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We consider continuously monitored quantum systems and introduce definitions of work and heat along
individual quantum trajectories that are valid for coherent superposition of energy eigenstates. We use these
quantities to extend the first and second laws of stochastic thermodynamics to the quantum domain.
We illustrate our results with the case of a weakly measured driven two-level system and show how to
distinguish between quantum work and heat contributions. We finally employ quantum feedback control to
suppress detector backaction and determine the work statistics.
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Thermodynamics is, at its heart, a theory of work and
heat. The first law is based on the realization that both
quantities are two forms of energy and that their sum is
conserved. At the same time, the fact that entropy, defined
as the ratio of reversible heat and temperature, can only
increase in an isolated system is an expression of the second
law [1,2]. In classical thermodynamics, work is defined as
the change of internal energy in an isolated system,
W ¼ ΔU, while heat is introduced as the difference,
Q ¼ ΔU −W, in a nonisolated system. Thermal isolation
is thus crucial to distinguishW from Q. In the last decades,
stochastic thermodynamics has successfully extended the
definitions of work and heat to the level of single
trajectories of microscopic systems [3]. In this regime,
thermal fluctuations are no longer negligible and the laws
of thermodynamics have to be adapted to fully include
them. The second law has, for instance, been generalized in
the form of fluctuation theorems that quantify the occur-
rence of negative entropy production [4]. A particular
example is the Jarzynski equality, hexpð−βWÞi ¼
expð−βΔFÞ, which allows the determination of equilibrium
free energy differences ΔF from the nonequilibrium work
statistics in systems at initial inverse temperature β [5]. The
laws of stochastic thermodynamics have been verified in a
large number of different experiments; see Refs. [6,7] and
the review [8].
The current challenge is to extend the principles of

thermodynamics to include quantum effects which are
expected to dominate at smaller scales and colder temper-
atures. Some of the unsolved key issues concern the correct
definition of quantum work and heat, means to distinguish
between the two quantities owing to the blurring effect of
quantum fluctuations, and the proper clarification of the
role of quantum coherence. A variety of approaches have
been suggested to tackle these problems [9–20], and
quantum work statistics has been measured in isolated
systems in two pioneering experiments using NMR [21]
and trapped ions [22]. A new approach may emerge from

the possibility of weakly monitoring quantum systems.
Recently, individual quantum trajectories of a supercon-
ducting qubit in a microwave cavity have been observed
using weak measurements [23,24]. These measurements
only slightly disturb quantum systems owing to the weak
coupling to the measuring device [25]. They hence allow us
to gain information about states without projecting them
into eigenstates. They have been successfully employed to
explain quantum paradoxes [26], detect and amplify weak
signals [27,28], determine a quantum virtual state [29], and
directly measure a wave function [30]. Motivated by the
two experiments [23,24], we here investigate the first and
second law for continuously monitored quantum systems
and aim at developing a quantum stochastic thermody-
namics based on quantum trajectories. Such an extension
faces several technical difficulties. First, since a weakly
measured system can be in a coherent superposition of
energy eigenstates, energy is not a well-defined concept
along a single quantum trajectory. Furthermore, even in the
absence of an external environment, a continuously moni-
tored quantum system is not isolated and the detector
backaction, albeit small, will perturb its dynamics [25]. As
a result, its time evolution will be nonunitary and energy, in
the form of heat, will be exchanged with the detector.
In the following, we introduce suitable and consistent

definitions of work and heat contributions to the quantum
stochastic evolution of a weakly measured system that is
externally driven. We use these definitions to determine the
distributions of quantum work and heat for a two-level
system, and to demonstrate the general validity of the
Jarzynski equality, hence of the second law. We finally use
the tools of quantum feedback control [31] to suppress
detector backaction and thus effectively achieve thermal
isolation of the system. This provides a practical scheme to
experimentally test our definitions of work and heat along
individual quantum trajectories.
Quantum work and heat.—We consider a system with

time-dependent HamiltonianHt that is initially in a thermal
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state at inverse temperature β, ρ0 ¼ expð−βH0Þ=Z0, where
Z0 is the partition function. The system is driven by an
external parameter λt during a time τ. At the ensemble level,
quantum work and heat are introduced by considering an
infinitesimal variation of the mean energy, U ¼ hHi ¼
trfρtHtg [32,33]:

dU ¼ trfρtdHtg þ trfdρtHtg ¼ δW þ δQ: ð1Þ
Heat is further related to entropy S ¼ −ktrfρt ln ρtg via
δQ ¼ TdS [32,33]. For an isolated system with unitary
dynamics heat vanishes, since dS ¼ 0, and therefore dU ¼
δW in agreement with classical thermodynamics [1,2]. Heat
therefore appears to be fundamentally associated with the
nonunitary part of the dynamics.
At the level of individual realizations, energy is a

stochastic quantity owing to thermal and quantum fluctua-
tions. The distribution pðuÞ of the total energy change u
may be determined by performing projective measurements
Πn andΠm, with outcomes E0

n and Eτ
m, at the beginning and

at the end of the driving protocol [9,34],

pðuÞ ¼
X

m;n

Pτ
m;nP0

nδðu − ΔEm;nÞ: ð2Þ

Here, P0
n ¼ trfΠnρ0g denotes the probability of the eigen-

value E0
n, Pτ

m;n ¼ trfΠmρn;τg the transition probability from
state n to m, with ρn;τ being the time evolved projected
density operator ρn;0 ¼ Πnρ0Πn=P0

n, and ΔEm;n ¼ Eτ
m −

E0
n the energy difference. For unitary dynamics, pðuÞ

reduces to the work distribution pðWÞ, but, in general,
Eq. (2) does not allow us to distinguish work from heat. In
the following, we generalize Eq. (2) and identify work and
heat for a weakly measured system.
A quantum system continuously monitored by a quan-

tum limited detector may be assigned, for each individual
trajectory, a conditional density operator ~ρt that reduces to
the usual density operator ρt when averaged over all of the
trajectories, ρt ¼ ⟨⟨~ρt⟩⟩ [31,35]. The evolution of ~ρt is
commonly described by a stochastic master equation that
contains a random parameter ξðtÞ that accounts for the
detector shot noise; see Eqs. (9) and (10) below for an
example. An important observation is that such a master
equation has a unitary component, corresponding to the
dynamics generated by the system’s Hamiltonian, and a
nonunitary part that stems from the continuous coupling to
the detector. For an infinitesimal time step, these two
contributions commute and are additive; hence, they may
be written as

d~ρt ¼ δW½~ρt�dtþ δQ½~ρt�dt; ð3Þ

where δW½~ρt� and δQ½~ρt� are operators associated with the
respective unitary and nonunitary parts of the dynamics.
We identify them as corresponding to work and heat at the
level of an infinitesimal quantum trajectory. This separation

cannot be directly extended to the entire (time integrated)
trajectory since the stochastic master equation is generally a
nonlinear function of the operator ~ρt. However, when
averaged over quantum fluctuations, Eq. (3) allows us to
extend the first law (1) to single realizations of the
stochastic measurement outcome,

d ~Ut ¼ trfHtð~ρt−dt þ d~ρtÞg − trfHt−dt ~ρt−dtg
¼ trf~ρt−dtdHtg þ trfHtδWdtg þ trfHtδQdtg
¼ δ ~Wt þ δ ~Qt; ð4Þ

where, in the second line, dHt ¼ Ht −Ht−dt and the middle
term trfHtδWdtg ¼ 0 since δW originates from the unitary
evolution generated by Ht itself [36]. In the last line, δ ~Wt ¼
trf~ρt−dtdHtg and δ ~Qt ¼ trfHtδQdtg, indicating that work
is related to a change of the Hamiltonian, as expected, and
heat to the nonunitary δQ. Equation (4) is a direct extension
of stochastic thermodynamics to the quantum domain. The
first law (1) is recovered when Eq. (3) is averaged over both
stochastic and quantum fluctuations. The integrated work
and heat contributions to the changes in transition proba-
bilities, d ~Pm;n ¼ ~Pτ

m;n − ~P0
m;n, with P0

m;n ¼ δn;m being the
initial transition probability, can be further obtained from
Eq. (3) by carefully adding all of the different terms (see
Ref. [37]). We find, for each individual quantum trajectory,

d ~Pm;n ¼ δ ~PW
m;n þ δ ~PQ

m;n; ð5Þ

with the two quantities,

δ ~PW
m;n ¼ tr

�
Πm

Z
τ

0

dtδW½~ρt�
�
; ð6Þ

δ ~PQ
m;n ¼ tr

�
Πm

Z
τ

0

dtδQ½~ρt�
�
: ð7Þ

These expressions depend explicitly on the time dependence
of ~ρt in the whole time interval ½0; τ� (rather than on ~ρt and ~ρ0
only), which we stress by using the notation δ instead of d.
They provide an unambiguous way to distinguish between
work and heat at the level of a single trajectory. Remarkably,
they are valid even if the system remains in a coherent
superposition of energy eigenstates, that is, when its
energy is ill defined. Equation (5) holds for the trajectory
averaged quantities dPm;n ¼ δPW

m;n þ δPQ
m;n, with δPα

m;n ¼
⟨⟨δ ~Pα

m;n⟩⟩, α ¼ W, Q. Because of the nonlinearity of the
master equation, this averaged distinction between work and
heat contributions to transition probabilities cannot be
established solely by the knowledge of ρt, but it requires
access to ~ρt on single trajectories. It thus cannot be
established directly at the ensemble level.
The second law in the form of the Jarzynski equality,R
dWpðWÞ expð−βWÞ ¼ expð−βΔFÞ, immediately fol-

lows from Eq. (2) for an isolated system [9]. However,
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the equality is not satisfied for an open system with
nonunitary dynamics, owing to the heat term [34]. The
second law may be restored by replacing Pτ

m;n with
PW
m;n ¼ P0

m;n þ δPW
m;n, that is, by setting δPQ

m;n to zero at
each time step; see Fig. 3. We next show how quantum
work and heat may be identified theoretically by numeri-
cally analyzing a weakly measured two-level system and,
experimentally, by means of quantum feedback control.
Application to a monitored qubit.—In order to illustrate

our approach, we consider a driven two-level system S with
a Hamiltonian, Ht ¼ ϵσz þ λtσx, where λt is the external
driving and σi the usual Pauli matrices. The system is
continuously coupled to a quantum limited detector D via
the interaction Hamiltonian HI:

H ¼ Ht þHD þ σzHI; ð8Þ

where, without loss of generality, we identify σz as the
system’s observable that is monitored by the detector. The
effect of the detector is fully characterized by the averaged
signals, (I1, I2), and Gaussian noises, (S1, S2), measured
when the qubit is in the two eigenstates, (j1i, j2i), of the
measured observable. We assume this to be in the weak
measurement regime, i.e., at time scales smaller than the
measurement time τM ¼ ðS1 þ S2Þ=ðI1 − I2Þ2. For con-
creteness and simplicity, we will interpret the qubit in
Hamiltonian (8) as describing a double quantum dot
sharing a single electron and interacting with a quantum
point contact (QPC), but it can also be applied to a qubit
coupled to a microwave resonator [38] in a circuit QED
setup as in the experiments [23,24]. We accordingly
identify the configurations where the electron occupies
only one dot by hσzi ¼ �1. Coherent superpositions of the
two are possible. The detector monitoring the occupation
of the dots is a voltage biased QPC with the Hamiltonian
[39–42] HD ¼ P

lEla
†
l al þ

P
rEra

†
rar þ

P
l;rΩða†ral þ

a†l arÞ and the interaction term reads HI ¼P
l;rδΩ=2ða†ral þ a†l arÞ. The signal in the detector is the

current IðtÞ across the QPC, with averages I1ð2Þ ¼
2πΩ2

1ð2Þρlρre
2V=ℏ ¼ e2T1ð2ÞV=h and noises S1ð2Þ ¼

eð1 − T1ð2ÞÞI1ð2Þ. Here, ρl;r are the densities of states in
the left and right electrodes, and T1ð2Þ are the dimensionless
transmission probabilities across the QPC.
Under the assumption of a weakly coupled detector, the

detector signal is a random variable, and the evolution of
the system depends on the specific realization of the
stochastic process. This is captured by a well-established
Bayesian formalism [41,42] which describes the evolution
of the system conditional to the detector’s outcome in terms
of a nonlinear stochastic differential equation for the
system’s density matrix ~ρðtÞ. In the Ito formulation, we
have [41,42]

_~ρ11 ¼ − 2
λðtÞ
ℏ

Imð~ρ12Þ þ ~ρ11ð1 − ~ρ11Þ
2ΔI
S0

ξðtÞ; ð9Þ

_~ρ12 ¼ 2i
ϵ

ℏ
~ρ12 − i

λðtÞ
ℏ

ð1 − 2~ρ11Þ − ~ρ12
ðΔIÞ2
4S0

þ ð1 − 2~ρ11Þ~ρ12
ΔI
S0

ξðtÞ; ð10Þ

where ΔI ¼ I2 − I1 and ξðtÞ is the white noise of the
detector’s signal, with hξðtÞi ¼ 0, hξðtÞξðt0Þi ¼ σ2δðt − t0Þ
and σ ¼ ffiffiffiffiffiffiffiffiffiffi

S0=2
p

. The detector current IðtÞ is, further,

IðtÞ ¼ I0 þ
ΔI
2
ð2~ρ11 − 1Þ þ ξðtÞ: ð11Þ

For each realization of the measurement outcome, Eqs. (9)
and (10) allow us to identify the unitary and nonunitary
contributions to the time evolution since the nonunitary
part is proportional to ΔI. We rewrite Eq. (3) as d~ρt ¼
δW½~ρt�dtþ ðΔI=S0ÞδM½~ρt�dt, and we identify δW with the
work done by the driving λt along an infinitesimal
trajectory and δQ ¼ ðΔI=S0ÞδM as the heat associated
with the detector backaction of the detector. Because of the
nonlinearity of the stochastic master equation, we can only
determine the distributions of work and heat numerically.
We specify the driving as λt ¼ gf1= cosh½νð1 − t=τÞ�g,
where τ is the duration of the experiment, and reformulate
Eqs. (9) and (10) in the Stratonovich form [41,42]. We
solve them numerically by the Monte Carlo method for an
ensemble of 300 realizations of the random signal IðtÞ in
the interval t=τ ∈ ½0; 1� using a time step dt ¼ 0.01. The
results for work, heat, and energy along a given quantum
trajectory, Eq. (4), are shown in Fig. 1, while those for the
work and heat contributions to the transition amplitudes,

(a)

(b)

FIG. 1. First law for a weakly measured qubit. (a) Infinitesimal
change of work, heat, and energy along a single quantum
trajectory ~ρt; for each realization d ~Ut ¼ δ ~Wt þ δ ~Qt, Eq. (4).
(b) Corresponding signal IðtÞ in the detector. Parameters are
S0=ΔI2 ¼ 2.5 × 105dt, ℏ=g ¼ 1.6 × 102dt, ℏ=ϵ ¼ 103dt, ν ¼ 8,
and τ ¼ 3 × 103dt (see the main text).
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Eqs. (6) and (7), are presented in Fig. 2 (see Ref. [37] for
details).
Figure 1(a) demonstrates the reconstruction of quantum

averaged work and heat changes, δ ~Wt and δ ~Qt, along a
single quantum trajectory, based on the definitions given in
Eq. (4). The corresponding signal IðtÞ in the detector is
displayed in Fig. 1(b). Contrary to the case of an isolated
system for which d ~U ¼ δ ~W, the heat contribution δ ~Qt is
clearly visible here. Equation (4) holds for each individual
realization and thus extends the first law of stochastic
thermodynamics to the quantum regime. Figure 2(b) shows
the unambiguous distinction of the work and heat contri-
butions, δ ~PW

m;n and δ ~PQ
m;n, evaluated via Eqs. (6) and (7), to

the final transition probability Pτ
m;n. We stress that, although

Pτ
m;n is always positive, as a proper probability should be, the

work and heat contributions need not be: the probability to
go from state n to m at time τ can, for instance, be smaller
than the initial transition probability [43]. Note that a
quantity dPα

m;n ¼ Pα;τ
m;n − Pα;0

m;n;α ¼ W, Q that only depends
on initial and final times cannot be defined, reflecting the fact
that there are no heat or work operators.
Quantum feedback control.—In classical thermodynam-

ics, work is associated with the variation of the internal
energy of the isolated system [1,2]. After having shown
above how heat can be theoretically identified, we next
take advantage of a feedback loop protocol to suppress the
detector backaction [31], offering a scheme to reach
isolation experimentally. Quantum feedback has recently
been demonstrated experimentally for a superconducting
qubit [44]. Specifically, we control the amplitude, g, of the
system’s driving depending on the continuous detector
outcome, i.e., g → gt ≡ ð1 − fΔφtÞg, where f is the feed-
back strength and Δφt the phase difference between the
actual vector (with backaction) and the desired vector

(without backaction) in the Bloch sphere of the qubit
(see Refs. [37,41] for details). This allows us to opera-
tionally counter the effects induced by the continuous
monitoring. From a thermodynamic point of view, the
feedback adds an extra amount of work that exactly cancels
the heat contribution to the transition probabilities.
Figure 3 shows the numerically simulated final transition

probabilities Pτ
m;n for the weakly measured qubit with

(orange) and without (yellow) quantum feedback for two
driving times. We observe in both cases that the feedback
process effectively suppresses the heat contributions (iden-
tified in Fig. 2) and that the transition probabilities agree
with those of the isolated system with unitary dynamics
(brown). Quantum feedback control thus appears as a
powerful tool to determine the statistics of the work done
by the external driving in a continuously monitored system.
The heat statistics can be further easily obtained by
measuring the undriven system, that is, when no work is
performed and d ~Ut ¼ δ ~Qt.
The above findings can be directly used to verify the

quantum Jarzynski equality for the driven qubit. Since any
measurement induced heating is prevented by the feedback,
only the initial inverse temperature β of the system matters.
Determining the quantum work statistics via Eq. (2), we
find ΔF1 ¼ −0.488 and ΔF2 ¼ −0.496 with feedback
control for τ1 ¼ 1.4 × 103dt and τ2 ¼ 2.5 × 103dt and
ΔF ¼ −0.495 in the unitary case (for β ¼ 10). The
excellent agreement demonstrates the correctness of the
definitions of work and heat and confirms the second law
for a weakly measured quantum system.
Conclusions.—We have extended the laws of stochastic

thermodynamics along individual quantum trajectories of a
weakly measured system. We have shown how to distin-
guish work and heat contributions to both the energy
changes and the transition probabilities. We have further
demonstrated the usefulness of our approach with the

(a) (b)

FIG. 2. (a) Averaged final transition probabilities Pτ
m;n (yellow)

for a continuously monitored qubit with their work and heat
contributions, δPW

m;n (blue), and δPQ
m;n (red), and the initial

transition probability, P0
m;n ¼ δmn (purple). The first law–like

equation dPm;n ¼ δPW
m;n þ δPQ

m;n is verified. (b) Work and heat
contributions δ ~PW

m;n and δ ~P
Q
m;n at the single trajectory level. Same

parameters as in Fig. 1.

(a) (b)

FIG. 3. Transition probabilities Pτ
mn for the weakly measured

qubit with (orange) and without (yellow) feedback control for
(a) τ1 ¼ 1.4 × 103dt and (b) τ2 ¼ 2.5 × 103dt. The feedback
strength is f ¼ 3. The isolated, unitary case (red) is shown as a
reference. The feedback loop effectively suppresses the detector
backaction and the associated heat exchange, achieving thermal
isolation.
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analysis of a driven qubit and have introduced methods to
identify work from heat numerically as well as experi-
mentally with the help of quantum feedback control.

This work was partially supported by DFG under
Grants No. RO 4710/1-1 and No. LU 1382/4-1, the EU
Collaborative Project TherMiQ (Grant Agreement
No. 618074) and the COST Action No. MP1209.

Note added.—Recently, we became aware of a paper by
Elouard et al. [45] that also discusses quantum stochastic
thermodynamics.
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