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Probing the energy reactance with adiabatically driven quantum dots
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The tunneling Hamiltonian describes a particle transfer from one region to another. Although there is no particle
storage in the tunneling region itself, it has an associated amount of energy. The corresponding energy flux was
named reactance since, such as an electrical reactance, it manifests itself in time-dependent transport only. We
show here that the existence of the energy reactance leads to the universal response of a mesoscopic thermometer,
a floating contact coupled to an adiabatically driven quantum dot.
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Introduction. A very exciting experimental activity is lately
taking place in search of controlling on-demand quantum
coherent charge transport in the time domain. The recent burst
of activity started with the experimental realization of quantum
capacitors in quantum dots under ac driving [1], single-particle
emitters [2], and was followed by the generation of quantum
charged solitons over the Fermi sea (levitons) [3]. A controlled
manipulation of flying single electrons [4–6] and their time-
resolved detection [7] has already been reported [8]. These
marvelous developments, along with the identically impressive
progress in the field of fast thermometry [9–11], are opening
an avenue towards the study and control of the concomitant
time-dependent energy flow in the quantum realm.

The relevant systems are characterized by small (nanoscale)
components confining a small number of particles in contact
with macroscopic reservoirs. This puts the description of the
energy transport and heat generation beyond the scope of usual
thermodynamical approaches, motivating a number of formal
theoretical developments in statistical mechanics [12] and
condensed-matter physics [13]. At the heart of this problem,
there is the proper definition of the quantum heat current in
the time domain. The concept of heat looks very intuitive,
and anyone can provide a definition for it. Formally, it is a
clear and well-established concept in macroscopic systems
close to equilibrium. However, its accurate definition on the
nanoscale and in situations away from equilibrium is a deep
and subtle issue, in particular, due to the coupling between a
nanosystem and macroscopic reservoirs; see, e.g., Refs. [14–
23]. In fact, although charge and energy are concepts obeying
strict fundamental conservation laws, the definition of heat
implies the proper identification of a portion of the total energy.

An appealing scenario to address this problem from the
theoretical point of view is a periodically driven single level
in contact with an electron reservoir. This is the most basic
and meaningful setup to analyze the interplay of charge and
energy dynamics. At the same time, this is the simplest model
for a quantum resistor-capacitor (RC) circuit [24], which has

been experimentally realized [1]. A sketch is presented in
Fig. 1 where we stress that the driven level represents a
quantum dot. The nonequilibrium ingredient is provided by
the time-dependent gate voltage V (t) = V cos(�t) locally
applied to the single level. The reservoir is an electron gas
with temperature T and chemical potential μ, and the strength
of the coupling between the two subsystems is arbitrary. The
setup also includes a floating contact, which we will discuss in
detail later on.

The effect of the periodic driving is twofold. On one hand,
it induces a charge current that periodically flows between
the dot and the reservoir. On the other hand, it performs

Floating
contact

FIG. 1. Schematic of our proposal. The quantum RC circuit
consists of a quantum dot (the dark blue disk in the middle) coupled
to a fermionic reservoir (the light blue region in the left) with
well-defined temperature T and chemical potential μ. Electrons can
be transferred between the dot and the reservoir (the black curve). The
dot is capacitively coupled to a gate terminal where an ac potential
of amplitude V and frequency � is applied. A floating contact is
also attached to the dot. For every time snapshot, the temperature T t

c

and chemical potential μt
c of the floating contact adjust themselves to

cancel both the charge and the heat currents flowing through it. This
instantaneous reaction allows for an experimental test of the energy
reactance, namely, the variation of the stored energy at the tunneling
region between the floating contact and the dot (the gray line).
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work on the system, thus injecting energy that is ultimately
dissipated as heat deep inside the reservoir. Importantly, due
to charge conservation, the electronic current is defined as the
change in time of the electron number either at the reservoir
or on the dot. No contribution of the tunneling region on the
charge current exists. In contrast, the energy delivered by the
external ac source is temporarily stored in three different parts
of the setup: the dot, the reservoir, and in the dot-reservoir
tunneling region. The role of the tunneling region is typically
disregarded in classical thermodynamics because it is a surface
term that is negligible when both the system and the reservoir
are macroscopic [25]. Yet, in the nanoscale setup studied here
the amount of energy stored in the dot is comparable to that of
the tunneling region and the latter can no longer be neglected.

In a recent work [15] we have coined the name of energy
reactance to characterize the energy temporarily stored at the
tunneling region. This is a thermal analog of an electrical
reactance (due to electrical capacitance and inductance), which
manifests itself in a time-dependent setup only. We have argued
that it is physically meaningful to take the energy reactance into
account as a contribution to the time-dependent heat current
flowing into the reservoir. We have shown that this is in full
agreement with the laws of thermodynamics [13,23]. Although
some recent works raised some concerns [18,22], other works
arrived at conclusions similar to our analysis [14,17,21]. The
aim of the present Rapid Communication is to take one step fur-
ther by proposing a measurement scheme that is able to test the
effect of the energy reactance onto a time-dependent heat flux.

Proposed experiment and predictions. The setup is sketched
in Fig. 1 where we introduce a floating contact attached (e.g.,
via tunneling) to the quantum dot [26]. When a periodic gate
voltage V (t) is applied, charge and heat currents enter not only
the reservoir, but also the floating contact. We will focus on
slow “adiabatic” driving, which corresponds to a driving period
much larger than any characteristic time scale for the system.
The floating contact is a small conductor which is assumed to
have a charge and energy relaxation rate much faster than any
other characteristic time so that it can adjust time by time its
chemical potential μt

c and if necessary its temperature T t
c to

prevent charge and heat accumulation on it. Thus, we assume
the floating contact to be in thermal equilibrium at every
instant of time with both chemical potential and temperature
satisfying the simultaneous condition of vanishing charge and
vanishing heat currents. Here the index t stresses that the
chemical potential and temperature of the floating contact do
depend on time but in a frozen picture in the sense that the
local equilibrium condition is satisfied for every time snapshot.
This is justified in the adiabatic regime (very low driving
frequency�), mostly accessible in experiments [1]. In contrast,
the reservoir is a massive electrode that keeps its temperature
and chemical potential constant independent of the ac potential.
In practice, this can be achieved grounding the reservoir
as indicated in Fig. 1. Its temperature variations would be
suppressed if the reservoir has in addition a large heat capacity.

The evolution of the chemical potential and temperature
of the floating contact as the dot is adiabatically driven can
be sensed by means of a voltage probe and a thermometer
[27–35] as indicated in the figure. We predict different behav-
iors for μt

c and T t
c depending on whether the energy reactance

is considered or not in the heat flux into the floating contact.

In this way, the proposed experiment would help to discern the
proper definition of the heat current and test the existence of
the energy reactance.

The results are the following: (i) By defining the heat
flux into the floating contact, taking into account the energy
reactance as in Ref. [15], we find that the temperature of the
floating contact is not changing in time. The outcome is

T t
c = T , (1)

whereT is the background temperature. The chemical potential
of the contact μt

c does vary with time in a periodic fashion with
a period dictated by the electrical current flowing through the
dot. (ii) We demonstrate that any other definition of the heat
current, that does not properly account for the energy reactance,
necessarily leads to a change in both quantities, T t

c and μt
c as

functions of time.
Heat current into the floating contact and quantum energy

reactance. Let the rates of change for the charge and the internal
energy stored in the floating contact due to exchanges with the
rest of the device be Ṅc(t) and U̇c(t), respectively. Similarly,
the rate of change for the energy stored at the tunneling region
between the dot and the floating contact is denoted by U̇Tc

(t).
The meaningful definition for the instantaneous heat current
entering the floating contact is [15]

Q̇c(t) = U̇c(t) + U̇Tc
(t)

2
− μt

cṄc(t). (2)

The energy reactance U̇Tc
(t)/2 contributes to the heat flux only

instantaneously and as such vanishes when averaged over one
driving period.

From the theoretical point of view, the energy reactance
is necessary to derive an instantaneous Joule law for the heat
current into a (single-channel) floating contact at low tempera-
tures Q̇c(t) = Rq[Ṅc(t)]2 with the universal charge relaxation
resistance, the Büttiker resistance Rq = h/2e2 [1,24]. This
universal Joule law would be then observable in the same
regime as the Büttiker resistance. The energy reactance is also
necessary to both reconcile the relation between the Green’s
function and the scattering matrix formalisms [36] for the
instantaneous heat current [15] and to obtain correct frequency
parity properties of the response functions [17].

Temperature and chemical potential of the floating contact.
Our goal is to explicitly show that the definition of Eq. (2)
can be verified by measuring the temperature and chemical
potential of the floating contact. As discussed above, the latter
is at local equilibrium for every time snapshot with a chemical
potential μt

c and a temperature T t
c which simultaneously fulfill

the condition of zero charge and heat currents, i.e., Q̇c(t) =
Ṅc(t) = 0. Deviation of the floating contact temperature and
chemical potential from their equilibrium values are denoted
by δT t

c = T t
c − T and δμt

c = μt
c − μ, respectively. In the

adiabatic regime, these quantities are small δT t
c ,δμt

c ∝ h̄�. As
a consequence, we can evaluate both charge and heat fluxes in
linear response in these quantities (whereas the amplitude of
the ac driving potential is arbitrary).

Following Refs. [23,37] we expand the fluxes
J(t) ≡ (Ṅc,Q̇c) in the affinities Xt = (δμt

c,δT
t
c ,h̄�) with
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coefficients �ij (t) as

Ji(t) =
3∑

j=1

�ij (t)Xt
j , (3)

where i = 1,2 (j = 1–3) label the different components of
the vectors J and Xt , respectively. The coefficients of the
above expansion are response functions evaluated with the
frozen Hamiltonian at time t and have the following physical
interpretation: �11 and �22 are the usual electric and thermal
conductances. On the other hand, �12 (related to the Seebeck
effect) and �21 (related to the Peltier effect) capture the
thermoelectric transport, and they satisfy the reciprocity rela-
tion �21 = T �12 [38–41]. Finally, �13 and �23, respectively,
describe the generation of charge and heat currents by the ac
driving. They also obey Onsager relations with the coefficients
entering the work flux (not considered here) [37]. Explicit
expressions of these coefficients will be supplied below for
the specific model.

Here, we notice that the conditions of vanishing fluxes to
the floating contact amounts to finding the solution of the 2 × 2
linear set of equations∑2

j=1 �ijX
t
j = −�i3h̄�, i = 1,2. The solutions are

δμt
c = �12�23 − �13�22

det �′ h̄�,

(4)

δT t
c = �13�21 − �11�23

det �′ h̄�,

where det �′ corresponds to the determinant of the 2 × 2
matrix determined by the condition j �= 3.

The coefficients � can be calculated for the system con-
sidered in Fig. 1 (see the details in the Supplemental Material
[42]),

�ij (t) =
{∫ (ε−μ)i+j−2

hT (j−1) T (t,ε)∂εf dε, if j �= 3,

− �cV̇

(�+�c)h�

∫
(ε − μ)i−1ρf (t,ε)∂εf dε, if j = 3,

(5)

The distinction between j �= 3 and j = 3 is important. In
the former case, the response depends on the instantaneous
transmission probability T (t,ε) for electrons traversing the
quantum dot between the reservoir and the floating contact.
Physically, this corresponds to dc transport. In the latter case,
the response is a function of the time derivative of the potential
applied to the gate V̇ = −�V sin(�t) and the instantaneous
local density of states of the dot ρf (t,ε). Physically, this is
pumping and, as such, of the ac nature. Both coefficients are
time dependent because the system adiabatically reacts to the
instantaneous ac driving potential [46]. Finally, in Eq. (5)
f is the Fermi-Dirac distribution of the reservoir, whereas
�c = |wc|2ρc and � = |w|2ρ are the hybridization functions
with wc as the dot-floating contact couplings and w as the
dot-reservoir couplings. The density of states of the floating
contact is ρc, and that of the reservoir is ρ.

Interestingly, we readily find that the coefficients of Eq. (5)
satisfy the relations: (i) �13�21 − �11�23 = 0 and (ii) �j3 =
−�j1

V̇
��

with j = 1,2, leading to the solution,

δT t
c = 0, δμt

c = h̄

�
eV̇ . (6)

These equations tell us that changing only the chemical poten-
tial is sufficient to satisfy the balance of change and energy for
the floating contact. Notice that this conclusion is independent
of coupling to the floating contact �c and the base temperature
T , provided that the adiabaticity condition �,�c � h̄� is
satisfied [47,48]. This is true even for temperatures close
to zero in which case the second-order contributions in the
affinities should be added to Eq. (3) (see the Supplemental
Material [42]). Note that, whereas the universality of the
Büttiker resistance can be lifted with increasing temperature,
the universality of our result holds for finite T .

To summarize, the floating contact fulfills the conditions
of vanishing heat and charge fluxes by changing δμt

c in time
according to Eq. (6) while keeping its temperature constant and
equal to the background temperature as indicated in Eq. (1).

Examine the energy reactance. We would like to stress
now that Eq. (6), in particular, the prediction of a constant
temperature of the floating contact expressed in Eq. (1),
constitutes a proof for the existence of the energy reactance
U̇Tc

(t)/2 and the definition of the heat current as in Eq. (2).
This can be easily understood by noting that we would arrive
at completely different conclusions on the behavior of the
temperature of the floating contact if we consider a definition
of the heat flux that does not take into account the energy
reactance.

As a proof, let us analyze the consequence of adopting a
commonly used definition, that does not take into account the
energy reactance. This corresponds to the following expression
for the heat flux into the floating contact:

˙̃Qc(t) = U̇c(t) − μt
cṄc(t). (7)

We need to recalculate the coefficients �2j (t) by using
the above equation. We denote the so-defined coefficients
by �̃2,j (t). From Eq. (4) where we replace �2,j (t) →
�̃2,j (t), j = 1–3, we find the floating contact temperature δT̃ t

c

and chemical potential δμ̃t
c. In contrast to Eq. (6), now we

find that both the temperature δT̃ t
c and the chemical potential

δμ̃t
c of the floating contact change in time. In the case of the

chemical potential, δμ̃t
c evolves in time in a different pattern

from that described by Eq. (6) (the corresponding behavior
is shown in the Supplemental Material [42]). We turn to
focus on the behavior of the temperature δT̃ t

c , which is shown
in Fig. 2. It is worth noting that the amplitude of the δT̃ t

c

oscillations decreases as T increases, which shows that the two
definitions of the heat current agree in the high-temperature
limit. These results show that the role of the energy reactance
is particularly relevant in the quantum regime. In the classical
high-temperature limit the temperature of the floating contact
is independent of time either with the heat current defined as
in Eq, (2) or with the definition of Eq. (7).

Conclusion. We have shown that the behavior of the time-
resolved chemical potential and temperature of a floating
contact coupled to an adiabatically driven quantum dot is
strongly sensitive on the definition of the instantaneous heat
flux. For this reason, sensing these quantities would provide
an experimental test for the relevance of the energy reactance
introduced in Ref. [15] as a component of the time-dependent
heat flux.
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FIG. 2. Deviation of the temperature of the floating contact δT̃ t
c

as a function of time for different background temperatures T . The
ac potential is 20� cos(�t) with h̄� = 0.07�. The hybridization
between the floating contact and the quantum level is �c = 0.6�.
All energies are expressed in units of the hybridization � with the
reservoir. The temperature of the floating contact displays oscillations
that depend on the background temperature. As T increases, the
oscillations become less pronounced, and the maxima positions
deviate from the moment when the level is aligned with the chemical
potential of the reservoir, which in this case corresponds to t�/2π =
0.25 and t�/2π = 0.75.

Specifically, for an adiabatically driven quantum dot with a
single active level coupled to a single reservoir, we have shown
that: (i) If the energy reactance is taken into account, then the
temperature of the floating contact is constant and equal to that
of the reservoir, whereas its chemical potential follows the time

derivative of the driving potential V̇ as expressed in Eq. (6).
Instead, (ii) if the energy reactance is not taken into account,
these two quantities follow a nonuniversal time-dependent
pattern.

The experiment we propose is close to the scope of present-
day experimental techniques. In fact, typical level spacing
for quantum dots is around 100 μeV [49]. Thus, by keeping
driving amplitudes below this energy, we would basically have
a single active level. On the other hand, typical parameters for
single-particle emitters have � � 1 μeV (� 1 GHz) and are
operated at frequencies of � � 0.1 GHz [1], which satisfy
the adiabatic condition h̄� < �. As a consequence, a fast
thermometer [9] is able to follow temperature changes in the
floating contact on the nanosecond scale. Experiments are
typically performed at temperatures close to T ∼ 100 mK. For
this temperature, the oscillations in the temperature shown in
Fig. 2 have an amplitude of δT̃ t

c � 10 mK.
Since the universal behavior of Rq at T = 0 remains valid

when the system behaves as a Fermi liquid (both in the linear
[50,51] and in the nonlinear regimes [52,53]), we expect that
our prediction will also remain valid under the same conditions.

We emphasize that the question about the role of the
energy reactance in the definition of a time-dependent heat
flux is a fundamental one. It is not restricted to slowly driven
systems of noninteracting electrons but is also relevant for
interacting models for fast drivings and for weakly and strongly
coupled systems. So far this question has been addressed only
theoretically. The present proposal shows that a thermometer
probe response will experimentally demonstrate the existence
of the energy reactance.
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