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Renormalization effects in spin-polarized metallic wires proximitized by a
superconductor: A scattering approach
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Spin-polarized normal-metal wires coupled to a superconductor can host Majorana states at their ends. These
decay into the bulk and are protected by a minigap in the spectrum. Previous studies have found that strong
coupling between the superconductor and the normal-metal wire renormalizes the properties of this low-energy
phase. Here, we develop a semiclassical scattering approach to explain these renormalization effects. We show
that a renormalization of the propagation velocity in the normal wire originates from double Andreev reflection
processes at the superconductor interface and that it continues to exist in the absence of a proximity-induced
minigap in the normal-metal wire. We also show that the renormalization effects exist for arbitrary transparency
of the normal-metal–superconductor interface, provided the superconductor coherence length is sufficiently long
in comparison to the thickness of the normal metal.
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I. INTRODUCTION

Majorana bound states, zero-energy bound states that
are particle-hole symmetric, are predicted to emerge at the
ends of one-dimensional topological superconductors. Fol-
lowing theoretical proposals [1–6], the experimental realiza-
tion of systems with such Majorana bound states makes use
of proximity-induced superconductivity in effectively spin-
polarized normal wires, such as a semiconducting wire in a
large magnetic field [7–13] or a ferromagnetic wire formed
by a chain of magnetic atoms placed on a superconducting
substrate [14–17]. In both cases, spin-orbit coupling plays
an essential role by allowing the conversion of spin-singlet
s-wave Cooper pairs in the superconducting substrate into
spin-polarized p-wave pairs in the proximitized wire.

Not only the zero-energy nature of the Majorana states,
but also their localization length can be accessed experi-
mentally, for the atomic-chain platform spatial resolution is
a built-in feature of the scanning probe experiment used to
detect the Majorana bound state in the first place [14–17],
but spatial information is also available in the semiconductor-
wire experiments, by utilizing the hybridization of Majorana
states at opposite ends of the wire [11]. In the atomic-chain
experiments, as well as in some of the semiconductor-wire
experiments [8], the product of the observed Majorana lo-
calization length lmaj and the proximity-induced minigap εgap

was significantly smaller than the expectation εgaplmaj ∼ h̄v

based on models with weak coupling between normal wire
and superconductor [18] (v is the Fermi velocity in the normal
metal). The anomalously small value of the product εgaplmaj

could be explained by invoking a strong coupling to the su-
perconductor, which substantially renormalizes the properties
of the Majorana bound state in atomic chains [19,20], and
proximitized semiconductor nanowires [21,22]. The qualita-
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tive explanation is that strong coupling to the superconductor
places most of the Majorana state’s spectral weight in the
superconductor, not in the normal metal [23,24], which leads
to a strong suppression of the propagation velocity along the
wire [19,20].

In the present paper we consider the velocity renor-
malization for a spin-polarized wire strongly coupled to a
superconductor—where the spin polarization can be a conse-
quence of the use of half-metallic materials [25–28], the use
of chains of magnetic adatoms [14–17], or of the application
of a magnetic field. The velocity renormalization exists inde-
pendently of the appearance of a proximity-induced minigap
εgap in the wire and the possible existence of Majorana bound
states. A strong velocity normalization can exist even if εgap

is much smaller than the bulk superconducting gap �. Such a
situation is markedly different from a conventional normal-
metal–superconductor junction, where (in the absence of a
magnetic field) a large spectral weight inside the supercon-
ductor coincides with the short-junction limit for which εgap

and � are of comparable magnitude.
Our theoretical approach complements Refs. [19,20],

which used a large tunnel matrix element to model the
strong coupling between normal metal and superconductor.
Instead, we take a wave-function approach, and characterize
the normal-metal–superconductor interface in terms of its
transparency. Then, the strongest coupling naturally appears
for an ideal interface with unit transparency. For such an ideal
interface, the strong-coupling regime appears when � �
h̄v/W , where v is the Fermi velocity in the absence of cou-
pling to the superconductor and W the transverse dimension
of the normal metal. Our method is similar to that of Ref. [21],
which performs an analysis dedicated to the semiconductor-
wire model, and extends previous work on the weak-coupling
limit by Duckheim and one of the authors [4].

The wave-function approach allows for an instructive
semiclassical picture of the velocity renormalization. In this
picture, the renormalization results from a delayed specular

2469-9950/2019/99(10)/104510(13) 104510-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.99.104510&domain=pdf&date_stamp=2019-03-12
https://doi.org/10.1103/PhysRevB.99.104510


KIENDL, VON OPPEN, AND BROUWER PHYSICAL REVIEW B 99, 104510 (2019)

FIG. 1. Spin-polarized normal-metal wire of width W (white)
with one superconducting (grey, top) boundary and one insulating
boundary (bottom). In the absence of spin-orbit coupling specular
(normal) reflection at the normal-metal–superconductor interface
involves a double Andreev reflection process in which an Andreev
reflected minority hole is specularly back-reflected into the supercon-
ductor. The time delay incurred in this process slows down electrons
propagating in the normal metal.

reflection of electrons in the normal metal at the superconduc-
tor interface, as shown in Fig. 1. At an ideal normal-metal
superconductor interface, this reflection process consists of
three stages: (1) An electron incident from the normal metal
at angle θ is transmitted into the superconductor. (2) The
transmitted electron is Andreev reflected as a hole. This
hole cannot re-enter the spin-polarized normal metal because
it has the wrong spin. Instead, it is specularly reflected at
the superconductor–normal-metal interface. (3) Finally, the
hole is in turn Andreev reflected into an electron, which
is subsequently transmitted into the normal metal. Because
of the finite penetration length into the superconductor, a
delay ∼2h̄/� is accumulated in this reflection process. For
a normal-metal wire of thickness W a distance 2W tan θ is
traveled between subsequent reflection events within a time
2W/v cos θ . Thus one obtains the effective velocity

vx ≈ �

h̄
W tan θ (1)

in the strong-coupling regime � � h̄v/W . Note that it is
the delay for the normal reflection that causes the velocity
renormalization; the velocity renormalization does not involve
processes that lead to Andreev reflection of majority electrons
into majority holes or vice versa, which is the cause for
the proximity-induced minigap in the normal metal. For a
nonideal interface a second reflection channel, direct specu-
lar reflection, is added in parallel to this delayed reflection
process.

Spin-orbit coupling in the normal metal and/or the super-
conductor enables Andreev reflection of majority electrons
into majority holes and a small minigap εgap opens up in
the spectrum of the normal metal, with Majorana bound
states forming at the wire ends. The localization length of
the Majorana bound state is ∼h̄vx/εgap, with vx the renor-
malized normal-state velocity. The strong renormalization of
the velocity vx in the strong-coupling limit leads to a strong
renormalization of the product of εgap and the Majorana-
state localization length. Upon comparing expressions for the

weak- and strong-coupling limits, we find that it is εgap that is
renormalized in the strong-coupling limit, while the Majorana
localization length remains unrenormalized. This is in accor-
dance with the Green-function analysis of Refs. [19,20].

The outline of this paper is as follows: In Sec. II we
introduce the model of a spin-polarized metal proximity
coupled to a superconductor. In Sec. III we calculate the
dispersion ε(kx ) for propagating states in the normal wire in
the absence of spin-orbit coupling. The renormalized velocity
vx is obtained as vx = h̄−1|dε/dkx|. Spin-orbit coupling is
included in Sec. IV, in which we derive the properties of the
emerging Majorana bound state for a highly transparent limit
and compare the results to the limit of an opaque interface.
We conclude in Sec. V. To keep the analysis simple, the
discussion in the main text is for a two-dimensional model. We
present results for a three-dimensional setup in the Appendix.
The results for the two- and three-dimensional geometries are
qualitatively the same.

II. MODEL

We consider a normal-metal (N) strip coupled to a super-
conductor (S). Coordinate axes are chosen such that the N-S
interface coincides with the x axis, see Fig. 1, the supercon-
ductor occupies the half space z > 0, and the normal metal is
in the region −W < z < 0. The 4 × 4 Bogoliubov–de Gennes
(BdG) Hamiltonian reads

Ĥ =
(

H0 iσ2�eiφθ (z)
−iσ2�e−iφθ (z) −H∗

0

)
(2)

for a BdG spinor (u↑, u↓, v↑, v↓)T comprising particle and
hole wave functions. Here �eiφ is the superconducting order
parameter and θ (z) is the Heaviside step function. The 2 × 2
normal-state Hamiltonian H0 is

H0 = p2

2m
+ V (z) + h̄2w

m
δ(z) + Hso, (3)

where m is the electron mass, which we take to be the same in
the N and S parts of the system, V (z) is a spin-dependent po-
tential, (h̄2w/m)δ(z) is a potential barrier at the N-S interface,
and Hso is the spin-orbit interaction. For the spin-dependent
potential V (z), we take different expressions in the normal and
superconducting parts of the system,

V (z) = − h̄2k2
S

2m
(4)

when z > 0 and

V (z) = − h̄2

2m

(
k2
↑ 0
0 −κ2

↓

)
+ Vconf (z) (5)

when z < 0. Here, kS and k↑ are the Fermi wave numbers of
the superconductor and the majority spin band and Vconf (z)
is a confining potential modeling the sample boundary at
z = −W , Vconf (z) = 0 for z > −W and Vconf (z) = ∞ for z <

−W . Finally, the spin-orbit coupling is taken to be linear in
momentum,

Hso = h̄

2

∑
j

[p� j (z)σ j + σ j� j (z)p], (6)
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where the spin-orbit coupling strength

� j (z) = �S jθ (z) + �N jθ (−z) (7)

is piecewise constant in the N and S regions. Spin-orbit
coupling is assumed to be weak, so that it can be treated in
first-order perturbation theory.

The normal-state majority-carrier transparency of the in-
terface depends on the Fermi velocities v↑ = v = h̄k↑/m and
vS = h̄kS/m, the strength w of the surface δ-function poten-
tial, and the momentum component h̄kx parallel to the inter-
face. In the absence of spin-orbit coupling the corresponding
reflection and transmission amplitudes at the Fermi energy
ε = 0 are [29]

t↑(kx ) = 2
√

k↑zkSz

2iw + k↑z + kSz
, (8)

r↑(kx ) = −1 + t↑(kx )
√

k↑z/kSz, (9)

r′
↑(kx ) = −1 + t↑(kx )

√
kSz/k↑z, (10)

where

k↑z =
√

k2
↑ − k2

x , kSz =
√

k2
S − k2

x . (11)

(The amplitudes r↑ and r′
↑ describe reflection of majority

electrons coming from the N and S parts of the system,
respectively.) Minority spins coming from z > 0 are reflected
with reflection amplitude

r′
↓(kx ) = eiϕ↓(kx )

= kSz − iκ↓z − 2iw

kSz + iκ↓z + 2iw
, (12)

where κ↓z =
√

κ2
↓ + k2

x and we neglect terms exponentially
suppressed in κ↓zW .

This model describes semiconductor wires in a large Zee-
man field as well as half-metallic (ferromagnetic) wires, both
coupled to a superconductor. In the former case spin-orbit
coupling is typically assumed to exist inside the semiconduc-
tor, but not in the superconductor [1,2]; in the latter case, spin-
orbit coupling is usually taken to be in the superconductor, but
not in the half-metallic wire [3,4].

In actual samples, the effective masses would be different
for the semiconductor and the superconductor. For simplicity,
our presentation assumes identical effective masses. However,
we emphasize that our results remain valid when including
different masses as long as they are expressed in terms of
Fermi momenta and Fermi velocities. Indeed, our results
below are based on the amplitudes in Eqs. (8), (9), and (12)
which account for the possibility of different Fermi momenta
and velocities on the two sides and thus remain valid for
a model with unequal masses. This was shown by explicit
calculation in Ref. [29].

In recent experiments [11], only a thin superconducting
shell is added to the semiconductor wire. This can lead to
changes compared to the situation with an extended super-
conductor which we treat here [30–32]. These changes should
be particularly pronounced when the superconducting shell is
clean. In contrast, a sufficiently disordered shell, for instance
due to a disordered outer surface of the superconductor, is

expected to behave in much the same way as an extended
superconductor, making our results applicable to this case.

In the Appendix, we consider the corresponding three-
dimensional model, consisting of a cylindrical spin-polarized
normal metal surrounded by a superconductor.

III. RENORMALIZATION OF THE FERMI VELOCITY

We first consider the system under consideration in the
presence of superconductivity, but without spin-orbit cou-
pling. The superconducting gap confines carriers with excita-
tion energy |ε| < � to the normal region, so that the N region
effectively becomes a conducting wire of width W .

Without spin-orbit coupling, reflections at the N-S inter-
face are purely normal; Andreev reflections are ruled out
because they would require a spin-flip process. Nevertheless,
the presence of the superconductor can lead to a strong renor-
malization of the carrier velocity. To see this explicitly, we
construct the wave function of a majority electron at excitation
energy ε and momentum h̄kx parallel to the interface,

u↑(x, z) ∝ eikxx[eikz (kx,ε)z + ree(kx, ε)e−ikz (kx,ε)z]. (13)

Here

kz(kx, ε) =
√

k2
↑ − k2

x + 2mε/h̄2 (14)

and ree(kx, ε) is the reflection amplitude in the presence of the
superconductor. In terms of the normal-state reflection and
transmission amplitudes of the N-S interface the reflection
amplitude ree(kx, ε) reads (in the Andreev approximation
h̄2k2

z /2m � �)

ree(kx, ε) = r↑(kx ) + t↑(kx )2e−2iη(ε)−iϕ↓ (kx )

1 − r′
↑(kx )e−2iη(ε)−iϕ↓ (kx )

= k↑z − 2iw − ikSz tan(η + ϕ↓/2)

k↑z + 2iw + ikSz tan(η + ϕ↓/2)
, (15)

where

η(ε) = arccos(ε/�). (16)

This result can be easily understood by considering the dif-
ferent paths a majority electron incident on the N-S interface
from z < 0 can take: direct normal reflection with amplitude
r↑ or entering the superconductor with transmission amplitude
t↑, Andreev reflection into a minority hole, normal backreflec-
tion of the hole into S with amplitude r′∗

↓ , finally followed by a
second Andreev reflection into a majority electron and trans-
mission into the normal metal. The denominator in Eq. (15)
describes higher-order processes involving multiple double
Andreev reflections. We have assumed κ↓W � 1, so that the
minority wave-function component u↓ decays sufficiently fast
away from the N-S interface and it is sufficient to restrict
ourselves to the majority wave-function component u↑.

The dispersion relation ε(kx ) follows by imposing that
u↑(x,−W ) = 0, which leads to

1 = −e2ikzW ree(kz, ε). (17)

For a weakly coupled superconductor one has r↑ = r′
↑ ≈ −1

and |t↑| � 1, and Eq. (17) reproduces the standard quantiza-
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FIG. 2. Subgap dispersion relation ε(kx ) for a spin-polarized nor-
mal wire attached to a superconductor. Only electronlike solutions
are shown; holelike ones are obtained by mirroring the spectrum
vertically such that ε → −ε. The wire width satisfies k↑W/π = 1.2,
corresponding to one propagating mode at the Fermi level ε = 0
in an isolated wire. The solid lines are obtained by numerically
solving Eq. (17). The left panel shows the dispersion relation for
k↑ = kS, w = 0, corresponding to a fully transparent N-S interface;
the right panel has wm/h̄k↑ = 1, corresponding to an interface with
transmission probability |t↑|2 = 1/2 for perpendicular incidence.
The dashed lines show Eqs. (20) (left panel) and (25) (right panel),
while the dotted lines show the dispersion for a vanishing interface
transparency. The magnitude of the superconducting gap is given by
(h̄π/W )2/2m� = 10, well within the validity range of the Andreev
approximation. We further set κ↓/k↑ = 2.

tion rule kz = nπ/W , n = 1, 2, . . ., and a quadratic dispersion

ε = h̄2

2m

(
k2

x + n2π2

W 2
− k2

↑

)
. (18)

In the opposite limit of an ideal interface with t↑ = 1 and r↑ =
r′
↑ = 0, one finds

2kz(ε)W = 2η(ε) + ϕ↓(kx ) + (2n + 1)π. (19)

If we restrict ourselves to the single-mode regime
1 � k↑W/π � 2, the Andreev approximation implies that
(h̄π/W )2/2m � �, which allows us to neglect the energy
dependence on the left-hand side of Eq. (19) and obtain the
dispersion

ε = ±� sin

[
ϕ↓(kx )

2
− W

√
k2
↑ − k2

x

]
. (20)

The left panel of Fig. 2 shows the dispersion for k↑W/π =
1.2 for an ideal interface, together with the approximate
result (20) and the dispersion (18) of the isolated wire.

Figure 2 clearly shows that the coupling to the super-
conductor leads to significantly flatter ε vs kx curves near
ε = 0, indicating a strongly renormalized Fermi velocity vx =
h̄−1|dε/dkx|. The strong renormalization of the velocity also
follows from the approximate dispersion (20) for an ideal
interface,

vx = 1

h̄

√
�2 − ε2

kxW

k↑z

(
1 − 1

κ↓zW

)
. (21)

Although we dropped terms exponentially suppressed in κ↓zW
in Eq. (12), we keep the term including κ↓zW as it is sup-
pressed by a power law only. Equation (21) gives an effective

0.0 0.5 1.0
|t↑|2

0.0

0.5

1.0

v x
/v

si
n

θ

FIG. 3. Renormalized velocity as a function of interface trans-
parency |t↑|2. The velocity is normalized to v0

x = h̄kx/m = v sin θ .
The interface barrier is introduced by increasing w while matching
k↑ = kS (bright, orange line) and by increasing kS at fixed w = 0
(dark, blue line). The solid lines are obtained by numerically solving
Eq. (17). All other parameters are the same as in Fig. 2. The dashed
lines show the |t↑|2 = 1 approximation of Eq. (21) and the small-
transparency approximation of Eq. (25).

velocity vx that is suppressed by a factor �/εkin compared to
the velocity h̄kx/m of an isolated normal wire. Here, εkin =
h̄2k2

↑/2m is the normal-state kinetic energy. This suppression
is consistent with the semiclassical estimate (1).

The renormalized velocity is shown in Fig. 3 as a function
of interface transparency for the same parameter choice as in
Fig. 2. Starting from the value vx = h̄kx/m of an isolated wire,
the velocity decreases monotonically as a function of interface
transparency |t↑|, reaching the much smaller value given by
Eq. (21) at |t↑|2 = 1.

Although the velocity renormalization is strongest for a
fully transparent interface, we emphasize that the renormal-
ization exists for arbitrary transparency of the interface, pro-
vided � is small enough, so that a double Andreev reflection
from the superconductor takes a sufficiently long time. In
fact, the limit of a weakly transparent interface allows for an
explicit solution for vx, as we now show. The limit of a small
junction transparency is realized if kSz � kz or |w| � kz. In
this limit one finds

ree = −4w2 + k2
Sz + ikz(2w + εkSz/�)

4w2 + k2
Sz − ikz(2w + εkSz/�)

, (22)

up to corrections that are small in |ε|/�, in kz/|w|, or in
kz/kSz. For |ε| � �, the solution of Eq. (17) is

kz = π

W
− π (2w + εkSz/�)

W 2
(
4w2 + k2

Sz

) , (23)

which gives the equation

ε = h̄2

2m

(
k2

x + π2

W 2
− 2π2(2w + εkSz/�)

W 3
(
4w2 + k2

Sz

) − k2
↑

)
, (24)

from which the dispersion relation can be obtained. (The ε

dependence of kSz can be neglected in the limit of small
interface transparency because either kS � k↑, in which case
kSz = kS up to small corrections, or |w| � kSz, in which case
kSz drops out of the equation.) Differentiating with respect to
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kx gives the velocity

vx = v sin θ

1 + |t↑|2ξN/4W
, (25)

at ε = 0, where sin θ = kx/k↑ and ξN = h̄2kz/m� =
h̄2π/mW � is the transverse coherence length in the normal
metal. The strong velocity renormalization sets in when
ξN|t↑|2 � W . The small-transparency approximation for
the dispersion ε(kx ) and the velocity vx is illustrated in the
right panel of Figs. 2 and in 3, respectively, showing that
the small-transparency approximation remains useful for
interface transparencies |t↑|2 � 0.5.

From a purely classical point of view, the denominator in
Eq. (25) is surprising. To understand this, consider the process
shown in Fig. 1 for a low transparency |t↑|2. From a classical
point of view, the electron will spend a time TN ∼ W/v↑|t↑|2
in the normal metal before being transmitted through the
interface and a time TS ∼ ξ/vS|t↑|2 in the superconducting
region. Here, we define the velocities v↑ = k↑/m and vS =
kS/m and neglect the angle θ . In the superconducting region,
the distance traveled along x is zero due to the zero-net
displacement processes shown in Fig. 1, and thus the velocity
is expected to be

v(cl)
x ∼ v↑T↑

T↑ + cTS
∼ v↑

1 + cξN/W
, (26)

with some constant numerical factor c, and the ratio v↑/vS has
been absorbed into ξN. Equation (26) is clearly inconsistent
with Eq. (25). The missing factor |t↑|2 can be traced back to
the coherent scattering in the superconductor: During a single
cycle of the double Andreev reflection shown in Fig. 6, a
phase factor eiα = e−2iη(ε)r′

↑(r′
↓)∗ is picked up. For |ε| � �

and a low transparency, this phase factor becomes eiα = −1 +
O(|t |2). Hence multiple double Andreev reflections interfere
destructively up to corrections of O(|t↑|2) and the time TS

is effectively lowered by a factor |t↑|2, which explains the
discrepancy between the classical and semiclassical results
in (25) and (26).

As shown in the Appendix, qualitatively the same results
are obtained for a three dimensional setup.

IV. SPIN-ORBIT COUPLING AND MAJORANA
BOUND STATES

Spin-orbit coupling in the superconductor allows for spin
flips and thereby enables Andreev reflections of majority spin
electrons into majority spin holes and vice versa. This induces
a p-wave minigap εgap in the excitation spectrum of the normal
wire and zero-energy Majorana bound states form at its ends.
This section considers both of these effects and relates the
localization length lmaj of the Majorana bound states and the
minigap εgap to the renormalization of the Fermi velocity
calculated in the previous section. The calculation extends that
of Ref. [4], which considered the same problem in the limit of
an opaque N-S interface, for which there is no renormalization
of the Fermi velocity.

We assume that spin-orbit coupling is sufficiently weak
so that it can be treated in first-order perturbation theory.
Correspondingly, the probability for Andreev reflection off

the normal-metal–superconductor interface is small and the
induced minigap εgap in the spectrum of the normal wire much
smaller than the bulk superconducting gap �. For that reason,
we neglect corrections to the scattering amplitudes of order
ε/� in the calculations below.

The starting point of the calculation is an expression for
the propagating states in the normal wire in the absence of
spin-orbit coupling, normalized to unit flux in the x direction.
To keep the notation simple, we restrict to the regime in which
there is one propagating mode in the normal-metal wire in
the absence of spin-orbit induced Andreev reflection. This
mode has transverse wave vector kz, which is determined by
the quantization condition (17). The electronlike scattering
states |ψe,±〉 propagating in the positive (+) or negative (−) x
direction have the wave-function components [29]

u↑,±(r) = e±ikx (ε)x eikzz + reee−ikzz

√
N vx

, (27)

v↓,±(r) = − e±ikx (ε)x it↑τ↓eκ↓zze−iφ

(r′
↓ + r′

↑)
√
N vx

(28)

in the normal region −W < z < 0, where

kx(ε) =
√

k2
↑ − k2

↑z + ε

h̄vx
, (29)

with the velocity vx taken from the calculation of the disper-
sion in Sec. III, and

τ↓ = 2
√

kSzk↑z

kSz + iκ↓z + 2iw
. (30)

Since we are interested in energies |ε| � �, we only need
to retain the energy dependence in the exponential factors; see
the discussion in the previous paragraph. As before, we as-
sume that κ↓zW � 1 so that no hard-wall boundary condition
needs to be applied at z = −W for the minority component
v↓,±(r). In the superconducting region, the nonzero wave-
function components are [29]

u↑,±(r) = t↑e±ikx (ε)x−z/ξ (eikSzz − e−ikSzz−iϕ↓ )

(1 + r′
↑e−iϕ↓ )

√
N kSzvx/k↑z

,

v↓,±(r) = − it↑e±ikx (ε)x−z/ξ−iφ (eikSzz + e−ikSzz−iϕ↓ )

(1 + r′
↑e−iϕ↓ )

√
N kSzvx/k↑z

. (31)

Here

kSz =
√

k2
S − k2

↑ + k2
z , (32)

ξ = h̄2kSz

m�
, (33)

N = 2W + Im ree

kz
+ 2ξN|t↑|2

|r′
↓ + r′

↑|2 , (34)

where the transverse coherence length in the normal metal
ξN was defined below Eq. (25). The factors

√
kSz/k↑z in

the denominators of Eq. (31) are a consequence of current
conservation at the normal-metal–superconductor interface.
Similarly, the nonzero wave-function components of the hole-
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like scattering states |ψh,±〉 are

v↑,±(r) = e∓ikx (−ε)x(e−ikzz + r∗
eeeikzz )√

N vx
,

u↓,±(r) = it∗
↑τ ∗

↓e∓ikx (−ε)xeκ↓zzeiφ

(r′∗
↓ + r′∗

↑ )
√
N vx

(35)

in the normal region −W < z < 0. Likewise, the correspond-
ing wave-function components in the superconducting region
follow from Eqs. (31) upon exchanging electron and hole
components, complex conjugating, and sending ε → −ε.

To calculate how spin-orbit coupling modifies these scat-
tering states, we now consider a system for which spin-orbit
coupling is nonzero in a segment 0 < x < δL only. For small
enough δL, spin-orbit coupling induces a backscattering am-
plitude in the scattering state which is linear in δL for small
enough δL. Calculating the linear-in-δL scattering amplitudes
in perturbation theory in Hso as in Ref. [4], we find for the
electron-to-hole amplitude for electrons incident from the left
(i.e., initially moving in the positive x direction)

ρheδL = − i

h̄
〈ψh,−|δĤso|ψe,+〉, (36)

where

δĤso = 1

2

{(
Hso 0
0 −H∗

so

)
,�δL(x)

}
, (37)

with {·, ·} the anticommutator and �δL(x) = 1 for 0 < x < δL
and �δL(x) = 0 otherwise. This gives

ρhe = − it2
↑ h̄kxk↑z(�Sxx + i�Syx )e−iφ (1 + r′2

↓ )

N vxk2
Sz(r′

↓ + r′
↑)2

− 2h̄kx(�Nxx + i�Nyx )t↑τ↓e−iφ

N vx(r′
↑ + r′

↓)
(
κ2

↓z + k2
↑z

)
× [κ↓z(1 + ree) − ik↑z(1 − ree )]. (38)

The remaining amplitudes are readily obtained by symmetry
arguments. The Andreev reflection amplitude ρ ′

he for incom-
ing electron moving in the negative x direction is obtained
from Eq. (38) by sending kx → −kx; the amplitudes for
incoming holes are obtained by complex conjugation, ρeh =
ρ∗

he and ρ ′
eh = ρ ′∗

he. Although the wave function penetrates
a distance ∼ξ into the superconductor, the spatial integrals
contributing to the matrix element (36) have support only
within a few wavelengths of the interface [4]. This is the
reason why the first term in Eq. (38) does not involve a factor
ξ in the numerator.

The Andreev reflection amplitude rhe(L) for a segment of
length L can be obtained by solving the differential relation [4]

drhe

dL
= 2iε

h̄vx
+ ρhe + ρ ′∗

her2
he, (39)

which is obtained by summing the scattering amplitudes from
an infinitesimal slice 0 < x < δL and a subsequent segment
δL < x < L. Integrating Eq. (39) gives the nonperturbative
amplitudes

rhe(L) = ρhe sinh qL

q cosh qL − i(ε/h̄vx ) sinh qL
(40)

and

reh(L) = ρeh sinh qL

cosh qL − i(ε/h̄vx ) sinh qL
, (41)

where

q =
√

|ρhe|2 − (ε/h̄vx )2. (42)

For energies |ε| < εgap, with

εgap = h̄vx|ρhe|, (43)

one has |rhe| → 1 in the limit L → ∞. This is the hallmark of
a Majorana bound state [33,34], with εgap being the proximity-
induced minigap [4].

With the help of Eq. (42) one readily identifies lmaj =
|ρhe|−1 as the localization length of the zero-energy Majorana
bound state. The strong renormalization of the velocity vx for
a transparent interface enters the denominator of Eq. (38).
However, the fact that in the strong-coupling limit � � h̄v/W
most of the spectral weight concentrated in the supercon-
ductor also enters into the expression for ρhe, through the
normalization factor N . Interestingly, the superconducting
gap � drops out from the product N vx, causing no additional
smallness of the localization length. Nevertheless, the velocity
renormalization does affect the product of the minigap and
the localization length, in agreement with the analysis of
Refs. [19,20].

To assess the dependence on interface transparency, it is
instructive to evaluate the expressions for the induced gap and
the localization length of the Majorana state for a weakly
transmitting barrier. Taking the imaginary part of ree from
Eq. (22), one concludes that the second term in Eq. (34) does
not contribute to the normalization factor in that limit. Since
|r′

↓ + r′
↑| � 2 for a weakly transmitting barrier, one finds

N = 2W + |t↑|2ξN

2
. (44)

To further simplify the expressions for ρhe, we consider two
special cases: (i) equal Fermi velocities in the normal metal
and the superconductor kS = k↑, and |w| � k↑ to ensure
a non-transparent interface; (ii) kS � k↑ with a barrier-free
interface w = 0. Here, the small transparency is the result of
a large Fermi velocity mismatch between the superconductor
and the normal metal.

In both limits one has 1 + r′2
↓ = 2, although this equality

does not hold generally for nontransparent interfaces. Finally,
for the factor 1 + ree we find

1 + ree = t↑ (45)

in the former limit, and

1 + ree = − it2
↑κz

2kSz
(46)

in the latter limit (where we assumed that κ↓ � kS). For the
amplitude whose magnitude is equal to the inverse Majorana
localization length, we then find

ρhe = ie−iφm|t↑|2 (47)

×
(

π (�Nxx + i�Nyx )

π2 + κ2
↓zW

2
− �Sxx + i�Syx

4π

)
(48)
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FIG. 4. Inverse localization length |ρhe| = 1/lmaj vs interface
transparency |t↑|2 for an interface with matched Fermi velocities
kS = k↑ (top row) and with zero potential barrier w = 0 (bottom
row), with spin-orbit coupling in the superconductor (left column)
and in the normal metal (right column). The dashed curves show the
weak-transparency results (47) and (49). The remaining parameters
are k↑W = 1.2π , (h̄π/W )2/2m� = 20 and κ↓ = 2k↑. We defined
�2

Sx ≡ �2
Sxx + �2

Syx and �2
Nx ≡ �2

Nxx + �2
Nyx .

for a weakly transmitting interface with kS = k↑ and |w| �
k↑, and

ρhe = ie−iφm|t↑|2

×
(

π (�Nxx + i�Nyx )

π2 + κ2
↓zW

2
− |t↑|4(�Sxx + i�Syx )

64π

)
(49)

in limit of a weakly transmitting interface with w = 0
and kS � k↑. Expressions for the induced minigap εgap =
h̄vx|ρhe| follow immediately upon multiplication with the
renormalized velocity vx in Eq. (25), restricted to the small-
transparency limit.

Figure 4 shows the inverse localization length |ρhe| as a
function of barrier transparency for the two limits considered
above, as well as the full expression (38) (solid line). For the
latter, the velocity and the wave numbers are obtained by nu-
merically solving Eq. (17). The figures confirm that the low-
transparency expressions in Eqs. (47) and (49) are excellent
quantitative approximations for transparencies |t↑|2 � 0.5.
However, for transparencies close to unity, spin-orbit coupling
in the superconductor, and w = 0, we observe a sharp closing
of the minigap. This is an interference effect which can be
traced back to the factor 1 + r′2

↓ = 2eiϕ↓ cos ϕ↓ in Eq. (38).
For w = 0 and with κ↓ > k↑ the minority reflection phase ϕ↓
passes through π/2 close to unit transparency; see Eq. (12). A
similar effect appears upon approaching perfect transparency
by varying w at k↑ = kS for negative w (data not shown).

Figure 5 shows the induced minigap εgap as a function of
barrier transparency. Here the transition between the strong-
coupling and weak-coupling limits at |t↑|2 ∼ W/ξN can be
clearly seen. The weak-coupling limit agrees with the theory
of Ref. [4]; the velocity renormalization appear in the strong-
coupling limit |t↑|2 � W/ξN.
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εgap/mΩSxWΔ εgap/mΩNxWΔ

10−2 100

|t↑|2
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FIG. 5. Minigap vs transparency for the same conditions as in
Fig. 4. The grey curves show the power laws corresponding to the
weak-coupling limit |t↑|2 � W/ξN and the strong-coupling limit (at
weak transparency) W/ξN � |t↑|2 � 1. The dashed curve is obtained
using the weak-transparency results (47) and (49) for the inverse
localization length ρhe. The parameter values are k↑W = 1.2π ,
(h̄π/W )2/2m� = 200π , and κ↓ = 2k↑.

V. CONCLUSIONS

In this work, we employed a semiclassical scattering ap-
proach to study a spin-polarized normal-metal quantum wire
which is strongly coupled to a spin-orbit-coupled supercon-
ductor. This model for a topological superconductor was
originally introduced and studied in the limit of an opaque
interface between wire and superconductor [4]. Here, we have
shown that the properties of its topological phase are strongly
renormalized for a highly transparent interface and provide
a semiclassical interpretation. Following previous work on
related systems [19–22], we trace the renormalization to the
lowering of the Fermi velocity which we interpret in terms
of scattering processes which yield zero net displacement
along the wire as well as a modified spin-flip scattering rate
ρhe. Specifically, a transparent interface greatly increases both
the topological minigap and the localization length of the
emerging Majorana bound states as compared to an opaque
one. Additionally we find that, while the low-transparency
prediction for the localization length stays accurate even for
transparencies �0.5, the velocity as well as the minigap are
strongly renormalized towards small values compared to the
low-transparency prediction.

It is interesting to compare our semiclassical approach
to the previously employed Green-function approach [19].
In this approach, one studies the propagation of subgap
excitations in the wire, accounting for the coupling to the
superconductor through the corresponding self-energy

�(k, ω) = −�
ω + �τx√
�2 − ω2

. (50)

Here, � quantifies the coupling between wire and supercon-
ductor (with gap �) in terms of the decay rate of subgap
excitations of the wire (with energy ω) into the superconduc-
tor in the normal state. The self-energy is written in Nambu
notation with the corresponding Pauli matrices denoted by τ j
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( j = x, y, z) and does not yet account for spin-orbit coupling
in the superconductor. Thus the pairing terms ∝τx describe
conventional s-wave pairing and the induced p-wave pairing
involves a dimensionless measure of the spin-orbit coupling
in addition.

The expression in Eq. (50) is independent of the wave
vector k, making the self-energy local in real space. Within
the semiclassical picture of the present paper, this surprising
locality has a natural interpretation in terms of the locality of
the scattering processes by the superconductor. Moreover, the
semiclassical approach requires a purely spectral description
of the renormalizations. The expression in Eq. (50) implies
that we can expect such a spectral interpretation in the limit
in which ω � � and the induced gap is small compared
to �. For ω � �, both the induced pairing term and the
quasiparticle weight become independent of ω. Then, the
subgap spectrum of the wire can be obtained from an effective
Hamiltonian, provided that the induced gap is sufficiently
small. In the context of the model studied in this paper, this
latter condition is guaranteed by the spin polarization of the
wire and the smallness of the spin-orbit coupling.

The renormalizations of the Hamiltonian parameters are
due to the quasiparticle weight [23,24]. As the coupling
between wire and superconductor increases, the quasiparticle
weight of the wire Green function is progressively reduced.
This renormalization is directly mirrored in factors involving
4W + ξN |t↑|2 in the semiclassical approach of this paper.
Such factors are involved in the semiclassical expressions (25)
and (43) for the Fermi velocity and the induced gap of the
normal metal, respectively. Correspondingly, both quantities
involve renormalizations by the quasiparticle weight in the
Green-function approach. At the same time, the quasiparticle
weight drops out from the localization length of the Majo-
rana bound state (or, equivalently, the coherence length of
the induced superconductivity) since it is the ratio of Fermi
velocity and induced gap. Again, this is consistent with our
semiclassical approach which also does not involve a factor
4W + ξN |t↑|2 in Eqs. (47) and (49). Note that despite this
absence of renormalization, the Majorana localization length
depends on the bare system parameters in a nontrivial way,
as it is independent of the gap of the proximity providing
superconductor (see also [21]).

It would be interesting to extend our analysis to include
additional physics such as the self-consistent effects of inter-
actions [35–37], finite-size effects for a thin superconducting
shell [30,31], or the presence of disorder. Specifically, disor-
der may or may not affect the properties of the topological
phase. As discussed earlier [4,29], for a mean-free path �

much larger than the microscopic length scales, the single
reflection amplitude ρheδL is not affected since it is obtained
by matching the wave functions at the short scale of the half-
metal–superconductor interface. In contrast, the derivation
of the reflection amplitude reff

he includes multiple-scattering
processes at a length scale 1/|ρhe|. In the absence of disorder,
these add coherently to reff

he because kx is conserved. Including
disorder with � � 1/|ρhe| leads to contributions from differ-
ent kx for different scattering paths. Additionally, based on
symmetry arguments it can be shown that rhe is antisymmetric
in kx [29]. Hence the sum over the different paths is incoherent
and there is no guarantee that reff

he is unaffected by disorder.

However, if � � 1/|ρhe| the amplitudes still add coherently,
and disorder is expected to not play a role. Since 1/|ρhe|
is strongly decreased for a highly transparent interface, we
conclude that high transparencies lead to a better protection
from disorder for the Majorana bound states.
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APPENDIX: CYLINDRICAL WIRE

The restriction to a planar model made in the main text, in
principle, accounts only for a small subset of realizable mate-
rials. This motivates us to investigate a three-dimensional ana-
log of the planar setup discussed in the main text. We consider
a cylindrical, half-metallic wire of radius R, surrounded by an
s-wave superconductor with spin-orbit coupling in either of
the two materials. A cross section of the setup is shown in
Fig. 6. The main differences to the planar model are a change
in the basis of the transverse components, from plane waves
to Bessel functions, and the addition of an angular momentum
quantum number. We consider only the Zeeman term induced
by the magnetic field and neglect the orbital term.

Within this model and in the regime of a single transverse
mode inside the wire, we show that the renormalization of
the low-energy dispersion, the Majorana decay length, and the
induced minigap shows essentially the same dependence on
the model parameters as in the case of a planar model.

The outline of our approach is similar to the one for the
planar setup. After defining the cylindrical model, first, we
derive the transmission and reflection amplitudes at a normal-
metal–normal-metal interface. Next, we include a finite su-
perconducting order parameter �, and follow the lines of
the main text in order to obtain the renormalized dispersion.
Building on these results, we then derive the Majorana decay
length and the minigap in the presence of the spin-orbit
coupling.

FIG. 6. Cross section of the cylindrical setup. A normal-metal
wire of radius R is surrounded by an s-wave superconductor. Spin-
orbit coupling may be present in both materials.
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1. Model

The three-dimensional setup is described by the same
Hamiltonian as in Eq. (2), with three changes: First, we
generalize to cylindrical coordinates (r, ϕ, x), with x parallel
to the wire, and radius r � 0 and angle ϕ in the transverse
directions. The explicit dependence on z is changed according
to z → r − R, where R is the radius of the wire. Second,
we set Vconf (r) = 0 for all r, as the cylindrical normal wire
has a boundary with the superconductor only, while for the

planar setup a termination at z = −W was necessary. Third,
we take into account the cylindrical geometry in the spin-orbit
coupling tensor, such that the components along the unit
vectors êr , êϕ , and êx are constant. To this end, we redefine

�X j = �X jr êr + �X jϕ êϕ + �X jx êx (A1)

where X = S, N .

2. Cylindrical normal-normal interface

We start our calculation by deriving the scattering amplitudes at the interface for � = 0 and in the absence of spin-orbit
coupling. In this case, the wave functions read

�kx, m(r, ε) = eimϕ+ikxxψkx, m(r, ε). (A2)

Here we introduced the integer angular momentum quantum number m and the longitudinal momentum kx. In order to distinguish
the quantum number m from the mass of the electrons, we rename the latter to me in this Appendix. The radial component,
normalized to unit flux, reads

ψkx, m(r, ε) =
√

πme

2h̄
×

⎛
⎜⎜⎝

ce↑H (1)
m [k↑r (ε)r] + c′

e↑H (2)
m [k↑r (ε)r]

0
ch↑H (2)

m [k↑r (−ε)r] + c′
h↑H (1)

m [k↑r (−ε)r]
0

⎞
⎟⎟⎠+

√
2πme

h̄

⎛
⎜⎝

0
ce↓Im[κ↓r (ε)r]

0
ch↓Im[κ↓r (−ε)r]

⎞
⎟⎠ (A3)

for r < R and

ψkx, m(r) =
√

πme

2h̄
×

⎛
⎜⎜⎝

de↑H (2)
m (kSrr) + d ′

e↑H (1)
m (kSrr)

de↓H (2)
m (kSrr) + d ′

e↓H (1)
m (kSrr)

dh↑H (1)
m (kSrr) + d ′

h↑H (2)
m (kSrr)

dh↓H (1)
m (kSrr) + d ′

h↓H (2)
m (kSrr)

⎞
⎟⎟⎠ (A4)

for r > R. Here, H (1, 2)
m are the Hankel functions of first and second kind and Im is the modified Bessel function of the first kind.

We drop the m indices of the c and d coefficients for the sake of compactness. The wave and decay numbers are

k↑r (ε) =
√

k2
↑ − k2

x + 2meε/h̄2, (A5)

κ↓r (ε) =
√

κ2
↓ + k2

x − 2meε/h̄2, (A6)

kSr =
√

k2
S − k2

x . (A7)

Here we neglected the ε dependence in kSr because we will apply the Andreev approximation for r > R in the next section.
The c coefficients are constrained by the requirement that the wave function has to be well behaved at the origin, which is

satisfied if the Hankel functions add up to the Bessel functions of the first kind, Jm(z) = [H (1)
m (z) + H (2)

m (z)]/2. This corresponds
to fixing c′

e↑ = ce↑ and c′
h↑ = ch↑. No conditions on ce↓ and ch↓ are required, as Im is well behaved at the origin.

The relations between the c and d coefficients are determined by continuity of the wave function at the interface, and by

ψ ′
kx,m(R + δ, ε) = ψ ′

kx,m(R − δ, ε) + 2ωψkx,m(R, ε) (A8)

with δ → 0. Solving the matching conditions relates the in- and outgoing modes by⎛
⎜⎜⎝

d ′
e↑

c′
e↑

d ′
h↑

c′
h↑

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

t↑m(ε) r′
↑m(ε) 0 0

r↑m(ε) t↑m(ε) 0 0
0 0 t∗

↑m(−ε) r′∗
↑m(−ε)

0 0 r∗
↑m(−ε) t∗

↑m(−ε)

⎞
⎟⎟⎠
⎛
⎜⎝

ce↑
de↑
ch↑
dh↑

⎞
⎟⎠, (A9)

⎛
⎜⎜⎝

d ′
e↓

ce↓
d ′

h↓
ch↓

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r′
↓m(ε) 0

t↓m(ε) 0
0 r′∗

↓m(−ε)
0 t∗

↓m(−ε)

⎞
⎟⎟⎠
(

de↓
dh↓

)
. (A10)

Here, we dropped the dependence on kx in order to keep the notation compact. Note that Eqs. (A9) and (A10) are identical to the
ones for a planar setup [29], while the parametrization of the transmission (t) and reflection (r) amplitudes differs.
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By applying the matching conditions at the interface, r = R, we obtain

t↑m(kx, ε) = 4i/πR

kSrH (1)
m−1(kSrR)H (2)

m (k↑rR) − H (1)
m (kSrR)

[
k↑rH (2)

m−1(k↑rR) + 2ωH (2)
m (k↑rR)

] , (A11)

r↑m(kx, ε) = −H (1)
m (k↑rR) + t↑mH (1)

m (kSrR)

H (2)
m (k↑rR)

, (A12)

r′
↑m(kx, ε) = −H (2)

m (kSrR) + t↑mH (2)
m (k↑rR)

H (1)
m (kSrR)

, (A13)

t↓m(kx, ε) = 2i/πR

kSrH (1)
m−1(kSrR)Im(κ↓rR) − H (1)

m (kSrR)[κ↓rIm−1(κ↓rR) + 2ωIm(κ↓rR)]
, (A14)

r′
↓m(kx, ε) = eiϕ↓m (kx,ε) = −H (2)

m (kSrR) + 2t↓mIm(κ↓rR)

H (1)
m (kSrR)

. (A15)

Here we dropped the dependencies on (kx,+ε) on the right-hand side.

It is useful to consider limiting cases of the transmission
and reflection amplitudes. We assume kSr � k↑r, κ↓r . First,
in the limit where m is small compared to the arguments
of the Bessel functions, the amplitudes are related to their
counterparts in the planar model [see Eqs. (8)–(10), (12),
and (30)] by

t↑m(kx, 0) = ei(k↑r−kSr )Rt↑(kx )|z→r, (A16)

r↑m(kx, 0) = −i(−1)me2ik↑r Rr↑(kx )|z→r, (A17)

r′
↑m(kx, 0) = i(−1)me−2ikSr Rr′

↑(kx )|z→r, (A18)

r′
↓m(kx, 0) = i(−1)me−2ikSr Rr′

↓(kx )|z→r, (A19)

t↓m(kx, ε) = e(2m+1)π/4−κ↓r R−ikSr R
√

κ↓r

k↑r
τ↓(kx )

∣∣∣∣
z→r

. (A20)

Next, we take the limit kSrR � |m|. Consider the case R =
0 (no wire). Then the radial components need to be Bessel
functions of the first kind, which vanish for kSrr � m, and the
overlap with the wire will stay negligible for finite R. Thus
even for finite R, large-m modes have a vanishing overlap with
the wire and r′

↑m = r′
↓m = r↑m = 1 and t↑m = 0.

Finally, for intermediate m where k↑rR, κ↓rR � |m| �
kSrR, we find r↑m = 1 and t↑m = 0 to lowest order. Conse-
quently, the radial components become small for r < R. The
remaining two amplitudes r′

↑m and r′
↓m are both of magnitude

1, with their phases depending on m, kSr , κ↓r , and w.
In the case of an ideal interface, w = 0 and k↑ = kS, the

amplitudes for the majority carriers reduce to t↑m = 1 and
r↑m = r′

↑m = 0. This can be verified by using the Wronskian
of the Hankel functions and the unitarity of the scattering
matrix [38].

3. Renormalization of the Fermi velocity

Next we include a finite superconducting order parameter
�. As described in Sec. III of the main text, this is expected to
confine excitations with energies ε < � to the normal region,
r < R, with evanescent components in the superconducting
region that decay at a length scale of order of the coherence
length ξε. The additional weight in the superconductor as well

as the change of the matching conditions at the boundary lead
to a renormalization of the wire dispersion.

Following the lines of the main text, we can derive this
renormalization by first considering the majority wave func-
tion for r < R. It reads

ψkx, m(r, ε) =

⎛
⎜⎝

u↑,kx,m(r, ε)
0
0

v↓,kx,m(r, ε)

⎞
⎟⎠, (A21)

u↑,kx,m(r, ε) =
√

πme

2h̄

{
H (1)

m [k↑r (ε)r]

+ ree,m(kx, ε)H (2)
m [k↑r (ε)r]

}
, (A22)

v↓,kx,m(r, ε) =
√

2πme

h̄
ch↓Im[κ↓r (−ε)r]. (A23)

The amplitude ree,m is derived by applying wave-function
matching at r = R and by requiring decaying modes for
r → ∞. By applying the latter condition we obtain the wave
function inside the superconductor, which reads

ψkx, m(r, ε) =
√

πme

2h̄

×

⎡
⎢⎢⎣H (1)

m

(
kSrr + i r

ξε

)
A(1)

m

⎛
⎜⎜⎝

d ′
↑

0
0

d ′
↑e−iη−iφ

⎞
⎟⎟⎠

+
H (2)

m

(
kSrr − i r

ξε

)
A(2)

m

⎛
⎜⎝

d↑
0
0

d↑eiη−iφ

⎞
⎟⎠
⎤
⎥⎦, (A24)

where the factors

A(1/2)
m =

H (1/2)
m

(
kSrR ± i R

ξε

)
H (1/2)

m (kSrR)
(A25)

ensure that for m � kSrR, the exponential decay of the Hankel
function, proportional to e−r/ξε , is canceled at r = R. We
dropped the ε and kx dependencies for the sake of compact-
ness. Within Andreev approximation, h̄2k2

Sr/2me � �, the
interface can be treated as an interface between two normal
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metals. Thus, the c and d coefficients for the superconductor
and wire components are related by Eqs. (A9) and (A10).
Combining the interface matching relations with Eq. (A24)
and setting ce↑ = 1 yields

ree,m(kx, ε) = r↑m(kx, ε) + t↑m(kx, ε)2

r′
↓m(kx,−ε)e2iη(ε) − r′

↑m(kx, ε)
,

(A26)

d↑(kx, ε) = t↑m(kx, ε)

r′
↓m(kx,−ε)e2iη(ε) − r′

↑m(kx, ε)
, (A27)

d ′
↑(kx, ε) = r′

↓m(kx,−ε)e2iη(ε)d↑(kx, ε), (A28)

ch↓(kx, ε) = t∗
↓m(kx,−ε)e−iη(ε)−iφd ′

↑(kx, ε). (A29)

Equations (A26)–(A29) are identical to the ones in a planar
setup at ε = 0 in terms of the interface amplitudes [29], while
the parametrization of the amplitudes is different.

The requirement of the wave function being well behaved
at r = 0 restricts the normal reflection amplitude by

1 = ree,m(kx, εm). (A30)

Solving this equation yields the dispersion εm(kx ) and the
renormalized velocity vx,m(ε) = |dεm/dkx|/h̄. In the follow-
ing, we provide limiting solutions to Eq. (A30) for unit
transparency, as well as low transparency.

For a transparent interface, w = 0 and kS = k↑, Eq. (A30)
reduces to

2η(εm) + ϕ↓m(kx, εm) = 2πn, (A31)

with an integer number n. Within Andreev approximation
inside the wire, h̄2k2

↑r/2me� � 1 and for h̄2κ2
↓r/2me� � 1,

the energy dependence in ϕ↓m can be neglected, and we obtain

εm(kx ) = ±� cos ϕ↓m(kx ). (A32)

For m � k↑rR, the phase ϕ↓m vanishes and εm = ±�. Hence,
the large m modes are gapped out. For k↑rR � m, we can use
the approximation (A19) to obtain

2k↑rR = 2η(εm) + ϕ↓(kx ) + (4n + 2m + 1)π/2, (A33)

where ϕ↓(kx ) is defined in Eq. (12). Solving for εm, we get

εm(kx ) = ±� cos

[
k↑rR − ϕ↓(kx )

2
− (2m + 1)

π

4

]
. (A34)

The velocity is obtained by taking the derivative

vx,m(kx ) =
√

�2 − ε2
m

kxR

h̄k↑r

∣∣∣∣1 − 1

κ↓rR

∣∣∣∣, (A35)

which is identical to the one for the planar model upon
replacing r by z and R by W . The analytical predictions in
Eqs. (A34) and (A35) are compared to a direct numerical
solution of Eq. (A30) in Figs. 7 and 8. Both limiting cases
show good agreement.

Next, we consider the limit of w, kSr � k↑r, κ↓r . For m �
kSrR the overlap with the wire vanishes and all modes are
gapped out, ε = ±�. For m � kSrR, we obtain

ree,m(kx, ε) = −H (1)
m (k↑rR)

H (2)
m (k↑rR)

∣∣H (1)
m (k↑rR)

∣∣2πR�
(
k2

Sr + 4w2
)+ 2ik↑r (kSrε/� + 2w)

|H (1)
m (k↑rR)|2πR�

(
k2

Sr + 4w2
)− 2ik↑r (kSrε/� + 2w)

. (A36)

Equation (A30) enforces ree,m = 1 and to zeroth order in
k↑r/w and k↑r/kSr we get H (1)

m (k↑rR) + H (2)
m (k↑rR) = 0. The

solutions of this equation correspond to the zeros of the mth-
order Bessel function of the first kind. For positive k↑r , this
prohibits solutions with m � k↑rR, which allows us to use the
small m approximation. To leading order in k↑r/w and k↑r/kSr

we get

ree,m(kx, ε) ≈ −e2ik↑r R−i(2m+1)(π/2)

×k2
Sr + 4w2 + ik↑r (kSrε/� + 2w)

k2
Sr + 4w2 − ik↑r (kSrε/� + 2w)

. (A37)

In the following, we will focus on the regime where k↑rR is
of order 1 and small enough such that only a single solution
exists for low energies. This solution will have m = 0, which
allows us to transform Eq. (A37) to

k↑r = 3π

4R

[
1 − kSrε0/� + 2w

R
(
k2

Sr + 4w2
)
]
, (A38)

which yields

ε0(kx ) = h̄2

2me

[
k2

x − k2
↑ + 9π2

16R2

(
1 − 2

kSrε0/� + 2w

R
(
k2

Sr + 4w2
)
)]

.

(A39)

The ε dependence on the right-hand side can be neglected,
yielding an explicit equation for ε. Taking the derivative with
respect to kx results in

vx,0 = vr sin θr

1 + ξN0|t↑0|2/4R
, (A40)

where vr = h̄k↑/me, sin θr = kx/k↑, and ξN0 = h̄2k↑r/me�.
The renormalization of the dispersion that is present in
Eqs. (A39) and (A40) is the same as the one for the planar
setup, see Eqs. (24) and (25), up to the change W → R,
z → r, and the factor 9/16 in Eq. (A39), which originates
in the basis change from plane waves for two dimensions
to Bessel functions in three dimensions. The approxima-
tions in Eqs. (A39) and (A40) are shown as the dashed
line in Figs. 7 and 8. They show good agreement for small
transparencies.

Figure 7 also shows that higher angular momentum
modes are gapped out, and that they penetrate deeper into
the gap in the high-transparency case. The renormalization
of the velocity for the m = 0 mode is qualitatively the
same as the renormalization in the planar setup, for all
transparencies.
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kx/k↑

−0.8

0.0

0.8
ε/

Δ

−1 0 1
kx/k↑

FIG. 7. Dispersion for the cylindrical setup with different in-
terface transparencies. We choose kS = k↑ and w = 0 on the left,
which yields t↑m = 1, and w/k↑ = 2 with kS = k↑ on the right,
corresponding to |t↑0|2 = 0.2 for perpendicular incidence. The solid
lines show the numerical solution of Eq. (A30), with angular momen-
tum numbers m = 0 (blue), m = ±1 (orange), and m = ±2 (green).
In the right plot, we find in-gap solutions for m = 0 only. The
dashed lines shows the predictions from Eqs. (A34) (left) and (A39)
(right). The remaining parameters are k↑R = 0.8π , κ↓/k↑ = 2, and
(h̄π/R)2/2me� = 50.

4. Effects of spin-orbit coupling

Spin-orbit coupling is expected to have the same effects
as in the planar model, making Andreev reflection between
majority spin electrons and majority spin holes possible,
opening a minigap εgap and allowing Majorana bound states
to form at the end of the cylindrical wire.

We assume spin-orbit coupling to be weak, such that we
can treat its effects within first-order perturbation theory and
neglect finite-energy corrections of order ε/�. Furthermore,
we restrict ourselves to the single mode regime, where m = 0.

The electronlike wave functions |ψe±〉, traveling into the
positive (+) or negative (−) x direction, are given by

ψe±(r, ε) =
√

v↑reikx (ε)x√
2πvx,0N0

ψ±kx (0),0(r, ε) (A41)

with ψ±kx (ε),0(r, ε) defined in Eqs. (A21) and (A24) and

kx(ε) =
√

k2
↑ − k2

↑r + ε

h̄vx,0
. (A42)

FIG. 8. Velocity renormalization as a function of transparency
on a semilogarithmic scale. For the blue (upper) line, we tune the
transparency by varying w while keeping k↑ = kS fixed. For the
orange (lower) line, we vary kS/k↑ � 1 with w = 0 fixed. The dashed
lines show the predictions for |t↑0|2 � 1 and for |t↑0|2 = 1. The
remaining parameters are the same as in Fig. 7.

10−2

10−1

100
l−1
maj,c/me|ΩSx| l−1

maj,c/me|ΩNx|

10−1 100

|t↑0|2

10−5

10−3

10−1

10−1 100

|t↑0|2

FIG. 9. Inverse localization length as a function of inter-
face transparency for the cylindrical setup and the zero angular-
momentum mode. We choose matched Fermi velocities (top row)
and zero potential barrier w = 0 (bottom row), with spin-orbit
coupling in the superconductor (left column) and in the normal
metal (right column). The dashed curves show the weak transparency
results, the solid lines are obtained by numerically solving Eq. (A30)
and using Eq. (A45). The remaining parameters are k↑rR = 0.8π ,
κ↓/k↑ = 2, and (h̄π/R)2/2me� = 50.

The velocity vx,0 and k↑r are taken from the calculation of the
dispersion in Sec. V. The normalization constant is obtained
by normalizing to unit flux along the wire. It reads

N0 = 2R + 2ξN
|t↑0|2

|r′
↓0 + r′

↑0|2
, (A43)

where we defined ξN = h̄2k↑r/me�, neglected the minority
spin contribution in the wire, and expanded the Bessel func-
tions in terms of plane waves. The renormalization present in
Eq. (A43) is similar to the one in the planar setup; see Eq. (44).

The holelike wave functions |ψh±〉, traveling into the posi-
tive (+) or negative (−) x direction, are obtained by applying
particle-hole symmetry,

ψh±(r, ε) = τx[ψe±(r,−ε)]∗. (A44)

In order to study how spin-orbit coupling changes these
states, we consider a segment 0 < x < δL, in which spin-orbit
coupling is turned on while it is zero elsewhere. For suffi-
ciently small δL, the reflection amplitude becomes linear in
δL and is given by the matrix element (36), with the spin-orbit
coupling tensor defined according to Eq. (A1). Evaluating
the matrix element in the single mode limit and for κ↓R � 1
yields

ρhe,c = −k↑r h̄kx(�Sxx + i�Syx )e−iφ+2ik↑r Rt2
↑(1 + r′2

↓ )

vx,0N0k2
Sr (r′

↓ + r′
↑)2

− 2h̄kx(�Nxx + i�Nyx )e−iφτ↓t↑
vx,0N0(k2

↑r + κ2
↓r )(r′

↓ + r′
↑)

[κ↓r (1 − ie2ik↑r R)

+ ik↑r (1 + ie2ik↑r R)], (A45)

where t↑, τ↓, r′
↑, and r′

↓ are the interface amplitudes defined in
the planar setup.
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The remaining amplitudes for reflection from the right, as
well as from holes to electrons, are obtained by the same
symmetry arguments as the ones discussed below Eq. (38).
Similarly, the reflection amplitude for a segment of length L,
as well as the gap, is obtained by the same arguments as in the
main text. This allows us to define the minigap

ε0,c = h̄vx,0|ρhe,c|, (A46)

and the localization length

lmaj,c = |ρhe,c|−1. (A47)

Equation (A45) is almost identical to ρhe in Eq. (38).
Indeed, in the single mode limit and for k↑rR � 1 we have

1 = ree,0 = −ie2ik↑r Rree, (A48)

with ree defined in Eq. (15), allowing us to identify ρhe =
ρhe,cie−2ik↑r R, upon replacing the labels r by z and R by W . The
asymptotic expansions for ρhe in the limit |t↑|2 � 1 are then
obtained by replacing the factors π in Eqs. (47) and (49) by
factors of 3π/4, which originates in the difference of Eqs. (23)
and (A38).

The low-transparency approximation for the Majorana de-
cay length is compared to a numerical solution of Eq. (A30)
in Fig. 9. Good agreement with the low-transparency approxi-
mation is found for |t↑0|2 � 0.5. For larger transparencies de-
viations occur. In the case of spin-orbit coupling being present
in the superconductor, and no potential barrier at the interface,
we find that the gap closes and reopens at transparencies close
to unity (bottom left plot).

In conclusion, the velocity, decay length, and hence also
the induced minigap, show essentially the same dependence
on the model parameters as for the planar setup discussed in
the main text.
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