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Tricritical point in the quantum Hamiltonian mean-field model
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Engineering long-range interactions in experimental platforms has been achieved with great success in a
large variety of quantum systems in recent years. Inspired by this progress, we propose a generalization of
the classical Hamiltonian mean-field model to fermionic particles. We study the phase diagram and ther-
modynamic properties of the model in the canonical ensemble for ferromagnetic interactions as a function
of temperature and hopping. At zero temperature, small charge fluctuations drive the many-body system
through a first-order quantum phase transition from an ordered to a disordered phase. At higher temperatures,
the fluctuation-induced phase transition remains first order initially and switches to second-order only at a
tricritical point. Our results offer an intriguing example of tricriticality in a quantum system with long-range
couplings, which bears direct experimental relevance. The analysis is performed by exact diagonalization and
mean-field theory.
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I. INTRODUCTION

Systems with long-range interactions have been the sub-
ject of considerable interest in both the classical [1] and the
quantum domain [2]. Besides their thermodynamic features,
long-range interactions of quantum bits represents a highly
desirable design goal for a universal quantum computer, to
operate any nonlocal gate of the network and speed up quan-
tum error correction [3]. A paradigmatic model that has served
as a testing bed for different physical phenomena that appear
due to long-range interactions is the Hamiltonian mean-field
model (HMF) [4]. The classical model is exactly solvable in
both the canonical and microcanonical ensemble and shows
a second-order mean-field phase transition when varying the
temperature or the energy [5] and further interesting proper-
ties in the dynamics [6,7], including a tricritical point in the
out-of-equilibrium phase diagram [8]. An interesting and open
question is what would be a quantum model that plays a sim-
ilar role to highlight the main features of quantum long-range
interactions. Attempts have been made to include semiclas-
sical effects within the original HMF setting. Chavanis [9]
studied the zero temperature limit of a Fermi-like distribution,
finding that the homogeneous state gains stability with respect
to the classical one through a first-order phase transition in the
quantum constant h. The homogeneous state has been found to
be stable also for bosons using a more detailed analysis based
on a self-consistent Schroedinger equation [10]. Plestid and
collaborators have investigated the effects of quantum fluc-
tuations superposed onto the classical behavior of the HMF

model for bosons in a series of papers. In a first paper [11]
they studied quantum interference effects in the violent relax-
ation phenomenon that appears in the repulsive HMF model
by using a Gross-Pitaevskii equation; in a second paper [12]
the localized solutions of the Gross-Pitaevskii equation were
analyzed in full detail; while in a third paper [13] they studied
the O(2) symmetry of the model and the associated quantum
Goldstone modes.

Moreover, quantum XY rotor models with short range
interactions have been a subject of investigation since long
time [14]. The correspondence of the O(2) quantum rotor
model in d dimensions with a classical d + 1 dimensional
field theory has been analyzed in great detail. The long-range
version of the O(2) quantum rotor model has been studied in
Ref. [15] determining both the phase diagram and the critical
exponents. Improved critical exponents were obtained by ap-
plying functional renormalization group, and further evidence
was given to the existence of an “effective dimension” [16]. In
particular, a threshold value for the strength of the power-law
decaying interaction was determined, above which long-range
effects become relevant. Finally, the phase diagram and the
properties of entanglement of an XXZ quantum spin chain
with power-law decaying interactions were investigated in
Ref. [17].

On the experimental side quantum long-range interactions
can be realized in several forms [2]. Some of these experi-
mental settings can be described by models that are closely
related to the HMF model, e.g., cold atoms in optical cavi-
ties [18–20]. For the classical HMF it was theorized [21,22]

2470-0045/2022/106(2)/024109(13) 024109-1 ©2022 American Physical Society

https://orcid.org/0000-0001-5426-881X
https://orcid.org/0000-0001-8044-520X
https://orcid.org/0000-0001-8778-5565
https://orcid.org/0000-0003-2911-8718
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.106.024109&domain=pdf&date_stamp=2022-08-08
https://doi.org/10.1103/PhysRevE.106.024109


HARALD SCHMID et al. PHYSICAL REVIEW E 106, 024109 (2022)

that the model is in experimental reach in a transversely
pumped cavity, with atoms ordering into a one-dimensional
lattice. Their movement around the equilibrium position is
essentially semiclassical, described by an effective Fokker-
Planck equation [23,24], and the strong couplings of the
atoms to the cavity photons provides effective long-range
interactions among them [25]. Despite the inherent quan-
tum nature of the long-range interactions, the momentum
distribution of the atoms is essentially a classical Maxwell–
Boltzmann distribution. Due to the experimental successes for
realizing long-range couplings in optical cavities, and the con-
crete theory of the classical HMF in these systems, we believe
that cold atomic systems constitute a promising pathway to
realize also a full quantum version of the HMF model. Hereby,
it is necessary to find a quantum equivalent of the classical
atomic motion, and take the exchange statistics of the particles
into consideration.

A second promising experimental architecture, directly re-
lated to our proposal, constitutes the recent realization of
long-range couplings (>1 mm) between spin qubits fabricated
from silicon quantum dots [26,27]. As for the cold atom
experiments, the interactions among qubits is mediated via
strong coupling to photons from a microwave resonator via
the rules of circuit quantum electrodynamics [28]. Achieving
long-range qubit couplings in the experiment [27] relied on
the large spin-photon coupling rate, exceeding the cavity de-
cay rate and the spin decoherence rate. Although long-range
coupling has been so far achieved only between a single pair
of silicon spin qubits (compared to many in cold atomic gases
experiments), the fermionic nature of the particles is a priori
given which is essential for our model.

Due to these recent experimental results we propose a
fully quantum HMF model for fermionic particles. The model
we propose represents a strongly interacting many-body sys-
tem of spin- 1

2 fermions, where all-to-all XY couplings and
charge fluctuations, represented by a conventional hopping
term, compete for the ground state. The system is closely
related to the class of t-J-Hamiltonians [29,30] with all-to-all
couplings [31], with the striking difference that we explicitly
permit double occupancy at half-filling to allow for charge
fluctuations. We study the model numerically by exact diag-
onalization (ED) of the full long-range quantum many-body
Hamiltonian, and using a mean-field approximation and ana-
lytical calculations in specific parameter limits. We are able
to derive the phase diagram in the plane of the hopping and
temperature parameters, showing the presence of a line of
quantum phase transitions that are both second and first-order
and are separated by a tricritical point [32–34].

The paper is organized as follows: In Sec. II we introduce
the model and draw the connection to the classical HMF
model. In Sec. III we investigate the phase diagram in detail
by means of exact diagonalization supported by mean-field
theory. Section IV provides a systematic discussion of our
mean-field theory treatment. In Sec. V we study the ther-
modynamic properties of the model. Section VI contains a
finite-size analysis of the numerical data for the tricritical
point. We conclude in Sec. VII.

II. QUANTUM FORMULATION OF THE HAMILTONIAN
MEAN-FIELD MODEL FOR FERMIONS

A. Quantum many-body model

We consider a many-body Hamiltonian with long-range
interactions of the form

H = Ht + HJ

= − t
N∑

j=1

∑
σ=↑,↓

(c†
j+1,σ c j,σ + H.c.)

− J

4N

N∑
i< j

∑
α,β,γ ,δ=↑,↓

[σ x
αβσ x

γ δ + σ
y
αβσ

y
γ δ]c†

i,αci,βc†
j,γ c j,δ.

(1)

The operators c†
j,σ (c j,σ ) create (annihilate) particles at site j

with spin σ =↑,↓. By imposing anticommutation relations
{c†

i,σ , c j,σ ′ } = δi, jδσ,σ ′ and {ci,σ , c j,σ ′ } = 0, the particles obey
fermionic statistics, and periodic boundary conditions are im-
plied. The first term in Eq. (1) describes nearest-neighbor
hopping, and the second term introduces an all-to-all spin-
flip interaction. This can be more clearly seen by explicitly
inserting the Pauli-matrices σ a (a = x, y) in the interaction

HJ = − J

2N

∑
i< j

(c†
i↑ci↓c†

j↓c j↑ + c†
i↓ci↑c†

j↑c j↓). (2)

We consider an experimental situation where the long-range
nature of the interactions is effectively mediated by fast de-
grees of freedom, for instance photons in a cavity, whereas
the hopping term represents a spatial overlap of orbitals tightly
bound to a lattice, for instance in a chain of quantum dots. We
focus on ferromagnetic (FM) couplings for which a second-
order phase transition exists in the classical model [4]. The
1/N-factor in the interaction term secures extensivity of the
energy. For the most part of the paper, we restrict ourselves
to half-filling ν = 1, i.e., N particles on 2N fermionic sites.
Note that in contrast to the well-studied t-J model [29,30],
we explicitly permit doubly occupied sites. For zero hopping
the model becomes equivalent to the Lipkin-Meshkov-Glick
(LMG) model [35] at zero field, apart from additional de-
generacies due to the fermionic nature of the particles, see
Appendix B.

B. From classical to quantum HMF

Let us outline the connection of the classical Hamiltonian
mean-field model [4]

H =
N∑

i=1

p2
i

2
− J

2N

N∑
i, j=1

[1 − cos(θi − θ j )], (3)

with its quantum version. In Eq. (3) a network of pendula
with individual canonical variables −π � θi � π and pi = θ̇i

interacts in a fully connected way. The analogy to Eq. (1)
becomes apparent by rewriting the classical potential via two
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dimensional unit-vectors

mi = (cos θi, sin θi ). (4)

Using the trigonometric identity cos(θi − θ j ) =
cos(θi ) cos(θ j ) + sin(θi ) sin(θ j ) yields a long-range XY spin
interaction V = −(J/2N )

∑N
i, j=1 mi · m j . We then identify

classical magnetic moments with quantum spin operators
in second quantization mi,a → 1

2

∑
α,β=↑,↓ c†

iασ a
αβciβ . The

kinetic part in Eq. (3) is realized as a nearest neighbor hopping
of fermions in Eq. (1). This amounts to a phenomenological
picture of the kinetic energy term in comparison to the
classical Hamiltonian. In principal the hopping can have a
larger range, but here we apply a tight-binding description.
As already mentioned, nearest-neighbor hopping is more
easily realized in an experimental situation. At this point, we
introduce the magnetization (density) in the XY plane [36]:

m2 = 1

(NS )2

〈
S2

x + S2
y

〉
, (5)

where Sa = 1
2

∑
i σ

a
i is the total spin projection in direc-

tion a = x, y, z and the prefactor S = 1
2 normalizes such that

m2 � 1 in the thermodynamic limit. The magnetization serves
as the order parameter. For states with uniform particle
density, interaction energy and magnetization are directly
linked via 4 〈HJ〉 = J (1 − Nm2/2). This carries also over to
nonuniform densities, see Appendix B. The variance of the
magnetization gives the susceptibility χ and we measure
charge fluctuations with the operator

δn =
√√√√ 1

N

∑
j

〈(�n j )2〉, (6)

where �n j = n j − ν and n j = ∑
σ c†

j,σ c j,σ . Its expectation
value gives the local variance in the particle number σ 2

n =
〈(δn)2〉 at a given filling ν.

C. Minimal example for N = 2 particles

We exemplify the physics of Eq. (1) for a small sys-
tem with N = 2 sites, where some characteristics of the
infinite lattice model already become visible. First, we illus-
trate the quantum nature of the Hamiltonian (1) explicitly.
Let two neighboring sites be occupied with opposite spin-
projections |φ〉 = |↑〉 |↓〉 = c†

1,↑c†
2,↓ |0〉, and let us denote

doubly occupied sites with |#〉 j ≡ c†
j,↑c†

j,↓|0〉. It is easy to
convince oneself that for the specific state that the ac-
tion of hopping and interaction depends on their relative
order, explicitly Ht HJ |φ〉 = −tJ/(2N )[|0〉|#〉 + |#〉|0〉] and
HJHt |φ〉 = 0, such that [Ht , HJ ] 	= 0. Second, we demonstrate
that the hopping term reduces magnetic order by simul-
taneously introducing charge fluctuations. For t 
 J , the
ground state |FM〉 = 1√

2
[ |↑〉 |↓〉 + |↓〉 |↑〉 ] has total spin S =

1 and signals ferromagnetic order with magnetization density
m2 = 2 at zero temperature. For J 
 t , the ground
state |PM〉 = 1

2 [ |↑〉 |↓〉 − |↓〉 |↑〉 + |#〉 |0〉 + |0〉 |#〉 ] has S =
0 and is paramagnetically ordered, with lower magnetization
m2 = 1

2 . The finite value of of the magnetization for the para-
magnetic state reflects the Pauli principle. In contrast, charge

fluctuations are more pronounced in the paramagnetic state
(σn = 1

4 ) than in the ferromagnetic state (σn = 0).

III. PHASE DIAGRAM

In this section we study the phase diagram of the quantum
HMF, inferred from the magnetization, as a function of tem-
perature and hopping. The coupling J = 1 serves as the unit
of energy.

Figure 1(a) shows the magnetization density as defined
in Eq. (5) in the T -t plane, obtained by ED for 2N = 16
fermions [37]. For t = 0 and T = 0, the magnetization is
largest and the ground state is ferromagnetically ordered. In-
creasing the hopping at zero temperature (bottom horizontal),
the magnetization stays constant at first, and drops sharply at
a critical point (t, T ) = (tc, 0), signaling a first-order quantum
phase transition (QPT); see Fig. 2(c). Increasing the tempera-
ture at zero hopping (left vertical) reduces the magnetization
continuously, and reveals a classical second-order phase tran-
sition at a critical value (t, T ) = (0, Tc) which defines the
classical critical point (CCP). The phase boundary emerging
from the Tc bends to lower values of the hopping and is
found to be second-order. Importantly, we find that the phase
boundary emerging from tc at nonzero temperature is first
order, and meets in a tricritical point (TCP) at finite hopping
and temperature (t, T ) = (t∗, T ∗).

A. Quantum critical point

We discuss the the nature of the QPT which occurs due
to an abrupt change in the groundstate, defining the quantum
critical point (QCP) at t = tc [14,38]. In our system the energy
of the ferromagnetically ordered state |FM〉 matches the en-
ergy of a paramagnetically ordered state |PM〉, see Fig. 2. Let
us analyze the state |FM〉 in more detail: For t = 0, the Hamil-
tonian H = HJ conserves the total spin S, the spin-projection
Sz and the local variance in particles σn. This gives credit to the
fact that the Hamiltonian has block-diagonal sectors in Fock
space with equal number of doubly occupied sites. For even
N , the ground state

|FM〉 = 1√
N

(| ↑↓↑ . . . > + “all transpositions”) (7)

is unique and maximizes the total spin S = N
2 , while mini-

mizing the spin projection Sz = 0 and is uniform σn = 0. Its
energy is

EFM = −JN

8
. (8)

and the magnetization is m2
FM = 1 + 2

N (T = 0 and t = 0).
A finite finite gap δE = J/(2N ) [36] separates it to excited
states. Hopping introduces then charge fluctuations by break-
ing the conservation of local variance in particles, i.e., σn

is no longer a good quantum number. However, because Ht

is spin-rotation symmetric and |FM〉 is the only state with
S = N/2 and Sz = 0, it is completely unaffected by the action
of Ht . This is observed in the many-body spectrum shown in
Fig. 2(a).

On the contrary, the paramagnetic state |PM〉 with total
spin zero is most conveniently treated for J 
 t where it is
safely the ground state, see Fig. 2. In this limit, the eigenstates
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FIG. 1. Phase diagram of the long-range fermionic Hamiltonian mean-field model at half-filling. (a) Exact diagonalization with 2N = 16
fermions. For small hoppings and small temperatures T , the system is ferromagnetically (FM) ordered, for large t and/or T paramagnetically
(PM) ordered. A quantum critical point (QCP) is present at zero temperature (horizontal axis) while a classical critical point (CCP) is located
on the vertical axis at zero hopping. First-order and second-order phase boundaries, as indicated by solid and dashed lines respectively,
meet at a tricritical point (TCP), marked by a purple star. (b) The phase diagram obtained in mean-field theory shows the order parameter
M = m/2 + O(1/N ) [see Eq. (13)], and is in qualitative agreement with the the finite N exact diagonalization results. The critical points in
mean-field theory are: QCP at tc = πJ/32 ≈ 0.098J , CCP at Tc = J/8, TCP at (t∗, T ∗) ≈ (0.089, 0.067)J .

of H ≈ Ht = ∑
k,σ ε(k)c†

kσ
ckσ are approximately plain waves

with dispersion is ε(k) = −2t cos(k). The paramagnetic state
can be constructed by filling up states with momenta −π

2 �
k � π

2 , and we get by integration in the thermodynamic limit

EPM � −4Nt

π
. (9)

This result holds up to second order in the coupling O( J2

tN2 )
and in the thermodynamic limit, for details see Sec. IV. By
equating the ground state energies, we get an estimate for the
critical hopping

tc
J

� π

32
≈ 0.0982. (10)

This is reproduced by the mean-field approximation in Sec. IV
and agrees qualitatively well with the numerical result for
2N = 16 fermions with a value tc/J = 0.104. In Fig. 2 we see
a decreasing trend to slightly smaller tc for larger system sizes
in the numerics. We stress that the quantum phase transition
is present for every system size.

B. Tricritical point

Next, we discuss the first-order phase transition for finite
T < T ∗ and the TCP. These features of the phase diagram
constitute the key findings of this paper, and are best under-
stood within a Hartree mean-field (MF) decoupling of the
interaction term. Note that a mean-field approximation is a
priori uncontrollable at variance with a perturbative theory.
As usual in mean-field approximations their validity can only
be checked afterwards. We satisfy qualitative agreement with
our numerical simulations.

Let us consider the interaction term of the quantum many-
body Hamiltonian (2). In the mean-field decoupling scheme
we replace the quartic terms in the interaction according to

c†
i,↑ci,↓c†

j,↓c j,↑ � c†
i,↑ci,↓〈c†

j,↓c j,↑〉 + c†
j,↓c j,↑〈c†

i,↑c j,↓〉
− 〈c†

i,↑ci,↓〉〈c†
j,↓c j,↑〉, (11a)

c†
i,↓ci,↑c†

j,↑c j,↓ � c†
i,↓ci,↑〈c†

j,↑c j,↓〉 + c†
j,↑c j,↓〈c†

i,↓ci,↑〉
− 〈c†

i,↓ci,↑〉〈c†
j,↑c j,↓〉. (11b)

FIG. 2. (a) Many-body spectrum at half-filling as a function of hopping for 2N = 10 fermions. The system undergoes a first-order quantum
phase transition at tc from a ferromagnetic ground state (with energy EFM, red line) to a paramagnetic ground state (with energy EPM, blue
line). (b) The magnetization for fixed T displays a clear first-order phase transition at zero temperature. (c) Quantum critical point for different
system sizes. For the largest system size 2N = 16 we obtain tc/J = 0.104.
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FIG. 3. Fillings of the quasiparticle bands in mean-field theory. (a) For t 
 tc and T 
 Tc only the lower is band occupied. (b) Situation
for T < T ∗ in proximity to the phase boundary on the ordered side. The gap has almost closed, but there is a remnant occupation difference
(first-order phase transition). (c) Situation for T > T ∗. The gap closes as fast as the occupation equilibrates (second-order phase transition).
(d) Quasiparticles populations N+ and N−, as calculated in MF theory. The total population is N = N+ + N− = 500 and the black dashed line
identifies the transition point when N+ = N− = N/2.

Fock terms 〈c†
i,σ c j,σ 〉 are not taken into account, because

they provide only finite size corrections, as shown in Ap-
pendix C. We introduce the order parameter M defined as

M = 〈c†
↑c↓〉e−iϕ = 〈c†

↓c↑〉eiϕ, (12)

with real amplitude M and phase ϕ. The phase ϕ can take
any value because the direction of the magnetization can
be chosen arbitrarily in the XY plane. In fact, fixing ϕ

breaks the continuous spin-rotation symmetry, as expected
for ferromagnetic order. The order parameter is related to the
magnetization, introduced in Eq. (5), through

m2 = M2(N − 1)

N
+ 2

N
, (13)

which in the thermodynamic limit gives M � m
2 . We pass

to Fourier space and introduce the fermionic quasiparticle
operators

ck,± = ck,↑eiϕ ± ck,↓e−iϕ

√
2

. (14)

These are nothing but the fermionic creation and annihilation
operators for particles with momentum k, whose spin state is
an eigenstate of the σxy(ϕ) = cos(ϕ)σ x − sin(ϕ)σ y operator,
i.e., c†

k,±|0〉 = |k, sxy(ϕ) = ±〉. Finally, we arrive at the diag-
onal form of the Hamiltonian

HMF =
∑
k,±

ε±(k,M)c†
k,±ck,± + M2J

2
(N − 1), (15)

where the quasiparticle spectrum is made by two cosine bands
separated by a gap depending on the order parameter

ε±(k,M) = −2t cos(k) ∓ MJ
N − 1

2N
. (16)

The self-consistency equation for M is given by the differ-
ence in band occupation

M = ν− − ν+
2

, (17)

with ν± = 1
N 〈∑k c†

k±ck±〉.

The band occupation as a function of hopping is shown in
Fig. 3 for designated values of T . At T = 0, the lower (upper)
band is completely filled (empty) for any t < tc = π

32 . For
t = tc, the gap closes and the occupations equalize abruptly,
signaling a first-order phase transition in agreement with the
results from ED. At finite but small T < T ∗, the lower band is
continuously depleted for t < tc and fills up the upper band. At
the critical point, however, there remains a residual difference
in occupation such that the drop in the order parameter is still
discontinuous. Hence, the phase transition stays first order.
The behavior changes at the tricritical point

(t∗, T ∗) ≈ (0.089, 0.067)J, (18)

which is determined from the mean-field free energy; see
Sec. IV. The difference in occupation vanishes when the
phase boundary is reached such that the nature of the phase
transition becomes second-order. Notice that the first-order
transition appears in a very fine-tuned region of hopping val-
ues t ∈ [t∗, tc].

Signatures of a change in the order of the phase transition
are also present in the numerical data and are identified by
a finite-size scaling. Figure 4 shows that for small T < T ∗
the magnetization becomes steplike as a function of N at
the phase boundary. Therefore, the susceptibility diverges at
tc, in agreement with the mean-field theory prediction of a
first-order phase transition. For T < T ∗ ≈ 0.04J the slope of
the maximum slope of the magnetization at the phase phase
boundary saturates, implying a second-order phase transition.
For a more detailed analysis of the numerical data, including
an extrapolation to the N → ∞ limit, we refer the reader to
Sec. VI.

C. Classical critical point

Finally, we briefly discuss the vertical temperature axis of
the phase diagram at t = 0 where a classical second-order
phase transition occurs at the critical point Tc (CCP). This
phase transition is also present in the classical HMF model
and is attributed to the long-range nature of the interaction:
it is well-known that the short-range XY model has no phase
transition for dimensions d < 2 [39]. The transition tempera-
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FIG. 4. Finite-size scaling of the magnetization at the phase boundary (critical hopping value tb). (a) The slope of the magnetization
(susceptibility, inset) grows with N at the phase boundary for fixed and small T 
 T ∗, signaling a first-order phase transition. For larger
temperatures the slope saturates (b) with N or even decreases (c).

ture can be exactly calculated in mean-field theory

Tc

J
= 1

8
. (19)

Our numerical data (ED) Tc/J = 0.112 ± 0.001 agrees for
2N = 16 sites with the MF result within 10%. This jus-
tifies our mean-field approximation. For t = 0 we have
also obtained the spectrum by symmetry considerations and
constructed the degeneracies combinatorically, see Ap-
pendix B. This gives us access to the partition function up
to 2N = 40 fermions and serves as another crosscheck to the
numerics.

IV. MEAN-FIELD THEORY

In this section we investigate more closely the tricritical
point in the mean-field approximation.

A. Zero temperature mean-field theory

At zero temperature we are interested in the ground state
of the system, and we can variationally minimize EMF =
〈ψMF|HMF|ψMF〉. The condition ∂EMF/∂M = 0 provides a
self-consistent expression for the order parameter

M = 1

2N

∑
k

(nk,+ − nk,−) = ν+ − ν−
2

, (20)

where nk,± = 〈c†
k,±ck,±〉, and ν± = 1

N

∑
k nk,± is the density

of (±) quasiparticles. Figure 5(a) shows the mean-field en-
ergy density EMF/N as a function of the order parameter for
different values of t/J around the critical point. We notice that
at t/J = (t/J )c the minimum of EMF suddenly jumps from
M = ±1/2 to M = 0, thus signaling a first-order quantum
phase transition. For N � 1 we can perform a continuum
limit in k which allows us to exactly compute EMF in the two
opposite situations

EMF(M = 0) = −4Nt
∫ π

2

− π
2

dk

2π
cos(k) = −4Nt

π
, (21)

EMF

(
M = 1

2

)
= −4Nt

∫ π

−π

dk

2π
cos(k) − JN

8
= −JN

8
.

(22)

The critical point is identified by the condition
EMF(0) = EMF(1/2) leading to (t/J )c = π/32, as shown
in Fig. 5(b), where the zero temperature order parameter
corresponds to the dark red line. The order parameter
M = argmin[EMF(M)] displays a discontinuous jump at
this value, corresponding to a first-order quantum critical
point. We notice that the mean-field results are in good
agreement with the numerical analysis presented in the
previous section for a finite system.

FIG. 5. (a) Mean-field energy density EMF/N as a function of the order parameter M for different hopping values in the proximity (ε =
0.01) of the QCP. (b) Mean-field order parameter M as a function of the hopping amplitude t/J , for different values of the temperature. The
black dashed line indicates the QCP.
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FIG. 6. Mean-field free energy F in the proximity of the critical point for different values of temperatures and hoppings. (a) For T < T ∗,
F has three minima which become degenerate at the critical point, signaling a first-order phase transition. (b) At T = T ∗, F displays a flat
minimum at the critical point, since both the second and fourth derivative become zero. The transition becomes second-order. (c) For T > T ∗,
F passes from a double well shape for to a single well for different hoppings. The transition is second-order. (d) Signs of the coefficient F4 are
indicated by different shadings. F4 vanishes on the blue line [originating at (t/J, T/J ) = (0, 0)] and F2 vanishes on the red line [originating at
(t/J, T/J ) = (0, 0.125)]. The intersection of the lines marks the TCP.

B. Finite temperature mean-field theory

We generalize the mean-field approach to finite tempera-
ture. In fact, the knowledge of the diagonal Hamiltonian in
Eq. (15) allows us to compute the canonical partition function
at inverse temperature β

Z = e− β

2 JM2(N−1)
∏
k,±

(1 + e−βε±(k,M) ). (23)

From the partition function the free energy is obtained as

F = JM2

2
(N − 1) − 1

β

∑
k,±

ln(1 + e−βε±(k,M) ). (24)

To study the finite temperature phase diagram it is useful to
consider an expansion of the free energy to fourth order in the
order parameter

F = F0 + F2M2 + F4M4 + O(M6), (25)

with coefficients

F0 = − 2

β

∑
k

ln(1 + e−βεk (t ) ), (26)

F2 = J (N − 1)

2

[
1 − βJ

8

(N − 1)

N2

∑
k

1

cosh2(βεk (t )/2)

]
,

(27)

F4 ∝ 1

N

∑
k

cosh[βεk (t )] − 2

cosh4[βεk (t )]
. (28)

Here, we have introduced the shorthand notation εk (t ) =
−2t cos(k). Notice that the free energy contains only even
powers of m due to time-reversal symmetry. The second-order
transition is then identified by the conditions F2 = 0, F4 > 0.
In fact, shown in Fig. 6(c), for F4 > 0 the free energy has the
double well shape typical to of second-order phase transitions.
This conditions provide an implicit equation for the phase
boundary

βJ

8

∫ π

−π

dk

2π

1

cosh2(βεk (t )/2)
= 1. (29)

In the limit t → 0 the integral becomes one and we find
(T/J )c,t=0 = 1/8, which is in good agreement with the critical
temperature as obtained from the exact solution of the model
at zero hopping. Then the phase transition becomes first order
when F4 < 0; in fact in this case, to preserve the stability,
we need to include also the sixth order in the free-energy
expansion (25). Consequently, as shown in Fig. 6(a), the free
energy at the critical point has three minima which become
degenerate at the critical point signaling a first-order phase
transition. Figure 6(d) shows the points in the t-T plane where
F2 = 0 (red line) and F4 = 0 (blue line). The intersection
between these two lines determines a tricritical point (T ∗, t∗)
at which the phase transition passes from second to first-order.
Within mean-field theory its location is found to be at

(t∗, T ∗) ≈ (0.089, 0.067)J. (30)

This result further corroborates the simple argument and nu-
merical finite-size results; see Sec. VI. Minimizing F with
respect to the magnetization M, we obtain the same self
consistent equation for the order parameter as in the zero
temperature case (20), with the ground-state expectation val-
ues replaced by thermal averages subject to a Fermi-Dirac
distributions

nth
k,± = 1

1 + eβε± (k,M)
. (31)

Figure 5(b) shows the order parameter as a function of t/J
and for different values of the temperature around the tricrit-
ical point T = T ∗. For T < T ∗, M displays a discontinuous
jump at the transition point, which is then of first order. As
the temperature increases the discontinuity becomes smaller
reaching zero at the tricritical temperature T = T ∗. Then for
T < T ∗ the order parameter becomes a continuous function
of t/J , thus undergoing a second-order phase transition.

Finally the complete mean-field phase diagram, obtained
by numerically minimizing the free energy (24) with re-
spect to the magnetization, is shown in Fig. 1(b). Very good
agreement is found with the exact numerical phase diagram
Fig. 1(a).

024109-7



HARALD SCHMID et al. PHYSICAL REVIEW E 106, 024109 (2022)

FIG. 7. Internal energy density U/N , specific heat C/N and entropy density S/N as a function of T at fixed t , obtained by ED with 2N = 16
fermions (top row) and by mean-field theory (bottom row). The values t = 0.104J (ED) and t = 0.097J (MF) correspond to the QCP. Lines for
t = 0.092J (triangles) show a first-order phase transition, highlighted by the green solid arrow. Lines for t = 0.002J, 0.07J (squared, bullets)
show a second-order phase transition, highlighted by green dashed arrows.

V. THERMODYNAMICS

We investigate the internal energy, specific heat, and en-
tropy

U = 〈H〉, C = ∂U

∂T
, S = ln(Z ) + U

T
(32)

of the fermionic quantum HMF in the canonical ensemble.
The thermodynamic quantities permit further investigation of
the critical points and phase boundaries, as well as a compar-
ison between numerics and MF theory.

Figure 8 displays surfaces of the thermodynamic quantities
in the T -t plane, obtained by ED and MF theory. Both ap-
proaches are in seemingly good agreement, especially in the
ordered phase and for low temperatures. The QCP is visible
in all plots in terms of a cusp (U ), jump (C), and a nonzero
value of S. tc is somewhat larger in the numerics than in MF
theory. The CCP is most pronounced in the vicinity of the
maximum in C; here, the numerics has a lower value of Tc

than in MF theory. Signatures of the TCP are already visible
in MF theory for the heat capacity [Fig. 8(e)] indicated by the
maximum that builds of from the top right corner of the PM
phase. For the numerics, the TCP remains hidden in Fig. 8;
later we will extract more information from the surface plots
by taking generalized derivatives in parameter space.

We proceed to a more detailed and quantitative treatment in
Fig. 7 which shows U/N , S/N , and C/N for fixed, representa-
tive values of the hopping as a function of T . The temperature
dependence of the thermodynamic quantities differs strongly
depending on whether the system has few charge fluctuations
(t ≈ 0), moderate charge fluctuations (t < t∗ < tc), or large
charge fluctuations (tc < t).

A. Few charge fluctuations t ≈ 0

In the ordered phase and with few charge fluctuations
(t ≈ 0), U remains nearly constant in the low-temperature
regime T � 0.05J; also C is very flat and S grows slowly. This
reflects that the manifold of high-energy states is gapped out
due to the dominance of interactions over hopping in the full
quantum HMF; in MF theory the lower band contributes with
constantly low density of states at half-filling to U and agrees
well with the numerical result. For T > 0.05J , U increases
then significantly, indicated by the maximum of the heat ca-
pacity: This occurs due to the onset of the highly degenerate
high-energy states in the many-body spectrum for T ∼ M;
see Fig. 2(a).

In MF theory this is due to increase of the density of states
away from the middle of the band. The second-order phase
transition is, however, only clearly visible in MF theory and
appears as a cusp in C, as indicated by a dashed green arrow.
In the numerics, the CCP is observed after performing a finite-
size scaling, see Fig. 9, and approaches the MF value. Notice
that the entropy is a convex function in the ordered phase for
0.05J < T < Tc and concave for T > Tc, and approaches the
limit S → 2N ln(2) at high temperatures.

B. Moderate charge fluctuations t∗ < t < tc

For moderate charge fluctuations we observe significant
ramifactions of the described behavior. This happens due to
the hopping-induced splitting of the high-energy states, which
supports the formation of a quasicontinuum in the many-
body spectrum, separated to the gapped ground state; see
Fig. 2. After T surpasses the hopping-reduced gap, U rises
approximately linear in temperature. S increases drastically
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FIG. 8. Surface plots for the internal energy density U/N , heat capacity C/N and entropy density S/N for ED (a–c) and MF theory (d–f).
Phase boundaries are obtained from the magnetization and are colored in black (ED) and white (MF). First-order phase boundaries (solid lines)
and second-order phase boundaries (dashed lines) meet at the TCP, as indicated by a purple star.

and acquiring a concave shape for much lower temperatures.
For hopping strengths t∗ < t < tc, U exhibits then a discon-
tinuous jump in MF theory, marked by a solid green arrow,
which signals a first-order transition; this is in stark contrast to
the discontinuity in C for t < t∗ signaling a second-order tran-
sition; there is a latent heat in the system to be compensated
before going through the phase transition for t∗ < t < tc. Due
to the finite-size effects this is not clearly visible in the ED
data of Fig. 7 without further analysis; see Sec. VI.

The QCP (tc = 0.104J for 2N = 16 fermions) appears
directly in the internal energy, which is reduced in the dis-
ordered phase at zero temperature, since EPM < EFM. In the

FIG. 9. Heat capacity for different system sizes at zero hopping,
obtained by counting degeneracies as explained in Appendix B. The
critical temperature Tc is obtained by calculating min{∂T C} and is in
agreement with the the mean-field value Tc/J = 1/8.

vincinity of the QCP, i.e., (t, T ) = (tc ± ε, ε), the system may
be regarded as an effective two-level system with partition
function Z (β ) ≈ e−βEFM [1 + eβ(EFM−EPM )]. Hence, the heat ca-
pacity displays an enhanced value at t ≈ tc as observed in the
data, see also inset of Fig. 7. The entropy has a nonzero value
S = ln(2) at the QCP a clear signature for a two-level system.
Both features are absent in the plots of the MF data due to the
thermodynamic limit.

VI. FINITE-SIZE ANALYSIS OF THE TRICRITICAL POINT

We analyze the ED data in more detail, and provide solid
evidence for the existence of the tricritical point and a first-
order line in the phase diagram. It is not easy to visually
identify a tricritical point in the magnetization for the system
sizes available (up to 2N = 16 fermions), compare Fig. 1.
Therefore, a more involved finite-size analysis is needed. In
particular, we will look at different cuts along the t-axis in the
phase diagram Fig. 1(a).

In the thermodynamic limit, a first-order transition is iden-
tified by a discontinuous jump in m2, while a second-order
transition is identified by a cusp in m2. For any finite N and
at nonzero temperature, m2 is a continuous function, and the
transition happens within a finite window of hopping values.
In the following we make use of the different behavior of
the window size in the thermodynamic limit to determine
the order of the phase transition by extrapolation from our
finite-size data. Concretely, the window size goes to zero as
N → ∞ for a first-order transition, while it remains finite for
a second-order transition. We define the size of this window
�t = (ta − tb)/J by taking the difference at designated hop-
ping values tb and ta before and after the transition at which
the curvature of the order parameter m2 becomes extremal,
i.e., we determine ∂2

t m2(t ) |ta,b= 0.
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FIG. 10. Finite-size analysis of the transition window for the ED data. (a) Cut along the axis of hopping of the second partial derivative
of the magnetization for different temperature values. System sizes increase from 2N = 8 (red line with smallest values at the minimum) to
2N = 16 (blue line with largest values at the minimum). The left vertical axis corresponds to data at T = 0.09J , the right to T = 0.2J . The
origin of both data sets is set to the point of maximum curvature ta. (b) Size of transition window �t = (ta − tb)/J (as defined in Sec. VI)
for different system sizes N and temperatures T = 0 (bottom) to T = 0.9 (top) in steps of �T = 0.1. The dashed black lines are linear fits
extrapolating the finite-size data to smaller 1/N . The shaded areas correspond to the square roots of the covariance of the fits and give an
estimate of the errors of the fitting procedure. (c) 1/N → 0 extrapolation for the temperatures shown in panel (b).

Figure 10(a) shows ∂t m2 as a function of the window �t
for qualitatively different temperatures T < T ∗ and T > T ∗.
It is clearly visible that this quantity decreases drastically
with increasing system sizes in the first case (T < T ∗), while
it stays nearly constant in the second case (T > T ∗). This
indicates a qualitative difference between the two scenarios
where the former corresponds to a first-order and the latter to
a second-order phase transition.

In Fig. 10(b) a finite-size extrapolation of the transition
window size is shown. Here, we fit the finite-size values in
1/N linearly and extract the projected window size as 1/N →
0. Due to errors from the small available system sizes, we
include the covariance of the fitting procedure as gray shaded
areas. Despite of uncertainties, it is clearly visible that for
1/N → 0 the transition window goes to zero within the error
bars for low temperatures, while it approaches a finite value
for large temperature. This trend occurs still within the phase
boundaries of the ordered phase.

Figure 10(c) shows the 1/N → 0 extrapolation for the size
of the transition window with respect to temperature. Here
it becomes apparent that for small temperatures T < 0.04J
the extrapolation is essentially zero, indicating a first-order
phase transition; for larger temperatures a transition to a sec-
ond order one is observed. The temperature value at which
this qualitative change is observed can be identified with the
tricritical point at which the mean-field calculation shows a
transition from a first to second-order line.

The extrapolation procedure suggests a numerical value
close to T ∗

ED = 0.04J . The discrepancy with the mean-field
result T ∗

MF = 0.067J can be explained by the lack of large
system sizes for the fitting procedure, as well as effects due to
quantum fluctuations not included in the mean-field treatment.

VII. CONCLUSION

In this paper, we have proposed a quantum mechanical
generalization of the fully connected Hamiltonian mean-field
model [4]. The classical motion of N fully coupled rotators is
realized in the quantum case by an all-to-all X -Y interaction
among spin- 1

2 fermions, that hop on a one-dimensional ring.
For definiteness, we have restricted our analysis to ferromag-

netic coupling and half-filling. In this scenario, the hopping on
the lattice can be viewed as charge fluctuations of the ordered
ground state, which compete with the ferromagnetic X -Y -type
order, and drive the system into the disordered phase. The
main finding of the paper is the tricritical point at nonzero
temperature and hopping, separating a first from a second-
order phase transition.

The phase diagram of the model is studied as a function
of temperature and hopping with exact diagonalization com-
plemented by mean-field theory. We find a first-order quantum
critical point at zero temperature and nonzero critical hopping,
and a second-order classical critical point at zero hopping and
nonzero critical temperature. At the quantum critical point the
ground state changes abruptly from a state with maximum
total spin (ferromagnet) to a state with minimum total spin
(paramagnet). We have shown how the level crossing can be
understood from basic symmetry arguments. MF theory and
numerics agree on the determination of the quantum critical
point.

The phase boundary, which extends to finite temperature
from the quantum critical point, remains first order and be-
comes second-order only at a tricritical point. In the MF
analysis, the effective model involves particles with spin uni-
formly aligned in the direction of the magnetization, resulting
in two lower-energy bands separated by an order-induced
gap. The energetically lower (upper) band is completely filled
(empty) at zero hopping; varying the hopping gradually tunes
the filling of the bands. At the gap closing the residual occu-
pation difference, defining the magnetization, can take either a
finite or a zero value. This determines consequently the order
of the phase transition.

The resulting tricritical point T ∗ is clearly seen in mean-
field theory, with analytic expressions of the free energy F as a
function of magnetization (25) at hand, with F following text-
book Landau theory. In the vicinity of the tricritical point, F is
a fourth order polynomial in the magnetization with double-
well shape for T > T ∗, as expected from a second-order
transition, and a sixth-order polynomial with three minima
for T < T ∗, as expected from a first-order transition. We also
observe clear signatures of the change in the order of the
phase transition in the numerics by finite-size analysis. A
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detailed study of thermodynamic observables has been further
performed and displays salient features, such as jumps and
cusps at the critical points.

This work sets the ground for future investigations of tri-
criticality in the quantum regime in the presence of long-range
interactions. Further, the study of the dynamics of the quan-
tum HMF model represents a testbed of critical phenomena
for experiments on an envisaged long-range quantum com-
puter. In particular, it would be of great interest to inspect
the dynamics of the entanglement entropy and its potential
anomalous resilience far from equilibrium.
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APPENDIX A: SPECTRUM FOR THE
ZERO-HOPPING CASE

We review some spectral results at zero hopping [36].
Taking states with homogeneous particles density into ac-
count (i.e., one spin per site), the quantum HMF reduces to
the fully connected XY model, also known as the Lipkin-
Meshkov-Glick (LMG) model at zero field [35]. Using the
spin projection Si,a = σ a

i /2 (h̄ = 1), we can write the in-
teraction as HJ = −(J/2N )[S2

x + S2
y − Kx − Ky], where Sa =∑

i Si,a is the total spin projection in direction a and Ka =∑
i S2

i,a the squared euclidean norm. For spin- 1
2 particles, the

norm gives a constant shift Ka = N
4 since for any Pauli-matrix

(σ a
i )2 = 1. We can proceed by expressing the Hamiltonian in

terms of the total spin S and its projection Sz,

H̃J = − J

2N

(
S2 − S2

z

) + J

4
. (A1)

The spectrum reads

ẼJ = − J

2N

(
S(S + 1) − S2

z

) + J

4
. (A2)

The magnetization is equal to the interaction energy up to a
scaling and a constant via

ẼJ = J

4

(
1 − Nm2

2

)
. (A3)

In the ferromagnetic (FM) case J < 0, the ground state is
obtained by maximizing the total spin S = N/2 while simul-
taneously minimizing the spin projection, placing an equal
number of spin up and down. In a Fock basis the ground state

reads (N is a normalization)

|FM〉 = 1√
N

(| ↑↓↑ . . . > + “all transpositions′′), (A4)

with eigenvalue EFM = −JN/8 for even N . At zero tempera-
ture, this implies a unit magnetization for J > 0.

In the antiferromagnetic (AFM) case J > 0, the ground
state is obtained by minimizing the total spin while maximiz-
ing the total projection. Since Sz = −S,−S + 1, . . . , S this is
achieved for total spin zero and thus Sz = 0 (N even) and total
spin S = 1/2 and Sz = ±1/2 for (N odd). The magnetization
vanishes for antiferromagnetic coupling for N → ∞.

Equation (A1) can be generalized to fermions, when we
take into account the possibility of doubly occupied sites. Due
to the conservation of local variance in the particle number
at t = 0, the Hamiltonian separates into blocks with equal
number of doubly occupied sites. Let us denote the number
of doubly occupied sites by N#. The spectrum at t = 0 is then
given by

EJ = − J

2N

[
S(S + 1) − S2

z

] + J

4

N − N#

N
. (A5)

APPENDIX B: THERMODYNAMICS FOR ZERO-HOPPING

We give some details of the calculation of the thermody-
namic quantities at zero hopping in the canonical ensemble.
The main difficulty is to determine the degeneracies g which
enter the partition function [with β = (kBT )−1]

Z =
∑
N#

∑
s

g(N#, s)
∑

sz

e−βE (N#,s,sz ). (B1)

The partition function is summed over the spin-projections
Sz = −S, ...,+S, total spins S and the sectors with different
number of doubly occupied sites. There are three sources of
degeneracies in the spectrum:

(i) Eigenvalues with different s, sz, N# can be equal.
(ii) A chain of spin- 1

2 fermions combines to degenerate
total spins s. Iteration of the the rules of angular momentum
addition leads to direct product decomposition [40]

n⊗
k=1

1
2

=
�n/2�⊕
k=0

[
n + 1 − 2k

n + 1

(
n + 1

k

)]
(n + 1 − 2k). (B2)

(iii) Double occupancy is another source of degeneracy. To
see this, consider the Fock states at half-filling with N# doubly
occupied sites, N# = N0 empty sites with N↑ fermions with
spin up and N↓ with spin down. There are(

N
N#, N0, N↑, N↓

)
= N!

(N#!)2N↑!N↓!
(B3)

states with this property. This degeneracy also enters into g.
Figure 9 was produced by setting up an efficient algorithm
which counts the degeneracies as described.

APPENDIX C: FOCK TERM CONTRIBUTION

We give details of the the mean-field approximation in-
troduced in Sec. IV. Particularly, we demonstrate that it is
sufficient to consider the Hartree term whereas the constri-
bution of the Fock term produces a 1/N correction. For the
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Fock term we consider a different contraction of the fermionic
operators in the interaction Hamiltonian

c†
i,↑ci,↓c†

j,↓c j,↑ � −c†
i,↑c j,↑〈c†

j,↓ci,↓〉 − c†
j,↓ci,↓〈c†

i,↑c j,↑〉
+ 〈c†

i,↑c j,↑〉〈c†
j,↓ci,↓〉, (C1)

c†
i,↓ci,↑c†

j,↑c j,↓ � − c†
i,↓c j,↓〈c†

j,↑ci,↑〉 − c†
j,↑ci,↑〈c†

i,↓c j,↓〉
+ 〈c†

i,↓c j,↓〉〈c†
j,↑ci,↑〉. (C2)

Accordingly we can introduce an additional set of order
parameters defined as

�r = 〈c†
j,↑c j+r,↑〉 = 〈c†

j,↓c j+r,↓〉, (C3)

Here, we made use of spin-rotation symmetry of the original
Hamiltonian, which tells us that �r is spin independent. Then,
the mean-field Hamiltonian can be written as

HHF = Ht + HHartree
XY + HFock

XY , (C4)

where HMF = Ht + HHartree
XY is the mean-field Hamiltonian

studied in the main text and the Fock contribution is given
by

HFock
XY = J

2N

∑
i< j,σ=↑,↓

(
c†

iσ c j,σ + H.c.
)
�|i− j| − J

2

(N−1)/2∑
r=1

�2
r .

(C5)

We go to momentum space and introduce the (±) quasiparti-
cles (14)

HHF =
∑
k,±

ε̃±(k,M,�k )c†
k,±ck,± + M2J

2
(N − 1)

− J

2N

∑
k

�2
k . (C6)

The quasiparticle bands are now given by

ε̃±(k,M,�k ) = −2t cos(k) ∓ MJ
N − 1

2N
+ J�k

N
. (C7)

Notice that we have introduced the Fourier transform of the
Fock order parameter �k = ∑

r eikr�r . At zero temperature
the order parameters M and �k are self-consistently deter-
mined minimizing the ground state energy, i.e., imposing the

conditions ∂EHF/∂M = 0 and ∂EHF/∂�k = 0. The first con-
dition gives Eq. (20) for M, while the second condition tells
us that

�k = nk,+ + nk,− = nk . (C8)

Inserting this result back into the diagonal form of the Hartree-
Fock Hamiltonian we obtain

HHF = HMF + J

2N

∑
k

n2
k, (C9)

where HMF corresponds to the mean-field Hamiltonian in
Eq. (15). We notice that, the Fock contribution is a finite-
size correction to the mean-field energy, which can be safely
neglected in the thermodynamic limit. In fact the k-mode
occupation number can take only the values nk = 0, 1, 2 and
then we always have n2

k ∼ O(1). It follows that J
2N

∑
k n2

k ∼
O(1). However, HHF and HMF, being extensive quantities,
scale as O(N ). Accordingly, in the large N limit, we have

HHF

N
= HMF

N
+ O(N−1). (C10)

At finite N the correction due to the Fock contribution adds an
energetic penalty to doubly occupied modes with nk = 2 and
favors the XY magnetic order. In fact, as shown in the main
text, the paramagnetic state has the lowest N/2 modes doubly
occupied by a (+) type fermion and a (−) type fermion, the
paramagnetic Hartree-Fock energy is then

EHF(M = 0) � −4Nt

π
+ J. (C11)

On the contrary, in the ferromagnetic state all the N states are
occupied by only one particle, accordingly the ferromagnetic
Hartree-Fock energy is

EHF(M = 1/2) � −JN

8
+ J

2
. (C12)

It follows that the correction of order N−1 due to the Fock
contribution lowers down the value of the critical hopping at
finite N .
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