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Two-dimensional px + ipy topological superconductors host gapless Majorana edge modes, as well as
Majorana bound states at the core of h/2e vortices. Here we establish the possibility of realizing the fractional
counterpart of this phase: a fractional chiral superconductor. This exotic phase is shown to give rise to a plethora
of non-Abelian bulk excitations and a chiral Z2m parafermion theory on the edge of the sample, where m is an
odd integer. In addition, we demonstrate that Z2m parafermionic bound states reside at the cores of h/2e vortices.
In certain geometries, the system can support a fractional Josephson junction with 4πm periodicity, reflecting
the underlying non-Abelian excitations. Finally, we show that the tunneling density of states associated with this
edge theory exhibits an anomalous energy dependence of the form ωm−1. Our results are demonstrated through
an explicit tractable model, composed of an array of coupled Rashba wires in the presence of strong interactions,
Zeeman field, and proximity coupling to an s-wave superconductor.
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I. INTRODUCTION

Much is known nowadays about topological states in
quadratic fermion systems. In such cases, the topological
states protected by time-reversal, particle-hole, and chiral
symmetries have been classified [1,2]. Beyond this celebrated
periodic table, topological phases protected by other sym-
metries such as lattice symmetries [3–13] have also been
thoroughly studied.

In contrast, strongly interacting topologically ordered
phases which cannot be realized in the absence of in-
teractions have yet to be fully understood and classified.
Since interactions stabilize these phases, their study generally
requires nonperturbative methods. In this work, we propose
strongly interacting superconducting phases that are natural
fractional counterparts of the noninteracting px + ipy chiral
superconductor: fractional chiral superconductors (FCSCs).

A noninteracting px + ipy superconductor hosts a chiral
Majorana mode or, equivalently, a Z2 parafermion theory, at
the edge. In contrast, the edge of the FCSC phases we find
is described by nontrivial Z2m parafermion conformal field
theories (CFTs), where m can be any odd integer. This makes
the FCSC phases close relatives of the well-known Z2m Read-
Rezayi quantum Hall states [14], whose edge theories have
identical non-Abelian components. In addition, while an h/2e

vortex in a px + ipy superconductor binds a Majorana zero
mode, a vortex in the FCSC phases binds Z2m parafermion
zero modes. Unlike the px + ipy superconductor, however,
an FCSC phase generally contains a rich set of deconfined
non-Abelian excitations even in the absence of vortices.

Remarkably, we present an analytically tractable model
realizing these strongly interacting phases. This allows us to
explicitly study their properties and experimental signatures
in detail. The model consists of an array of wires with
Rashba spin-orbit coupling in the presence of a Zeeman
field and proximity coupling to an s-wave superconductor
[see Fig. 1(a)]. For this system, it is useful to define a
“filling factor” ν as the number of electrons in a spin-orbit
length [see Eq. (2)]. It was previously shown that a px + ipy

superconductor phase arises at filling ν = 1 [15]. In the

presence of strong interactions, we show that FCSC phases
can emerge at fractional filling factors of the form ν = 1/m

for m odd.
We analyze the model by mapping the low-energy theory

of the individual wires to a generalized Sine-Gordon model.
Performing an ε expansion for m = 2 + ε, we show that each
wire can be tuned to a Z2m parafermion multicritical point
[16]. We then demonstrate that one can couple different wires
in such a way that all the bulk modes get gapped and a chiral
Z2m parafermion CFT is left on the edge. By construction, the
resulting two-dimensional (2D) model is topologically ordered
for m > 1.

By considering a Corbino geometry [see Fig. 3(a)], we
are able to study h/2e vortices in the system. We show that
these vortices host non-Abelian parafermion zero modes by
mapping our configuration to domain walls on the edge of a
2D fractional topological insulator (TI) [17–19].

As a possible experimental signature of the predicted phase,
we examine the Josephson junction depicted in Fig. 1(b), in
which the superconductor stabilizing the FCSC is cut into two
concentric annuli. In the quasi-one-dimensional (thin annulus)
regime, where coupling between the two edges is allowed, the
radial Josephson current is shown to exhibit a 4πm periodicity
as a function of the superconducting phase difference.

The coupled-wires approach has been extensively used
to describe different strongly interacting topological phases
[15,20–39]. In addition, fractional superconducting phases
were previously discussed, mostly from a field-theoretic point
of view, in Refs. [40–42]. However, a direct fractional analog
of the px + ipy superconductor has not been found. The
FCSC phase we propose is clearly distinct from previously
discussed phases in its bulk and edge physics, and appears
to constitute a natural fractional extension of the px + ipy

superconductor.
The structure of the paper is as follows: In Sec. II, we

describe our model and review the construction of a px + ipy

superconductor described in Ref. [15]. In Sec. III, we study
the model at fractional filling factors in the presence of strong
interactions and demonstrate the emergence of FCSC phases.
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FIG. 1. (a) A schematic view of the system we use to construct
a two-dimensional fractional chiral superconductor (FCSC). The
system is composed of an array of N weakly coupled wires with strong
Rashba spin-orbit coupling. We demonstrate that the interplay of the
Zeeman field, proximity to an s-wave superconductor, and strong
interactions can result in an FCSC phase with a chiral parafermion
CFT at the edges of the sample and parafermionic bound states at
the core of vortices. (b) A Corbino geometry, used in order to study
h/2e vortices and the anomalous Josephson effect. By connecting
the internal and external parts with a superconducting wire, through
which flux can be inserted, the relative phases between the two
superconducting regions can be controlled. It is argued that in the
quasi-one-dimensional regime, this configuration is equivalent to
the effective junction shown in Fig. 3(f), leading to a 4πm-periodic
Josephson effect.

In Sec. IV, we study the non-Abelian defects associated with
h/2e vortices and their imprints through the Josephson effect.

II. TOPOLOGICAL SUPERCONDUCTOR FROM
AN ARRAY OF COUPLED WIRES

We start by reviewing the construction of a px + ipy

superconductor, presented in Ref. [15]. In Sec. III, the
construction of the fractional phases will proceed in parallel
to that of the px + ipy phase, replacing the electron operators
in the noninteracting case with new local fermionic operators
composed of an electron dressed by particle-hole excitations.
These new degrees freedom are similar to those that arise in
the wire construction of the ν = 1/m fractional quantum Hall
states [20].

The starting point is an array of decoupled Rashba wires.
Similar to Refs. [43,44], each wire is subjected to a Zeeman
field and proximity coupled to an s-wave superconductor,

H =
∑

n

∫
dx �ψ†

n(x)

[
− (∂x − iuMσz)2

2M
− μ + Bσx

]
�ψn(x)

+
∫

dx[	ψ
†
n↑(x)ψ†

n↓(x) + H.c.]. (1)

Here, �ψn = [ψn↑(x) ψn↓(x)]T , where ψns(x) represents the
electron annihilation operator at wire number n with spin s

[see Fig. 1(a)]. The matrices σi are Pauli matrices operating on
the spin degrees of freedom. The parameters u,B, and 	 are
the Rashba spin-orbit coupling (SOC), the Zeeman field, and
the induced superconducting pairing potential, respectively.

Figure 2 presents the spectrum of a single wire in the
absence of superconductivity and a Zeeman field (B = 	 =
0). We define the Fermi momentum k0

F = √
2Mμ in the

absence of SOC, and the shift kso = Mu of the parabolas due
to SOC. In terms of these, the filling fraction of the system is

FIG. 2. The spectrum of an individual wire in the absence of
interactions, Zeeman field, and proximity coupling. The dashed lines
specify the chemical potentials corresponding to the situations ν = 1
and ν = 1/3.

defined as

ν = k0
F /kso. (2)

To study the low-energy physics, we linearize the spectrum
near the Fermi level and decompose the fermionic modes into
right- and left-moving modes,

ψns(x) = ψnsR(x) + ψnsL(x), (3)

with ψnsρ(x) = ψ0
nsρ(x)eiksρx . Here, ψ0

nsρ are the low-energy
degrees of freedom near the Fermi momenta ksρ = ρk0

F − skso

(where ρ = ±1 denotes a right-/left-moving mode).
The px + ipy superconductor corresponds to ν = 1.

Focusing on the low-energy excitations for |	 − B| �
B,	, the Zeeman term HB = ∫

dx[Bψ
†
n↑R(x)ψn↓L(x) +

H.c.] and the pairing term H	 = ∫
dx{	[ψ†

n↑R(x)ψ†
n↓L(x) +

ψ
†
n↑L(x)ψ†

n↓R(x)] + H.c.} gap out the wires (see Fig. 2).
Indeed, the second term in H	 fully gaps the high-momentum
degrees of freedom ψn↑L and ψn↓R , and the low-momentum
degrees of freedom ψn↑R and ψn↓L are coupled by the
Zeeman term HB as well as the first term of H	. The
fully gapped phases for 	 > B and 	 < B are topologically
distinct—the first is a 1D trivial phase, while the second is
a topological superconductor. For B = 	, the intermode part
of the Hamiltonian, given by H	 + HB , commutes with the
operators

αn(x) = ψn↑R(x) + ψ
†
n↑R(x),

βn(x) = −i[ψn↓L(x) − ψ
†
n↓L(x)], (4)

so the system is gapless.
Tuning to this transition point, we introduce an interwire

term of the form

H⊥ = it⊥
∑

n

∫
dxαn(x)βn+1(x). (5)

This term arises naturally in the system of Fig. 1(a) due to
a combination of interwire hopping, superconductivity, and
spin-orbit interaction [15]. It gaps out the bulk degrees of
freedom, yet it leaves the Majorana fields β1(x) and αN (x)
decoupled, thus stabilizing a px + ipy phase. This construction
can be considered the anisotropic limit of the system studied
by Refs. [45,46]. While it relies on a fine-tuned relation
between parameters, the resulting phase is independent of
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these assumptions, remaining qualitatively identical as long
as the bulk gap remains open.

III. FRACTIONAL CHIRAL SUPERCONDUCTORS

To construct a FCSC phase at filling ν = 1/m, we consider
the effects of strong interactions within a bosonized description
of the 1D degrees of freedom. Using the standard Abelian
bosonization technique, we describe the Hilbert space in terms
of bosonic fields φnsρ via ψnsρ ∝ ei(φnsρ+ksρx). The boson fields
satisfy the commutation relations

[φnsρ(x),φn′s ′ρ ′(x ′)]= iπρδnn′δss ′δρρ ′ sgn(x−x ′)+iπAn′s ′ρ ′
nsρ ,

(6)

where A
n′s ′ρ ′
nsρ takes the values ±1 for any {nsρ} 
= {n′s ′ρ ′}

and is antisymmetric with respect to the exchange {nsρ} ↔
{n′s ′ρ ′} (ensuring that the fermionic anticommutation relations
are satisfied).

For ν = 1/m, it is useful to define new chiral fermion
operators ψ̃nsρ = ei(ηnsρ+qsρx), with

ηnsρ = m + 1

2
φnsρ − m − 1

2
φnsρ̄ . (7)

The new fields ψ̃nsρ are fermionic, as evident from the
commutation relations

[ηnsρ(x),ηn′s ′ρ ′ (x ′)]= imπρδnn′δss ′δρρ ′ sgn(x−x ′)+iπÃn′s ′ρ ′
nsρ ,

(8)

where Ã
n′s ′ρ ′
nsρ takes odd integer values for any {nsρ} 
= {n′s ′ρ ′}

and is antisymmetric with respect to the exchange {nsρ} ↔
{n′s ′ρ ′}. The ψ̃nsρ fields carry momenta qsρ = m+1

2 ksρ −
m−1

2 ksρ̄ .

Note that the momenta qsρ carried by the new fields ψ̃nsρ

match those of a ν = 1 wire. In particular, the operators
ψ̃n↑R and ψ̃n↓L now have vanishing oscillatory components,
allowing us to couple them in various ways without breaking
translational symmetry.

Once the Zeeman term is dressed by intrawire 2kF

interactions, it induces a term of the form H̃B =∫
dx
a2 [B̃ψ̃

†
n↑R(x)ψ̃n↓L(x) + H.c.] (where a is the short distance

cutoff). We assume that B̃ is large enough such that this
term gaps out the small momentum fields ψ̃n↑R and ψ̃n↓L.
We may also write dressed pairing terms of the form H̃	 =∫

dx
a2 {	̃[ψ̃†

n↑R(x)ψ̃†
n↓L(x) + ψ̃

†
n↑L(x)ψ̃†

n↓R(x)] + H.c.}. As in
the ν = 1 case, the second term in H̃	 involves high-
momentum degrees of freedom and does not compete with
the Zeeman term, H̃B . It fully gaps out the fields ψ̃n↑L and
ψ̃n↓R . The first term in H̃	 competes with the Zeeman field
H̃B . For 	̃ = B̃ = λ, one obtains a critical theory, similar to
the ν = 1 case, which in this case is described by a β2 = 4πm

self-dual Sine-Gordon model (see Appendix A):

H =
∫

dx[(∂xθ )2 + (∂xϕ)2

× λ

a2
{cos(

√
4πmϕ) + cos(

√
4πmθ )}], (9)

where we have defined ϕ = ηn↑R−ηn↓L

2
√

πm
and θ = ηn↑R+ηn↓L

2
√

πm
.

It is, however, a priori unclear whether the critical line
B̃ = 	̃ is dominated by the B̃ and 	̃ terms. In the weak-
coupling limit, both B̃ and 	̃ flow to zero, giving a trivial
Luttinger-liquid fixed point. However, it turns out that when
B̃ and 	̃ are equal and large enough, a nontrivial multicritical
point is encountered.

To show this, we follow the analysis in Ref. [47] and
employ an ε expansion, with m = 2 + ε. In this approach,
the scaling dimensions of the B̃ and 	̃ terms are small, thus
pushing the competition between the first- and higher-order
terms of the renormalization-group (RG) equations to the
region in which the perturbative RG analysis applies. As we
show in Appendix A, the RG equation describing the flow of
λ = B̃ = 	̃ takes the form

dλ

dl
= −ελ + π2λ3. (10)

When λ >
√

ε/π , a flow to large coupling ensues and the low-
energy theory is no longer capable of describing the model.
The point λ = √

ε/π is a multicritical point separating the
B̃-dominated phase, the 	̃-dominated phase, and the gapless
phase. Extrapolating to ε of the order of unity, we assume that
such a critical point persists. For completeness, we study the
full phase diagram of the system in Appendix A.

To uncover the nature of the CFT describing the multicriti-
cal point, it is useful to review the physics of classical 2D Zk

(clock or Potts) models. As discussed in detail in Refs. [48–50],
such models possess self-dual lines. For k � 4, there is a self-
dual critical point that separates the disordered and ordered
(Zk symmetry-broken) phases. For k > 4, some regions of the
self-dual line are contained in gapless phases, while others
consist of first-order transitions. The different regions of the
self-dual line are separated by multicritical points [48,50].
It was argued in Ref. [16] that these are described by a
Zk parafermion CFT. In addition, it is well known that the
low-energy physics of self-dual Zk models is described by
β2 = 2πk self-dual Sine-Gordon models [51,52]. The above
prompts us to identify the finite-coupling multicritical point
in our self-dual Sine-Gordon models with those of the Zk

models. This indicates that our model at the multicritical point
is described by a Z2m parafermion CFT.

In what follows, we assume that each wire is tuned to
the multicritical point and is therefore described by a Z2m

parafermion theory. At this critical point, the fields

α̃n(x) = eiηn↑R (x) + e−iηn↑R (x),

β̃n(x) = −i[eiηn↓L(x) − e−iηn↓L(x)] (11)

commute with the intermode Hamiltonian H̃B + H̃	. As we
demonstrate in Appendix B, the propagators describing this
low-energy theory take the form 〈α̃n(z)α̃n(z′)〉 ∝ (z − z′)−m

and 〈β̃n(z̄)β̃n(z̄′)〉 ∝ (z̄ − z̄′)−m, with z = x + iτ . We identify
these fields with the ψm and ψ̄m primary fields of the Z2m

theory, which indeed have conformal dimension m/2 [16].
Similar to the noninteracting case [see Eq. (5)], we

introduce the interwire term

H̃⊥ = it̃⊥
∑

n

∫
dx

a2
α̃n(x)β̃n+1(x). (12)
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FIG. 3. A schematic depiction of the line of arguments used in order to identify the zero modes localized at the center of h/2e vortices.
(a) We start by placing our FCSC phase in an annular geometry, through which a magnetic flux may be inserted. Without altering the essential
characteristics of the system, we cut a thin trench through the annulus. (b) As the presence of zero modes should not depend on the precise
geometry as long as the topological structure is preserved, we focus on the edge theory and fold our system inside out to a bone-shaped
geometry. (c) The independence on the precise geometry allows us to shrink the outermost regions. (d) We examine an auxiliary model which
has twice as many degrees of freedom, but whose low-energy sector coincides with our model. We then show that the auxiliary model in (d) can
be adiabatically deformed into a system composed of ν = 1/m fractional quantum Hall edges coupled by ferromagnetic and superconducting
terms. (e) If the flux ϕ is an even multiple of 2π , we get the effective superconducting term throughout the system, meaning there are no zero
modes. (f) For odd multiples of 2π , the superconductor in the physical region is replaced by a ferromagnet. The domain walls of the resulting
configuration, representing the edges of the original configurations, give rise to parafermionic bound states [17–19].

Since the interwire Hamiltonian in Eq. (12) has the same
form as the self-dual intrawire Hamiltonian and is composed
of fields which commute with the intrawire coupling terms,
t̃⊥ flows according to the RG equation (10). Therefore, if
t̃⊥ is large enough, a flow to large coupling ensues and this
Hamiltonian leaves the fields β̃1 and α̃N gapless. These fields
represent the local electron operators on the edges. In fact, a
full chiral Z2m parafermion CFT is expected to reside on each
edge. Using the propagator of the α̃ and β̃ fields, we find that
the electrons’ tunneling density of states N (ω), associated with
the edge, scales with an anomalous exponent: N (ω) ∝ ωm−1.

Similar to the noninteracting case, the strict constraints on
the various parameters may be lifted as long as the bulk gap
does not close.

IV. NON-ABELIAN DEFECTS AND 4πm-PERIODIC
JOSEPHSON EFFECT

To study the non-Abelian defects residing at the core of
vortices, we examine the configuration presented in Fig. 3(a).
The FCSC is shaped like an annulus and the flux threading the
annulus is given by an odd multiple of h/2e [60]. In analogy
to the noninteracting case [53], we expect to find zero modes
on the two edges of the system. It will prove useful to cut a
thin trench in the annulus. In this case, the flux through the
center of the annulus can be chosen to enter in the coupling
across the trench, and we can deform our system in such a way
that connects it with the configuration studied in Refs. [17–19]
[see Fig. 3(f)].

Given that we are only interested in finding zero-energy
modes, we have a large amount of freedom in deforming the
geometry of the problem while preserving its topology. We
first fold the edge “inside out,” leading to the bone-shaped
configuration depicted in Fig. 3(b). We may then shrink the
outermost regions without introducing interedge coupling.
This leads to the simple 1D geometry presented in Fig. 3(c), in

which the counterpropagating edge modes α̃R and β̃L (defined
in the region 0 < x < l) are connected at x = 0,l.

The zero-mode properties are solely encoded in the low-
energy edge theory. We therefore have the additional freedom
of changing the Hamiltonian governing the gapped degrees of
freedom. One must only ensure that the modes α̃R and β̃L,
and the other primary fields of the parafermion CFT, remain
gapless, while the other microscopic degrees of freedom, such
as α̃L and β̃R , remain gapped.

An auxiliary model, in which the latter fields are coupled
directly while bulk degrees of freedom are projected out,
satisfies this condition. The corresponding Hamiltonian is
given by

Hauxiliary = it̃a

∫ l

0
dxβ̃R(x)α̃L(x)

= t̃a

∫ l

0
dx[ψ̃R(x)ψ̃L(x) − ψ̃

†
R(x)ψ̃L(x) + H.c.],

(13)

where we have used α̃ρ = ψ̃ρ + ψ̃†
ρ and β̃ρ = (ψ̃ρ − ψ̃†

ρ)/i.
While it gaps α̃L and β̃R , this Hamiltonian leaves the fields
α̃R,β̃L gapless. Notice that strictly speaking, t̃a must be tuned
to a multicritical point for the low-energy theory to remain
identical. However, since we will soon break the self-duality
of the problem, this will not be important.

The auxiliary model simplifies our analysis, as it allows
us to formulate the problem in terms of the chiral bosonic
modes ηR and ηL, such that ψ̃ρ = eiηρ . Mathematically, the
Hamiltonian in Eq. (13) describes two edge modes of a
ν = 1/m fractional quantum Hall state, coupled by a specific
combination of ferromagnetic and superconducting terms.
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Next, we include the physical coupling between the edge
modes across the trench,

Htrench = it̃(ϕ)
∫ l

0
dxα̃R(x)β̃L(x)

= t̃(ϕ)
∫ l

0
dx[ψ̃R(x)ψ̃L(x) + ψ̃

†
R(x)ψ̃L(x) + H.c.],

(14)

where ϕ = 2π �
h/2e

, and � = nh/2e is the flux through the
center of the annulus. In the gauge in which the flux only
enters into t̃(ϕ), we have t̃(ϕ) = t̃0 cos ( ϕ

2 ).
Finally, it is necessary to introduce the correct boundary

conditions, such that α̃R → β̃L at x = 0 and β̃L → α̃R at
x = l [see Fig. 3(c)]. This can be implemented by extending
the model to −∞ < x < ∞ and strongly coupling αR and
βL beyond the ends of the physical system, such that they
acquire a large gap in these regions. Within the auxiliary
model, formulated in terms of the two η fields, we can do
this by introducing strong superconducting terms for x < 0
and x > l:

Hbc = 	bc

∫
x<0,x>l

dx[ψ̃R(x)ψ̃L(x) + H.c.]. (15)

The full auxiliary model is depicted in Fig. 3(d). Alternatively,
note that one can also use a ferromagnetic term. This would
not change our conclusions regarding the existence of zero
modes.

While the choice of coupling constants t̃a and 	bc seems
arbitrary, unphysical zero-energy degrees of freedom may
appear if these are not properly chosen. In order to avoid
these, we first choose the auxiliary coupling constant such
that sgn (t̃a) = sgn (	bc) (otherwise the coefficient of the term
iβ̃Rα̃L changes sign at x = 0,l).

An additional consistency condition is obtained by noting
that no physical zero-energy modes should appear in the
absence of flux. This leads to the constraint sgn (	bc) =
sgn [t̃(ϕ = 0)].

To be consistent with these constraints, the coefficients of
our auxiliary model must satisfy

sgn(t̃a) = sgn(	bc) = sgn
(
t̃0

)
. (16)

Clearly, the gap does not close as long as the various coupling
constants do not change sign. In particular, the presence (or
absence) of zero modes is not affected by varying the various
parameters without altering their signs. We may therefore
choose t̃0 = t̃a| cos ( ϕ

2 )|−1, in which case the Hamiltonian in
the region 0 < x < l takes the form

Htrench+Hauxiliary

= t̃a

∫ l

0
dx{ψ̃R(x)ψ̃L(x)

[
1+ sgn

(
cos

ϕ

2

)]

− ψ̃
†
R(x)ψ̃L(x)

[
1 − sgn

(
cos

ϕ

2

)]
+ H.c.

}
. (17)

While the trench allows us to continuously vary ϕ, we take
the discrete values ϕ = 2πn, where n counts the number of
h/2e vortices. As Eq. (17) implies, if ϕ is an even multiple
of 2π , the Hamiltonian reduces to superconducting terms

throughout space, thus preventing the existence of zero-energy
modes [see Fig. 3(e)]. On the other hand, if ϕ is an odd multiple
of 2π , it is clear that the superconductor in the region 0 < x < l

is replaced by a ferromagnet and we end up with the S-F-S
configuration studied in Refs. [17–19] [see Fig. 3(f)]. Notice
that if we had chosen to implement the boundary conditions in
Eq. (15) using ferromagnetic terms, we would end up with an
F-S-F configuration for odd multiples of 2π and ferromagnetic
terms throughout space for even multiple of 2π .

Following the results of Refs. [17–19], we conclude that
the S-F-S and F-S-F configurations found above give rise
to parafermion zero modes ξi , with i = 1,2, located at the
interfaces x = 0,l. These operators satisfy

ξ1ξ2 = ξ2ξ1e
i π

m , (18)

and ξ 2m
i = 1. Equation (17) implies that the spectrum is 4π

periodic as a function of ϕ.
We note that the interfaces correspond to the circular

edges of the original annulus, so that this line of arguments
indicates that h/2e vortices in the FCSC system bind protected
parafermionic zero modes. The parafermion nature of these
excitations provides a natural generalization to the case where
the bulk contains many vortices, each binding a zero mode
generated by ξi (i = 1 · · · 2M is an arbitrary index labeling the
zero modes). The parafermions generally satisfy the algebra

ξiξj = ξj ξie
i π

m
sgn(i−j ), (19)

from which one can infer a ground-state degeneracy of (2m)M

for 2M vortices.
Once our annular system is transformed into the setup

presented in Fig. 3(f) for an odd number of vortices, it is natural
to ask whether we can control the relative phase between the
two effective superconducting order parameters and measure
the Josephson effect, which was previously shown to be 4πm

periodic [18,19].
Recall that the superconductors shown in Fig. 3(f) were

introduced to impose the boundary conditions and, in par-
ticular, do not correspond to the physical superconductor in
proximity to our system. Nevertheless, we argue that such an
effective Josephson junction can be generated by creating a
physical Josephson junction in our system. This is done by
considering a physical weak link cutting the physical s-wave
superconductor at a fixed radial coordinate into two concentric
annuli [see Fig. 1(b)]. This allows us to control the relative
superconducting phases between the external and the internal
parts of our system by connecting the two edges with an
external superconducting wire, through which flux is inserted.
Notice that coupling between electrons across the cut can
effectively stitch the two parts of the system, leading to a
gapped FCSC phase throughout the system (including the area
above the cut).

Since the edges of our annular system correspond to the
interfaces in the auxiliary configuration, we effectively control
the relative phases between the two auxiliary superconductors
shown in Fig. 3(f) [61]. Examining the quasi-one-dimensional
regime, in which coupling between the two edge modes of
our annular system is induced, the arguments above indicate
that the junction shown in Fig. 1(b) gives rise to a 4πm-
periodic Josephson effect. Notice that the radial width of the
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junction must be comparable to the correlation length in the
bulk, allowing anyons to tunnel between the inner and the outer
edges.

V. CONCLUSIONS

In this work, we have demonstrated that a FCSC phase can
be stabilized in an array of coupled wires in the presence
of Rashba SOC, Zeeman field, superconducting proximity
effects, and strong interactions. The resulting phase was
found to give rise to a parafermionic edge theory, whose
central charge is c = 2m−1

m+1 , leading to a thermal conductance

of the form GQ = π2k2
BT

3h
( 2m−1

m+1 ). In this theory, the electron
has an anomalous tunneling density of states of the form
N (ω) ∝ ωm−1. We have additionally found that h/2e vortices
in such a system bind parafermionic zero modes, with quantum
dimension

√
2m.

Clearly, the FCSC phase we construct is topologically or-
dered. While we leave the detailed study of the bulk excitations
to future studies, we anticipate that the topologically distinct
bulk excitations will be associated with the various low-energy
sectors of the parafermionic edge theory through the bulk-edge
correspondence. The low-energy sectors are generated by the
primary fields of the parafermion CFT, which can be labeled by
�[k,k̄] [16], where the integers k and k̄ are defined mod 4m, and
k + k̄ is even. In terms of these, the parafermion fields are given
by ψn = �[2n,0] and ψ̄n = �[0,2n] (with n = 1, . . . ,2m − 1),
and the spin operators σn are given by σn = �[n,n].

However, in identifying the deconfined bulk excitations
with the primary fields of the edge CFT, we must exclude the

operators which acquire a nontrivial phase as they wind around
the electron, which in our case is identified with the field ψm

(or ψ̄m). In particular, since the electron acquires a phase of
π as it winds around a vortex, the corresponding field must
be associated with a confined excitation (i.e., the energy of
two such excitations diverges as we separate them [62]). More
generally, the phase associated with winding �[k,k̄] around the
electron ψm (ψ̄m) is given by γ[k,k̄] = πk (γ̄[k,k̄] = πk̄) [16].
This shows, for example, that while the parafermion fields ψn

are all deconfined in the bulk, the spin operators σn, with odd
n, must be confined.

It has recently been shown that repulsive interactions can
stabilize a time-reversal invariant topological superconducting
(TRITOPS) phase in quantum wires [54–59]. It would be
interesting to consider an array of such 1D systems as a
possible realization of a fractional TRITOPS in 2D.
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APPENDIX A: THE RENORMALIZATION-GROUP EQUATIONS OF THE SELF-DUAL SINE-GORDON MODEL

1. The ε expansion

The Hamiltonians describing either the inter- or intrawire coupling terms, discussed in the main text, can be written as

H =
∫

dx

[
1

2πm
(∂xη1)2 + 1

2πm
(∂xη2)2 + B̃

a2
cos (η1 − η2) + 	̃

a2
cos (η1 + η2)

]
,

where η1 (η2) is a right- (left-)moving mode satisfying

[ηj (x),ηj (x ′)] = mπi(−1)j sign(x − x ′),

and the units were chosen such that the Fermi velocity is v = 1. Specifically, in the main text, the coefficients were tuned to the
self-dual line, such that B̃ = 	̃.

To write the Hamiltonian in a more convenient form, we define

ϕ = η1 − η2

2
√

πm
,

θ = η1 + η2

2
√

πm
.

The commutation relations of these fields are given by

[ϕ(x),θ (x ′)] = i�(x − x ′).

In terms of these, the Hamiltonian takes the form

H =
∫

dx

[
(∂xθ )2 + (∂xϕ)2 + B̃

a2
cos(2

√
πmϕ) + 	̃

a2
cos(2

√
πmθ )

]
.
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We next wish to isolate the explicit cutoff dependence by writing the cosines in terms of their normal-ordered versions:

cos(2
√

πmϕ) =: cos(2
√

πmϕ) : e−2mπ〈ϕ2〉,

cos(2
√

πmθ ) =: cos(2
√

πmθ ) : e−2mπ〈θ2〉,
where the averages are taken with respect to the quadratic part of the Hamiltonian.

Denoting the small distance cutoff by a and the large distance cutoff by L, we find that

e−2mπ〈ϕ2〉 = e−2mπ〈θ2〉 =
(

a

L

)m

.

Therefore, the Hamiltonian can be written in the form

H =
∫

dx

[
(∂xθ )2 + (∂xϕ)2 + B̃

L2

(
a

L

)m−2

: cos(2
√

πmϕ) : + 	̃

L2

(
a

L

)m−2

: cos(2
√

πmθ ) :

]
.

In performing the renormalization group, we quantify the dependence of the coefficients on l = ln L
a

.

At tree level, we simply use the explicit cutoff dependence of the coefficients to calculate dB̄
dl

, d	̄
dl

, with B̄ = B̃( a
L

)m−2
,	̄ =

	̃( a
L

)m−2. The resulting tree-level RG equations are given by

dB̄

dl
= (2 − m)B̄,

d	̄

dl
= (2 − m)	̄,

giving a flow to weak coupling for m > 2. This is true in particular at the self-dual point B̃ = 	̃ = λ̃ that we wish to focus on.
Clearly, if a flow to large coupling is to occur for large λ, it must result from higher-order terms. The next possible nonvanishing

correction to the RG equation of λ is of the order of λ3, as the second-order correction vanishes at the self-dual line. Indeed, if
the λ3 term has a positive coefficient, it induces a flow to large couplings for large λ. However, for such a term to overcome the
negative contribution of the first-order term, λ should be of the order of 1 (assuming the coefficients are of the order of 1 and
recalling that in our model, m = 3,5, etc.). Such a situation steps beyond the range of validity of the perturbative RG analysis.

To overcome the above technical difficulty, we study the situation in which m is slightly above its marginal value: m = 2 + ε,
with ε � 1. In this case, the negative first-order contribution is proportional to ε,

dB̄

dl
= −εB,

d	̄

dl
= −ε	,

and therefore if the third-order contribution is positive, the critical point between the two regimes is controlled by the small
parameter ε and is therefore expected to be within the range of validity of the perturbative RG analysis. Indeed, we will find such
a critical point satisfying λc ∝ √

ε.

The critical point found for small ε indicates that a similar critical point exists for ε = 1 as well, above which the coupling
constants flow to large coupling (assuming no additional critical points are induced as ε is increased from 0 < ε � 1 to ε = 1).

We next turn to explicitly derive the form of the third-order RG equations. The analysis presented below closely parallels the
analysis presented in Ref. [47].

2. Third-order RG equations and the phase diagram

To calculate the higher orders of the renormalization-group equations, we generally write the partition function as

Z =
∫

Dϕe−S0−S1 ,

with

S0 = 1
2

∫
dτdx[(∂τϕ)2 + (∂xϕ)2],

S1 =
∫

dτdx

L2
{B̄ : cos[

√
8π (1 + δB)ϕ] : +	̄ : cos[

√
8π (1 + δ	)θ ] :},

where θ is related to ϕ according to the condition

i∂μϕ = εμν∂νθ. (A1)

In addition, we have defined B̄ = B̃( a
L

)2δB ,	̄ = 	̃( a
L

)2δ	 .
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In order to follow the strategy outlined above, we assume δB and δ	 are small. As these parameters flow as well, we will write
the third-order RG equations for B̄,	̄,δB,δ	. Once these are derived, we will focus on the self-dual line defined according to
B̄ = 	̄ = λ̄ and δB = δ	 = ε

2 .
To derive the RG equations, we expand the partition function in orders of S1,

Z =
∫

DϕDθe−S0

(
1 − SI + 1

2
S2

I − 1

6
S3

I + · · ·
)

. (A2)

Next, we will use the operator product expansions (OPEs) of the resulting high orders to get corrections to the original action.
Taking only the first order into account, we get the contribution

dB̄

dl
= −2δBB̄,

d	̄

dl
= −2δ		̄.

To second order, terms of the form B̄2 and 	̄2 renormalize the kinetic term. Notice that we discard the nonsingular term of the
order of B̄	̄, which results in an irrelevant term.

We first calculate the B̄2 component of S2 = − 1
2S2

I ,

− B̄2

2

∫
d2x1d

2x2L
−4 : cos[

√
8π (1 + δB)ϕ(�x1)] :: cos[

√
8π (1 + δB)ϕ(�x2)] : . (A3)

In order to calculate the OPE [47], we use the definition of normal ordering to write

: cos[
√

8π (1 + δB)ϕ(�x1)] :: cos[
√

8π (1 + δB)ϕ(�x2)] := e8π(1+δB )〈ϕ2〉 cos[
√

8π (1 + δB)ϕ(�x1)] cos[
√

8π (1 + δB)ϕ(�x2)].

This can be rewritten as
1
2e8π(1+δB )〈ϕ2〉(cos[

√
8π (1 + δB){ϕ(�x1) + ϕ(�x2)}] + cos[

√
8π (1 + δB){ϕ(�x1) − ϕ(�x2)}]).

Writing the two cosines in terms of their normal-ordered versions, we get

1
2 {: cos[

√
8π (1 + δB){ϕ(�x1) + ϕ(�x2)}] :

1

c(�x1 − �x2)
+ : cos[

√
8π (1 + δB){ϕ(�x1) − ϕ(�x2)}] : c(�x1 − �x2)},

with

c(�x1 − �x2) = e8π(1+δB )〈ϕ(�x1)ϕ(�x2)〉 =
( |�x1 − �x2|

L

)−4(1+δB )

.

The first term results in irrelevant terms and is therefore ignored. The second term is dominated by the region in which the two
points �x1 and �x2 are close to each other. This allows us to approximate

cos[
√

8π (1 + δB){ϕ(�x1) − ϕ(�x2)}] ≈ 1 − 4π (1 + δB)[ϕ(�x1) − ϕ(�x2)]2 = 1 − 4π (1 + δB)[(�x1 − �x2) · ∇ϕ(�x)]2,

where �x is the center-of-mass coordinate. Plugging this back into Eq. (A3) and performing the integral over the relative coordinate
�x1 − �x2, we get a correction of the form

2π2 ln
L

a
B̄2(1 + δB)

{
1

2

∫
[(∂xϕ)2 + (∂τϕ)2]d2x

}
.

Similarly, the 	̄2 terms give us (up to a constant)

: cos[
√

8π (1 + δ	)θ (�x1)] :: cos[
√

8π (1 + δ	)θ (�x2)] := −π (1 + δ	)|�x1 − �x2|2( |�x1−�x2|
L

)4(1+δ	) {[∂xθ (�x)]2 + [∂τ θ (�x)]2}. (A4)

Using Eq. (A1) and integrating over the relative coordinate, we obtain the correction

−2π2 ln
L

a
	̄2(1 + δ	)

{
1

2

∫
[(∂xϕ)2 + (∂τϕ)2]d2x

}
.

Taken together, the second-order corrections are given by

S2 = 2π2 ln
L

a
{B̄2(1 + δB) − 	̄2(1 + δ	)}

{
1

2

∫
[(∂xϕ)2 + (∂τϕ)2]d2x

}
.

The second-order term clearly renormalizes the kinetic part of the action.
The third-order contributions are given by a combination of Sa

3 = 1
6S3

1 and Sb
3 = S1S2 [the latter contribution arises when one

reexponentiates the partition function in Eq. (A2)].
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We first look at the Sa
3 term. The corrections of the type B̄3 and B̄	̄2 renormalize the B term, while terms of the form 	̄3 and

	̄B̄2 renormalize the 	 term. Let us first look at the B̄3-order term:

1

6
B̄3

∫
�3

n=1

{
d2xn

L2
: cos[

√
8π (1 + δB)ϕ(�xn)] :

}
.

Using the OPE and dropping the nonsingular term, we get the correction [47]

B̄3

8L6

∫
d2x1d

2x2d
2x3

(
L2|�x1 − �x2|2

|�x1 − �x3|2|�x2 − �x3|2
)m

: cos{
√

8π (1 + δB)[ϕ(�x1) + ϕ(�x2) − ϕ(�x3)]} : .

Clearly, the most dominant contributions arise when two coordinates approach each other: either �x1 → �x3 or �x2 → �x3.
However, these divergences are disconnected and are therefore discarded. Thus, the only singular contribution arises when the
three different coordinates approach each other. Taking this into account, we approximate

: cos{
√

8π (1 + δB)[ϕ(�x1) + ϕ(�x2) − ϕ( �x3)]} :≈: cos[
√

8π (1 + δB)ϕ(�x)] : ,

where �x is the center-of-mass coordinate and therefore

1

8L6

∫
d2x1d

2x2d
2x3

(
L2|�x1 − �x2|2

|�x1 − �x3|2|�x2 − �x3|2
)2

: cos[
√

8π (1 + δB)ϕ(�x)] : .

Integrating over the relative coordinates and subtracting disconnected terms, we find the correction [47]

2π2B̄3

L2

[
ln

(
L

a

)]2 ∫
d2x : cos[

√
8π (1 + δB)ϕ(�x)] : .

Similar considerations show that the B̄	̄2 term provides a contribution of the form

π2B̄	̄2

L2

{
ln

(
L

a

)
− 2

[
ln

(
L

a

)]2
}∫

d2x : cos[
√

8π (1 + δB)ϕ(�x)] : .

The remaining contribution is of the form Sb
3 . The contribution to the B term is given by

2π2 ln
L

a
B̄{B̄2(1 + δB) − 	̄2(1 + δ	)}

{
1

2

∫
d2x1d

2x2μ
2{[∂xϕ(�x1)]2 + [∂τϕ(�x1)]2} : cos[

√
8π (1 + δB)ϕ(�x2)] :

}
.

Keeping only the third orders in the various scaling parameters and using the corresponding OPE, we get

−2π2

(
ln

L

a

)2

B̄{B̄2 − 	̄2}
∫

d2x : cos{
√

8π (1 + δB)[ϕ(�x)]} : .

Analogous corrections can be derived for the 	 field.
Summing the above corrections, we find that the renormalized action is given by

S = SI + 2π2 ln
L

a
{B̄2(1 + δB) − 	̄2(1 + δ	)}

{
1

2

∫
[(∂xϕ)2 + (∂τϕ)2]d2x

}

+ π2B̄	̄2

L2
ln

(
L

a

)∫
d2x : cos[

√
8π (1 + δB)ϕ(�x)] :

+ π2	̄B̄2

L2
ln

(
L

a

)∫
d2x : cos[

√
8π (1 + δ	)θ (�x)] : .

Based on the above, the RG equations for the coefficients of the cosine terms are given by

dB̄

dl
= −2δBB̄ + π2B̄	̄2,

d	̄

dl
= −2δ		̄ + π2	̄B̄2.

The correction to the kinetic term can be eliminated by rescaling the ϕ and θ fields. This induces a change in the variables δB ,
δ	, leading to the RG equations:

dδB

dl
= −2π2(1 + δB)[B̄2(1 + δB) − 	̄2(1 + δ	)],

dδ	

dl
= −2π2(1 + δ	)[	̄2(1 + δ	) − B̄2(1 + δB)].
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FIG. 4. The phase diagrams for (a) ε = 0.2 and (b) ε = −0.2. The red region corresponds to a 	-dominated phase, the blue region
corresponds to a B-terms phase, and the green regions correspond to gapless states.

Rescaling B̄ ′ = π2B̄,	̄′ = π2	̄, we finally write the RG equations,

dB̄ ′

dl
= −2δBB̄ ′ + B̄ ′	̄′2,

d	̄

dl
= −2δ		̄′ + 	̄′B̄ ′2,

dδB

dl
= −2(1 + δB)[B̄ ′2(1 + δB) − 	̄′2(1 + δ	)],

dδ	

dl
= −2(1 + δ	)[	̄′2(1 + δ	) − B̄ ′2(1 + δB)]. (A5)

Figure 4 presents the phase diagram resulting from the solution of the RG equations shown in Eq. (A5). Specifically, the
different colors represent different phases based on the flow equations: The red regions represent a 	-dominated phase, the blue
region represents a B-dominated phase, and the green regions represent a gapless state. Figure 4(a) [4(b)] was generated by
studying the properties of the RG equations for various initial values of B̄ ′,	̄′ and δB = δ	 = ε

2 , with ε = 0.2 [ε = −0.2].

3. Studying the self-dual line

Focusing on the self-dual line B̄ ′ = 	̄′ = λ̄, δB = δ	 = ε/2, we get a single RG equation,

dλ̄

dl
= −ελ̄ + λ̄3,

accompanied by dε
dl

= 0. We immediately find a multicritical point at λ̄ = √
ε, above which a flow to large λ̄ ensues. This shows

that if the coupling constants in the self-dual theory studied in the main text are large enough, the cosine terms flow to large
coupling.

As we argued in the main text, if λ̄ is tuned to the multicritical point, the low-energy field theory is not given by the original
Luttinger-liquid fixed point, but rather by a parafermion CFT.

APPENDIX B: THE SCALING DIMENSION OF THE LOCAL ELECTRON FIELDS

In this section, we demonstrate that the scaling dimension of the local electron fields α̃nR(x),β̃nL(x) remains m/2 in the
presence of the intrawire interacting term, which is taken to the critical point 	̃ = B̃ = λ:

H̃	 + H̃B = λi

∫
dxβ̃nRα̃nL. (B1)

We first note that since α̃nR(x) and β̃nL(x) commute with the above interacting Hamiltonian, they remain right- and left-moving
fields, respectively. To demonstrate this, we write the equations of motion of α̃nR(x),

∂

∂τ
α̃nR(x,τ ) = [H,α̃nR(x,τ )].
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The Hamiltonian is composed of the kinetic chiral Luttinger-liquid Hamiltonian and the interacting Hamiltonian written in
Eq. (B1). Since α̃nR(x) commutes with the latter, we only need to calculate the commutation with the kinetic part,

HK = v

4πm
lim
ε→0

∫
{∂ηnR(x)}{∂ηnR(x + ε)},

where we have used point splitting regularization. Since, by definition, α̃nR(x) = eiηnR + e−iηnR , we calculate the commutation
relation with each vertex operator separately,

[H,e±iηnR (x)] = v

4πm
lim
ε→0

∫
dx ′[{∂ηnR(x ′)}{∂ηnR(x ′ + ε)}e±iηnR(x) − e±iηnR (x){∂ηnR(x ′)}{∂ηnR(x ′ + ε)}]

= e±iηnR (x) v

4πm
lim
ε→0

∫
dx ′[e∓iηn,R {∂ηnR(x ′)}{∂ηnR(x ′ + ε)}e±iηnR(x) − {∂ηnR(x ′)}{∂ηnR(x ′ + ε)}].

Using the commutation relations

[ηnR(x),∂ηnR(x ′)] = −2πimδ(x − x ′)

and the Baker-Campbell-Hausdorff formula, we write

e∓iηn,R {∂ηnR(x ′)}e±iηnR (x) = ∂ηnR(x ′) ∓ i[ηnR(x),∂ηnR(x ′)] = ∂ηnR(x ′) ∓ 2πmδ(x − x ′),

and therefore

[H,e±iηnR (x)] = ∓ve±iηnR (x)∂ηnR(x) = −iv∂e±iηnR (x).

This gives us the equation of motion

∂

∂τ
α̃nR(x,τ ) = −iv

∂

∂x
α̃nR(x,τ ).

Defining z = x + ivτ, we may write the above as

∂

∂z̄
α̃nR(x,τ ) = 0.

This shows that α̃nR(z) remains a right mover in the presence of the interacting Hamiltonian (B1). Similarly, β̃nL satisfies
∂
∂z

β̃nL(x,τ ) = 0 and is therefore a left mover. We note that the above analysis cannot be repeated for the fields α̃nL and β̃nR ,
which do not commute with the interacting Hamiltonian and are therefore not chiral.

Using the above result, we now turn to calculate the propagator of the remaining chiral fields and show that all corrections to the
λ = 0 limit vanish identically. For example, calculating the propagator g(z − z′) = 〈α̃nR(z)α̃nR(z′)〉 and treating the interacting
Hamiltonian shown in Eq. (B1) perturbatively, we can write the correction to any order p as

δgp(z − z′) ∝ (λi)p
〈
α̃nR(z)α̃nR(z′)�p

i=1

∫
d2zi β̃nR(zi,z̄i)α̃nL(zi,z̄i)

〉
0

. (B2)

Since the expectation value is done with respect to the kinetic Hamiltonian, we can treat α̃nL as a function of z̄ only and
β̃nR as a function of z. Furthermore, we can use the symmetries of the kinetic Hamiltonian: First, we know that under rotations
z → zeiθ ,z̄ → z̄e−iθ , the fields transform as α̃nR(z) → α̃nR(z)e−iθm/2,α̃nL(z̄) → α̃nL(z̄)eiθm/2 (and the same relations for the β

fields). This leads to the condition

δgp[(z − z′)eiθ ] = e−iθmδgp[z − z′],

which is satisfied if δgp ∝ (z − z′)−m.

Under scale transformations, given by z → zd,z̄ → z̄d, the fields transform as α̃nR(z) → α̃nR(z)d−m/2,α̃nL(z̄) → α̃nL(z̄)d−m/2

(and similarly for the β̃ fields). In this case, we get the condition δgp[(z − z′)d] = d−m+p(2−m)δgp[z − z′], which is satisfied if
δgp ∝ (z − z′)−m+p(2−m). Clearly, we have reached a contradiction, which can only be solved if δgp[z − z′] = 0 for any p > 0.
This shows that all corrections to the propagator calculated in the absence of the interacting term vanish and the scaling dimension
of α̃nR and β̃nL therefore remains m/2.

We note that as the fields β̃nR and α̃nL are no longer chiral, the full propagator is not a holomorphic (or antiholomorphic)
function and the entire argument fails, as expected.
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