M. Burrello, A. R. Akhmerov,
and C. W. J. Beenakker, Flux-controlled quantum computation
with Majorana fermions, Phys. Rev. B 88, 035121 (2013).

[37] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon,
M. Leijnse, T. S. Jespersen, J. A. Folk, C. M. Marcus, K.
Flensberg, and J. Alicea, Milestones Toward Majorana-Based
Quantum Computing, Phys. Rev. X 6, 031016 (2016).

[38] F. L. Pedrocchi and D. P. DiVincenzo, Majorana Braiding with
Thermal Noise, Phys. Rev. Lett. 115, 120402 (2015).

[39] S.Plugge, A. Rasmussen, R. Egger, and K. Flensberg, Majorana
box qubits, New J. Phys. 19, 012001 (2017).

[40] S. Vijay and L. Fu, Teleportation-based quantum information
processing with Majorana zero modes, Phys. Rev. B 94, 235446
(2016).

[41] T. Karzig, C. Knapp, R. M. Lutchyn, P. Bonderson, M. B.
Hastings, C. Nayak, J. Alicea, K. Flensberg, S. Plugge, Y.
Oreg, C. M. Marcus, and M. H. Freedman, Scalable designs for
quasiparticle-poisoning-protected topological quantum compu-
tation with Majorana zero modes, Phys. Rev. B 95, 235305
(2017).

[42] P. Bonderson, M. Freedman, and C. Nayak, Measurement-
Only Topological Quantum Computation, Phys. Rev. Lett. 101,
010501 (2008).

fermion codes,

205413-10


https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1146/annurev-conmatphys-030212-184337
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1126/science.1222360
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nphys2479
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1038/nature17162
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1126/science.aaf3961
https://doi.org/10.1103/PhysRevLett.119.176805
https://doi.org/10.1103/PhysRevLett.119.176805
https://doi.org/10.1103/PhysRevLett.119.176805
https://doi.org/10.1103/PhysRevLett.119.176805
https://doi.org/10.1038/nphys3342
https://doi.org/10.1038/nphys3342
https://doi.org/10.1038/nphys3342
https://doi.org/10.1038/nphys3342
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/nphys3461
https://doi.org/10.1038/nphys3461
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevLett.118.137701
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1103/PhysRevB.85.174533
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1098/rspa.1998.0167
https://doi.org/10.1088/1367-2630/12/8/083039
https://doi.org/10.1088/1367-2630/12/8/083039
https://doi.org/10.1088/1367-2630/12/8/083039
https://doi.org/10.1088/1367-2630/12/8/083039
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1103/PhysRevX.5.041038
https://doi.org/10.1088/0031-8949/T168/1/014002
https://doi.org/10.1088/0031-8949/T168/1/014002
https://doi.org/10.1088/0031-8949/T168/1/014002
https://doi.org/10.1088/0031-8949/T168/1/014002
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevLett.116.050501
https://doi.org/10.1103/PhysRevB.94.174514
https://doi.org/10.1103/PhysRevB.94.174514
https://doi.org/10.1103/PhysRevB.94.174514
https://doi.org/10.1103/PhysRevB.94.174514
http://arxiv.org/abs/arXiv:1703.00459
http://arxiv.org/abs/arXiv:1703.00612
https://doi.org/10.1103/PhysRevX.7.031048
https://doi.org/10.1103/PhysRevX.7.031048
https://doi.org/10.1103/PhysRevX.7.031048
https://doi.org/10.1103/PhysRevX.7.031048
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1103/PhysRevLett.97.180501
http://arxiv.org/abs/arXiv:1108.5738
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1038/nature23460
https://doi.org/10.1038/nature23460
https://doi.org/10.1038/nature23460
https://doi.org/10.1038/nature23460
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/14/12/123011
https://doi.org/10.1088/1367-2630/14/12/123011
http://arxiv.org/abs/arXiv:1407.5103
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1038/nphys1915
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1088/1367-2630/14/3/035019
https://doi.org/10.1103/PhysRevB.88.035121
https://doi.org/10.1103/PhysRevB.88.035121
https://doi.org/10.1103/PhysRevB.88.035121
https://doi.org/10.1103/PhysRevB.88.035121
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevX.6.031016
https://doi.org/10.1103/PhysRevLett.115.120402
https://doi.org/10.1103/PhysRevLett.115.120402
https://doi.org/10.1103/PhysRevLett.115.120402
https://doi.org/10.1103/PhysRevLett.115.120402
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1088/1367-2630/aa54e1
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.94.235446
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevB.95.235305
https://doi.org/10.1103/PhysRevLett.101.010501
https://doi.org/10.1103/PhysRevLett.101.010501
https://doi.org/10.1103/PhysRevLett.101.010501
https://doi.org/10.1103/PhysRevLett.101.010501

BRAIDING BY MAJORANA TRACKING AND LONG-RANGE ...

[43] M. B. Hastings and A. Geller, Reduced space-time and time
costs using dislocation codes and arbitrary ancillas, Quantum
Info. Comput. 15, 962 (2015).

[44] D. J. Clarke, J. D. Sau, and S. D. Sarma, A Practical
Phase Gate for Producing Bell Violations in Majorana Wires,
Phys. Rev. X 6, 021005 (2016).

[45] H. P. Nautrup, N. Friis, and H. J. Briegel, Fault-tolerant
interface between quantum memories and quantum processors,
arXiv:1609.08062.

[46] A. Paler, S. Devitt, K. Nemoto, and I. Polian, Software-based
Pauli tracking in fault-tolerant quantum circuits, in Design,
Automation and Test in Europe Conference and Exhibition
(IEEE, New York, 2014), pp. 1-4.

[47] D. Gottesman, The Heisenberg representation of quantum
computers, Proc. XXII Int. Coll. Group. Th. Meth. Phys. 1,
32 (1999).

PHYSICAL REVIEW B 96, 205413 (2017)

[48] T. Karzig, Y. Oreg, G. Refael, and M. H. Freedman, Universal
Geometric Path to a Robust Majorana Magic Gate, Phys. Rev.
X 6,031019 (2016).

[49] G. Duclos-Cianci and D. Poulin, Fast Decoders for Topological
Quantum Codes, Phys. Rev. Lett. 104, 050504 (2010).

[50] E. Dennis, A. Kitaev, A. Landahl, and J. Preskill, Topological
quantum memory, J. Math. Phys. 43, 4452 (2002).

[51] A. Kubica, B. Yoshida, and F. Pastawski, Unfolding the color
code, New J. Phys. 17, 083026 (2015).

[52] T. J. Yoder and I. H. Kim, The surface code with a twist,
Quantum 1, 2 (2017).

[53] D. Litinski and F. von Oppen, Lattice surgery with a twist:
Simplifying Clifford gates of surface codes, arXiv:1709.02318.

[54] H. Bombin, Topological Order with a Twist: Ising Anyons
from an Abelian Model, Phys. Rev. Lett. 105, 030403
(2010).

205413-11


https://doi.org/10.1103/PhysRevX.6.021005
https://doi.org/10.1103/PhysRevX.6.021005
https://doi.org/10.1103/PhysRevX.6.021005
https://doi.org/10.1103/PhysRevX.6.021005
http://arxiv.org/abs/arXiv:1609.08062
https://doi.org/10.1103/PhysRevX.6.031019
https://doi.org/10.1103/PhysRevX.6.031019
https://doi.org/10.1103/PhysRevX.6.031019
https://doi.org/10.1103/PhysRevX.6.031019
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1103/PhysRevLett.104.050504
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1063/1.1499754
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.1088/1367-2630/17/8/083026
https://doi.org/10.22331/q-2017-04-25-2
https://doi.org/10.22331/q-2017-04-25-2
https://doi.org/10.22331/q-2017-04-25-2
https://doi.org/10.22331/q-2017-04-25-2
http://arxiv.org/abs/arXiv:1709.02318
https://doi.org/10.1103/PhysRevLett.105.030403
https://doi.org/10.1103/PhysRevLett.105.030403
https://doi.org/10.1103/PhysRevLett.105.030403
https://doi.org/10.1103/PhysRevLett.105.030403



