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We show that the heat transport between two bodies, mediated by electromagnetic fluctuations, can be
controlled with an intermediate quantum circuit—leading to the device concept of a mesoscopic photon
heat transistor (MPHT). Our theoretical analysis is based on a novel Meir-Wingreen-Landauer-type of
conductance formula, which gives the photonic heat current through an arbitrary circuit element coupled
to two dissipative reservoirs at finite temperatures. As an illustration we present an exact solution for the
case when the intermediate circuit can be described as an electromagnetic resonator. We discuss in detail
how the MPHT can be implemented experimentally in terms of a flux-controlled SQUID circuit.
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Problems involving interactions between quantum par-
ticles and electromagnetic fields have a long and rich
history. During the last decades developments in meso-
scopic physics have provided unprecedented possibilities
to engineer the electron-photon interactions. A major ad-
vantage in mesoscopic systems is their versatility which
allows a high level of control in their design and operation.
Recent advances in this field include impressive quantum
state manipulations involving single photons in circuit
cavity QED experiments [1] and a demonstration of
single-channel photon heat transport [2].

At low temperatures, when phonon modes become ef-
fectively frozen, photonic heat conduction becomes the
dominant channel for thermal transport [2,3]. In this
Letter we study photonic heat transport in a structure
consisting of two reservoirs coupled via an intermediate
electric circuit. The reservoirs are assumed to behave as
linear dissipative circuit elements and are thereby fully
characterized by their response functions and tempera-
tures. Furthermore, at low temperatures the wavelengths
of relevant field fluctuations are much longer than a typical
system size so the reservoirs can be effectively considered
as lumped elements. Within these assumptions we apply
the Caldeira-Leggett procedure and model the reservoirs as
continuous distributions of harmonic oscillators. By apply-
ing nonequilibrium Green’s function methods we derive a
formally exact Meir-Wingreen-Landauer- type formula [4]
for the heat current through the structure. Our formula
involves the noise power of the intermediate circuit, in
the presence of the coupling to the leads, and serves as a
general starting point for solving the heat transport prob-
lem. We find an exact solution for the heat current flowing
through an electromagnetic resonator circuit and show
explicitly that, in analogy with the transistor effect in
charge transport problems, the heat flow through the struc-
ture can be modulated by applying an external control to

the middle circuit. We suggest that an experimental dem-
onstration of the heat-transistor action can be achieved by
using a superconducting quantum interference device
(SQUID) circuit as the tunable resonator. Thus, the mag-
netic flux-controlled heat current is a photonic analogue to
the gate voltage controlled electronic heat current recently
demonstrated in Ref. [5].

Now we turn to the technical derivation of the general
formula for the heat current in the system consisting of a
left and a right reservoir, and an arbitrary quantum circuit
between them (Fig. 1). We treat the problem by employing
a nonequilibrium Green’s function method analogous to
those used earlier in electron and heat transport problems
[4,6–9]. The reservoirs are described by quadratic boson
fields and, according to the Caldeira-Leggett prescription,
can be thought of as arbitrary linear electric circuits by
choosing specific distributions of frequencies !j and cou-
plings gj (introduced below) [10,11]. The total Hamil-
tonian is assumed to be of the form H � HL �HR �
HM �HC, where

=

TL TR

YL (ω) YR (ω)

FIG. 1 (color online). Temperature gradient between the left
and right reservoirs induces photonic heat current through an
arbitrary quantum circuit coupled to them. Heat flows from left
to right when TL > TR. The reservoirs are assumed to behave as
linear dissipative elements and they couple only through the
middle circuit. In principle a direct coupling between the reser-
voirs always exists but in practice it can be made negligible by
an appropriate sample design.
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 HL=R �
X

j2L=R

@!j�â
y
j âj � 1=2�; (1)

and the inductive coupling term is

 HC � MÎ�îL � îR�; (2)

which involves the current operators for the central region
Î and for the reservoirs îL=R �

P
j2L=Rgj�âj � â

y
j �, respec-

tively. The specific form of the Hamiltonian and the current
operator of the middle region do not need to be specified at
this point (below we shall treat a specific example). The
mutual inductances between the middle circuit and the
leads are assumed to be equal, though this is not necessary
in the following derivation. A capacitive coupling between
the reservoirs and the middle system can be treated in close
analogy with the inductive coupling studied here [12].

The reservoir Hamiltonians HL=R do not commute with
the total Hamiltonian H, thus giving a rise to an energy
flow in the structure. This energy flow is characterized by a
heat current JL=R defined as
 

JL=R�t� � h _HL=Ri � iM
X

j2L=R

�gj!jhâj�t�Î�t�i � H:c:�

� �2MRe
X

j2L=R

gj!jG<
j �t; t�; (3)

where G<
j �t; t

0� � �ihâj�t
0�Î�t�i. The transport problem is

reduced to finding the lesser Green’s function G<
j �t; t

0�

which can be derived by the equation-of-motion technique
[6,13]. Following the standard prescription [6], we first
consider the equilibrium zero-temperature time-ordered
correlation functions, which obey

 �i@t0 �!j�hT�âj�t0�Î�t��i �
Mgj
@
hT�Î�t0�Î�t��i; (4)

or, after a formal integration,

 hT�âj�t
0�Î�t��i �

Mgj
@

Z
dt1hT�Î�t�Î�t1��iDj�t1 � t

0�; (5)

where Dj�t1 � t0� is the free reservoir Green’s function. In
nonequilibrium, this equation holds on the Keldysh con-
tour, and using the analytical continuation rules known as
Langreth’s theorem [6], we obtain

 G<
j �t; t

0� �
Mgj
@

Z
dt1�hÎ�t�Î�t1�irD<

j �t1 � t
0�

� �hÎ�t�Î�t1�i
<Da

j �t1 � t
0��; (6)

where the superscripts r, a, and < stand for ‘‘retarded,’’
‘‘advanced,’’ and ‘‘lesser,’’ respectively. Explicitly, the
current correlation functions are hÎ�t�Î�t0�ir � �i��t�
t0�h�Î�t�; Î�t0��i and hÎ�t�Î�t0�i< � �ihÎ�t0�Î�t�i. In a
steady state G<

j �t; t
0� � G<

j �t� t
0�, and it is convenient

to introduce the Fourier transform

 G<
j �!� �

Mgj
@
�hÎ Îir�!�D<

j �!� � hÎ Îi
<�!�Da

j �!��; (7)

where Da
j �!� � 1=�!�!j � i��, D<

j �!� �
�i2�n�!j���!�!j�, and n�!� is the Bose function.
We thus obtain
 

JL � 2
X
j2L

M2g2
j!j

2�@

Z 1
�1

d!��ImhÎ Îir�!�2�n�!j�

	 ��!�!j� � ImhÎ Îi<�!����!�!j��: (8)

To make a connection to quantities with a clear physical
interpretation, it is useful to express Eq. (8) in terms of the
noise power. The noise power for an observable Â is
defined as SA�!� �

R
1
�1 dte

i!�t�t0�hÂ�t�Â�t0�i, so the cur-
rent noise in the left lead is
 

SiL�!� �
X
j2L

g2
j �n�!j�2���!�!j�

� �n�!j� � 1�2���!�!j��: (9)

In terms of the noise power Eq. (8) becomes
 

JL � 2M2
Z 1

0

d!!
2�@

�
�ImhÎ Îir�!�SiL��!�� ImhÎ Îi<�!�

	
1

2
�SiL�!��SiL��!��

�
: (10)

Also the Î-correlation functions can be written in terms of
noise power: �ImhÎ Îir�!� � 1

2 �SI�!� � SI��!�� and
ImhÎ Îi<�!� � �SI��!�, which yields

 JL � M2
Z 1

0

d!!
2�@

�SI�!�SiL��!� � SI��!�SiL�!��:

(11)

A similar expression holds for JR; in steady-state situations
J � JL � �JR. Formulas (10) and (11) contain the free
reservoir noise functions which can be obtained straight-
forwardly from the admittances YL=R�!� and temperatures
TL=R by applying the fluctuation-dissipation theorem [10]:

 SiL=R�!� � Re�YL=R�!��@!�coth��L=R@!=2� � 1�: (12)

With the help of Eq. (12), the heat current (11) can be
written as
 

JL �
Z 1

0

d!!2M2

2�
f2�SI�!� � SI��!��Re�YL�!��nL�!�

� SI��!�2Re�YL�!��g: (13)

If the lead admittances share the same frequency
dependence, YL�!� � cYR�!� with some constant c, the
stationary heat current can be expressed as J � JL=�c�
1� � cJR=�c� 1� and cast into the Landauer form:

 J � M2
Z 1

0

d!!2

2�
�SI�!� � SI��!��

	
2Re�YL�!��Re�YR�!��

Re�YL�!�� � Re�YR�!��
�nL�!� � nR�!��: (14)

Equations (13) and (14) are the main formal results of this
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Letter. The formulas are valid for a generic middle circuit
Hamiltonian which may contain an arbitrary nonlinear
interaction. The main restriction of our approach is the
assumption of linearity of the leads. However, metallic
leads satisfy the assumption of linearity very accurately
in relevant frequency scales so our treatment is valid for a
wide range of applications. We emphasize the strong ana-
logue between our results and the Meir-Wingreen conduc-
tance formula: here the ‘‘bosonic thermal window’’
(nL � nR) replaces the ‘‘fermionic voltage window’’ (nFL �
nFR), the real part of the admittance plays the role of the
linewidth function �L=R, and the noise power SI�!� �
SI��!� of the central region, which needs to be evaluated
separately, replaces the central region spectral function.
Since SI contains information of the internal dynamics of
the middle region in the presence of coupling to the reser-
voirs, its evaluation may be difficult indeed, and only in
special cases analytic progress can be expected. In the
following we calculate SI�!� for an electromagnetic reso-
nator and illustrate how the reservoir admittances come
into play through the self-energy of the middle circuit.

Suppose now that the mediating quantum circuit is an
electromagnetic resonator with inductance L and capaci-
tance C [see Fig. 2(a)]. The central region Hamiltonian
then takes the form HM � @!0�b̂

yb̂� 1
2�, and the current

operator is Î � I0�b̂� b̂
y�, where I0 �

�����������������
@!0=2L

p
and

!0 � 1=
�������
LC
p

; b̂, b̂y are bosonic creation and annihilation
operators, �b̂; b̂y� � 1. To evaluate (14) one needs to find
the retarded function hÎ�t�Î�t0�ir � �i��t� t0�h�Î�t�; Î�t0��i
which can be expressed as the sum of four different re-
tarded functions

 hÎ Îir�!� � I2
0�hb̂b̂

yir�!� � hb̂yb̂ir�!� � hb̂ b̂ir�!�

� hb̂yb̂yir�!��: (15)

Note the presence of the anomalous functions hb̂�t�b̂�t0�ir

and hb̂y�t�b̂y�t0�ir; they are important and come into play
because the interaction term also includes the non-rotating-
wave terms âjb̂ and âyj b̂

y. By using an equation-of-motion
technique [6,13] we find a closed set of equations
 

�!�!0 � i��hb̂b̂
yir � 1� �r�!��hb̂b̂yir � hb̂yb̂yir�

�!�!0 � i��hb̂
yb̂yir � ��r�!��hb̂b̂yir � hb̂yb̂yir�

�!�!0 � i��hb̂
yb̂ir � �1��r�!��hb̂ b̂ir � hb̂yb̂ir�

�!�!0 � i��hb̂ b̂ir � �r�!��hb̂ b̂ir � hb̂yb̂ir�; (16)

where the retarded self-energy is given by

 �r�!� �
�MI0�

2

@
2

X
j2L;R

g2
j

�
1

!�!j � i�
�

1

!�!j � i�

�
:

(17)

The reservoir admittances are given by the Kubo formula

 YL�!� �
ihîLîLir�!�

@!

�
i
@!

X
j2L

g2
j

�
1

!�!j� i�
�

1

!�!j� i�

�
; (18)

so the self-energy is related to the reservoir admittances
through relation

 �r�!� � �
iM2I2

0!
@

�YL�!� � YR�!��: (19)

The algebraic system (16) is readily solved yielding

 hÎ Îir�!� �
�i@!

!F�!� i�� �M2!2�YL�!� � YR�!��
;

(20)

where we have introduced shorthand F�!� � �i@=I2
0�	

�!2 �!2
0�=�2!0�. By extracting the imaginary part of

Eq. (20) and recalling the relation �2ImhÎ Îir�!� �
SI�!� � SI��!� we find

 J �
Z 1

0

d!
2�

4@!5M4Re�YL�!��Re�YR�!��

j!F�!� �M2!2�YL�!� � YR�!��j2

	 �nL�!� � nR�!��: (21)

The result (21) is valid for arbitrary reservoirs admittances,
as long as the intermediate circuit can be described as an
oscillator. It can be shown that the upper limit of heat
current (21) is given by the universal single-channel heat
conductance quantum GQ � �2k2

BT=3h [2,3,9,14–16], an
exact parallel with the electrical single-channel conduc-
tance G0 � 2e2=h, which follows from the Meir-Wingreen
formula for a noninteracting resonant level model at reso-
nance [6].

In the following we assume that the reservoirs are
identical and consist of a resistor, a capacitor, and an
inductor in series. Thus the admittances can be written as

+ +Φ =

TL TR

TL TR

YL (ω) YR (ω)

a)

b)

FIG. 2 (color online). An electromagnetic resonator as the
intermediate circuit (a). In (b) the mediate resonator circuit
with a tunable inductance is realized by a dc SQUID with an
external magnetic flux bias �. The external flux can be used to
modulate the heat current through the structure and plays an
analogous role to the gate voltage in electronic transistor.
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YL�!� � YR�!� �
R�1

1�iQ�!=!R�!R=!�
, where R, Q, and !R

are an effective resistance, a quality factor, and a resonance
frequency of the reservoir. The net heat flow is determined
by five dimensionless parameters M2!0=LR, !0=!R, Q,
@!0=kBTL, and @!0=kBTR, where TL and TR are tempera-
tures of the reservoirs. By externally controlling the pa-
rameters of the middle circuit it is possible to tune the heat
flow through the structure. A practical way to realize this is
to employ a dc SQUID as a middle circuit and apply a
magnetic flux � through it [see Fig. 2(b)]. At low tem-
peratures the system can be modeled by an LC oscillator
with a tunable inductance L��� 
 L=j cos���=�0�j
where �0 � h=2e is the flux quantum and L is determined
by the Ambegaokar-Baratoff critical current [17]. The
LC-oscillator description of the SQUID circuit is expected
to be accurate within realistic parameter values at the
experimentally verified crossover temperature Tcr �
100 mK below which the photonic thermal conductance
should dominate [2]. A numerical evaluation of Eq. (21) is
presented in Fig. 3, which shows the heat flow as a function
of the external bias flux �. The maximum flow is obtained
at integer values of �=�0, whereas at half-integer values
the reservoirs are thermally decoupled. At low quality
factors the reservoirs are more efficiently matched and
the system has a better thermal coupling. By increasing

the coupling parameter M2!0=LR the maximum value of
the heat flow could be enhanced closer to the single-
channel maximum value.

In summary, we have studied photon heat transport in
nanoelectronic circuits based on a novel Meir-Wingreen-
Landauer formula in a two-terminal geometry. This for-
mula expresses the heat current in terms of the admittances
of the heat reservoirs, and the noise power of the interme-
diated mesoscopic circuit. The formula can serve as a
starting point for an analysis of photon heat transport in a
wide range of applications. As an example, we present an
exact solution to the transport problem in the case of an
electromagnetic resonator playing the role of the mediating
circuit. We propose a new device concept, a mesoscopic
photon heat transistor, where the heat current through the
structure can be strongly modulated by the external mag-
netic flux through a dc-SQUID loop.
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Tero Heikkilä for valuable discussions. The first author
acknowledges support from Academy of Finland.

*To whom all correspondence should be addressed.
teemuo@boojum.hut.fi

[1] A. A. Houck et al., Nature (London) 449, 328 (2007).
[2] M. Meschke, W. Guichard, and J. P. Pekola, Nature

(London) 444, 187 (2006).
[3] D. R. Schmidt, R. J. Schoelkopf, and A. N. Cleland, Phys.

Rev. Lett. 93, 045901 (2004).
[4] Y. Meir and N. S. Wingreen, Phys. Rev. Lett. 68, 2512

(1992).
[5] O.-P. Saira et al., Phys. Rev. Lett. 99, 027203 (2007).
[6] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport

and Optics of Semiconductors (Springer-Verlag, Berlin,
Heidelberg, 1996).

[7] J. S. Wang, J. Wang, and N. Zeng, Phys. Rev. B 74, 033408
(2006).

[8] T. Yamamoto and K. Watanabe, Phys. Rev. Lett. 96,
255503 (2006).

[9] T. Ojanen and T. T. Heikkilä, Phys. Rev. B 76, 073414
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FIG. 3 (color online). Heat flow through the SQUID structure
as a function of applied flux �, corresponding to parameters
M2!0=LR � 1, !0=!R � 1 and TR � TL=2 � @!0. The differ-
ent curves correspond to different reservoirQ values (from top to
bottom), Q � 0, Q � 0:1, Q � 0:5, Q � 2, and Q � 10. The
heat flux is normalized with respect to the universal single-
channel maximum value Jmax �

�2k2
B

6h �T
2
L � T

2
R�. In the inset

the heat flux is plotted as a function of the temperature of the
right reservoir corresponding to the parameters !0=!R � 1,
TL � 2@!0, Q � 0:1, and � � 0 mod �0. The different
curves correspond to parameter values (from bottom to
top) M2!0=LR � 0:5, M2!0=LR � 1, M2!0=LR � 3,
M2!0=LR � 5, and M2!0=LR � 10.
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