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Time-reversal-invariant topological superconducting (TRITOPS) wires are known to host a fractional
spin ℏ=4 at their ends. We investigate how this fractional spin affects the Josephson current in a TRITOPS-
quantum dot-TRITOPS Josephson junction, describing the wire in a model that can be tuned between a
topological and a nontopological phase. We compute the equilibrium Josephson current of the full model
by continuous-time Monte Carlo simulations and interpret the results within an effective low-energy theory.
We show that in the topological phase, the 0-to-π transition is quenched via formation of a spin singlet from
the quantum-dot spin and the fractional spins associated with the two adjacent topological superconductors.
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Introduction.—The interplay of many-body interactions
in quantum dots and superconductivity has been the
focus of interest for some time [1–6]. While electrons
are paired in superconductors, the charging energy effec-
tively suppresses pairing in quantum dots (QD). A promi-
nent consequence of this competition is the transition
between 0 and π junction behavior of the Josephson current
in devices where a QD connects between ordinary (non-
topological) singlet-superconducting wires (S-QD-S junc-
tion) [7–10]. As a result of numerous studies [11–19], this
phenomenon is now well understood for conventional
superconductors. Essentially, S-QD-S junctions exhibit
π-junction behavior when the QD hosts an effective
spin-1=2 degree of freedom.
Here, we address the 0-to-π transition for Josephson

junctions in which a quantum dot connects between time-
reversal-invariant topological superconductors (TRITOPS).
Unlike their time-reversal-breaking cousins [20–23],
TRITOPS preserve time-reversal symmetry and can coexist
with an unpolarized quantum-dot spin. It is thus an
interesting question whether π-junction behavior can be
observed in TRITOPS-QD-TRITOPS junctions. Such junc-
tions differ from conventional S-QD-S junctions in several
ways. First, the Majorana-Kramers pairs present in the
topological phase allow for the coherent transfer of single
electrons, while the Josephson current of a conventional
junction is carried by Cooper pairs. Even more intriguing,
TRITOPS host a fractional ℏ=4 spin at their ends. Thus, a
TRITOPS-QD-TRITOPS junction allows one to study the
hybridization of fractional and ordinary spins. We show
that the 0-π transition constitutes a signature that distin-
guishes between the topological and the nontopological
phase, and trace the quenching of the transition for
TRITOPS to the formation of a spin singlet from the

quantum-dot spin and the fractional spins of the adjacent
TRITOPS.
In the wake of proposals to engineer time-reversal-

breaking topological phases and corresponding experiments,
there has also been substantial interest in time-reversal-
invariant topological superconductors [24–37]. TRITOPS
are characterized by Kramers pairs of Majorana end states
and localized fractional spins [28]. Time reversal protects the
pair of Majorana states from hybridizing, which therefore
generically remain at zero energy. Similarly, the fractional
spin is topologically protected and cannot be determined
from a local measurement without breaking time reversal.
Several routes have been proposed to engineer TRITOPS
although their experimental realization is more demanding
than that of time-reversal-breaking topological super-
conductors [36].
Conventional Josephson junctions assume their minimal

energy at zero phase difference and their maximal energy
at a phase difference of π (0-junction behavior). This
behavior is reversed in π junctions, which assume their
minimal energy at a phase difference of π [1,2]. In S-QD-S
junctions, π-junction behavior occurs when the quantum
dot forming the junction is singly occupied and acts
effectively as a magnetic impurity. When the QD is weakly
coupled to the superconductors, tunneling of Cooper pairs
between the conventional superconductors relies on a
fourth-order cotunneling process [1,10]. This process
includes a π phase shift that originates from the Fermi
statistics of electrons and becomes manifest in the π-
junction behavior. As a consequence, the current-phase
relation of the junction phase shifts by π when the
occupation of the quantum dot is tuned from even to
odd. When the quantum dot is strongly coupled to the
superconductors, the impurity spin can be screened, turning
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a doublet into a singlet ground state and resulting in
0-junction behavior. Depending on the parameter regime,
this transition can be described as a result of Kondo
correlations or a zero-energy crossing of a Yu-Shiba-
Rusinov state [19].
Model.—Our considerations are based on a time-

reversal-invariant superconductor with Hamiltonian [27],

Hα ¼
XN
j¼1

X
σ

ð−tc†α;jþ1;σcα;j;σ þ iλσc
†
α;jþ1;σcα;j;σ

þ Δσeiϕαc†α;jþ1;σc
†
α;j;σ̄ þ H:c: − μnα;j;σÞ; ð1Þ

where λ↑;↓ ¼ �λ, Δ↑;↓ ¼ �Δ, and ↑̄ ¼ ↓; ↓̄ ¼ ↑.
Moreover, t is the hopping parameter, μ is the chemical
potential, and λ andΔ are the strengths of Rashba spin-orbit
coupling and extended s-wave pairing, respectively. The
index α ¼ L, R labels the left and right superconductors of
the junction with order parameter phases ϕα. The phase
difference ϕ ¼ ϕL − ϕR ¼ 2πΦ=Φ0 can be tuned by
including the junction in a superconducting loop and
threading the loop by a magnetic flux Φ. (Φ0 ¼ h=2e
denotes the superconducting flux quantum.) The entire
TRITOPS-QD-TRITOPS Josephson junction is then
described by the Hamiltonian

H ¼
X
α¼L;R

Hα þHc þHd: ð2Þ

Here,

Hd ¼ εd
X
σ

nd;σ þUnd↑nd↓ ð3Þ

describes the quantum dot with gate-tunable level energy
εd, spin-resolved level occupation nd;σ , and charging
energy U, and

Hc ¼ −t0
X
σ

½ðc†L;N;σ þ c†R;1;σÞdσ þ H:c:� ð4Þ

accounts for the hybridization between quantum dot and
superconductors.
The Hamiltonian Hα supports topological and nontopo-

logical phases. The topological phase occurs when jμj < 2λ
and is characterized by Kramers pairs of Majorana end
states. For each lead, the corresponding Majorana operators
can be combined into conventional fermionic operators

ΓL=R ¼
Z

dxφL=RðxÞ½ψ↑ðxÞ ∓ iψ†
↓ðxÞ�; ð5Þ

where φL=RðxÞ denotes the Majorana wave functions of
the left (L) and right (R) superconducting lead and
ψσðxÞ denotes the electron field operator for spin σ (see
Supplemental Material, Sec. II [38]). While the Majorana

operators mix the two spin components, the operators ΓL=R

remove a spin of ℏ=2 from one end of the wire. Thus, ΓL=R

and Γ†
L=R toggle the system between ground states with

fractional spins of �ℏ=4 localized at the ends of the
wire [28].
Numerical results.—The Josephson current can be com-

puted from the Green function expression

I ¼ 2t02

β

X
σ

X
n

Im½gð12Þ1α;σðiωnÞGð21Þ
d;σ ðiωnÞ�: ð6Þ

The derivation is included in Ref. [38] (see Sec. I).
The Green functions correspond to the Matsubara
components of frequency ωn ¼ ð2nþ 1Þπ=β (β is the
inverse temperature) of the imaginary-time Green func-

tions gð12Þ1α;σðτÞ ¼ −hTτ½ĉ†α;1;σðτÞĉ†α;1;σ̄ð0Þ�i0 and Gð21Þ
d;σ ðτÞ ¼

−hTτ½d̂σðτÞd̂σ̄ð0Þ�i, where h…i0 (h…i) denotes the ensem-
ble average over the states of Hα (H). The first Green
function can be obtained exactly.
First consider a junction with a noninteracting quantum

dot. For U ¼ 0, the Green function Gd;σðiωnÞ and thus
the Josephson current can also be evaluated analytically.
Moreover, our model can be written in Nambu representa-
tion with a Bogoliubov–de Gennes (BdG) Hamiltonian
ĤBdG ¼ Ĥ0τz þ Δ̂τx, where Ĥ0 results from the normal
parts of the Hamiltonian H while Δ̂ originates from the
pairing contributions. The Pauli matrices τi (with i ¼ x, y,
z) operate in particle-hole space. Diagonalizing the BdG
Hamiltonian, the Josephson current can be obtained from
I ¼ ð2e=ℏÞ∂E0ðϕÞ=∂ϕ, where E0ðϕÞ is the many-body
ground state energy. Corresponding results are presented
in Fig. 1.
The spectrum of ĤBdG is shown in the lower panels for

the topological (left and middle) and the nontopological
(right) phase. In the topological phase, there are zero-
energy bound states (light-blue curves) that emerge from
the Majorana states localized at the far ends of the finite-
length chains. The solid red curves emerge from the
hybridization of the dot states with the adjacent
Majorana states. In the nontopological phase, the subgap
states are gapped. As a consequence of Kramers theorem,
the subgap states are twofold degenerate at ϕ equal to
integer multiples of π. At other flux values, time reversal is
broken by the phase bias and the subgap states are non-
degenerate. The top panel of Fig. 1 shows the Josephson
current for values of μ both in the topological (μ < 2λ)
and the nontopological (μ > 2λ) phases. In the topological
phase, the Josephson current jumps at ϕ ¼ π (up to finite-
size effects), reflecting the level crossing of the subgap
states. (Note that we assume complete equilibration over
fermion parities.) The nontopological phase exhibits the
usual smooth behavior.
For a nonzero interaction U, the Josephson current can

be calculated by evaluating Gð21Þ
d;σ ðiωnÞ using quantum
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Monte Carlo simulations [39]. Previous works on S-QD-S
junctions [12,15,16] as well as normal wires coupled to
correlated dots and molecules [40,41] proved this strategy
to be accurate and reliable. We perform a Shiba trans-
formation, mapping H to a particle-number conserving
Hamiltonian with negative U [15]. The Green function of
the transformed problem is then calculated by the algorithm
introduced in Refs. [42,43]. Inversion of the Shiba trans-
formation leads to Gd;σðiωnÞ, which enters the Josephson
current (6). Results for a half-filled configuration (i.e.,
hnd↑ þ nd↓i ¼ 1) are shown in Fig. 2.
The nontopological case (bottom panel) shows the

expected 0-to-π transition. When coupling the quantum
dot to superconducting leads, the local moment persists
when Δ is larger than the Kondo temperature TK , but
becomes Kondo screened by the quasiparticle states for
Δ ≪ TK . For a particle-hole symmetric configuration, the
Kondo temperature of the junction is given by kBTK ¼ffiffiffiffiffiffiffiffiffiffiffi
δU=2

p
exp ð−πU=8δÞ [44] with the hybridization param-

eter δ ∼ πðt0Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μ2=ð2tÞ2

p
=ð2tÞ. Consequently, there is a

0-π transition as U increases. For U ¼ t, the dot is in the

intermediate valence regime, while for U ¼ 6t and
U ¼ 10t, it would be in the Kondo regime when attached
to normal leads. In our case, kBTK ∼ Δ for U ∼ 8.5t,
consistent with the observed transition between 0- and
π-junction behavior between U ¼ 6t and U ¼ 10t.
It is our central observation that there is no correspond-

ing 0 − π transition when the superconducting leads are in
the topological regime. Instead, the current-phase relation
remains similar to the noninteracting case for all interaction
strengths U. In particular, the abrupt dependence at a phase
difference of ϕ ¼ π, while slightly smoothed by finite
temperature, becomes more pronounced as the number of
sites increases, as in the noninteracting case (cp. the inset
of Fig. 1). These results suggest that the impurity spin is
efficiently screened in the topological case, despite the
presence of the superconducting gap. This robust screening
of the spin of the quantum dot originates from its
interaction with the subgap states emerging from the
Kramers pairs of Majorana states of the adjacent left and
right wires.
Effective Hamiltonian.—To arrive at this conclusion,

we interpret our numerical results in the context of an
effective Hamiltonian. Consider a singly occupied, inter-
acting quantum dot coupled to two time-reversal-invariant
topological superconductors. For simplicity, we assume
that the superconducting gap is large compared to the
Kondo temperature so that we can neglect hybridization
with the quasiparticle continuum. Then, we only need
to consider the hybridization with the subgap states
originating from the Majorana bound states. We can
project out the empty and doubly occupied dot states by
employing a Schrieffer-Wolff transformation [45] (see also
[37] for similar considerations). This yields an effective
Hamiltonian in the eight-dimensional subspace spanned
by the two eigenstates of the quantum dot spin Sd and the
two states for each of the superconducting leads that are
associated with the Kramers pair of Majorana operators.
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FIG. 2. Josephson current for an interacting quantum dot at
β ¼ 400 with t0 ¼ t, εd ¼ −U=2, λ ¼ t=2, Δ ¼ t=5. The upper
(lower) panel corresponds to the topological (nontopological)
phase. The values of U and μ are indicated in the figure. Energies
are expressed in units of t ¼ 1.
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FIG. 1. Top: Josephson current vs ϕ for a quantum dot at
T ¼ 0 with U ¼ 0, t0 ¼ t, λ ¼ t=2, Δ ¼ t=5, and values of μ in
the topological (μ < t) as well as the nontopological (μ > t)
phase. The wires have N ¼ 500 sites. Inset: Josephson current at
finite temperature. Red, blue, and green lines correspond to
β ¼ 400; 200, and 100, respectively. The T ¼ 0 case is plotted in
black for reference. Bottom: Spectrum of ĤBdG for μ ¼ εd ¼ 0
(left), μ ¼ 0, εd ¼ t (middle), and μ ¼ −εd ¼ 1.8 (right). Other
parameters are as they are in the top panel. Energies are measured
in units of t ¼ 1.
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Here, we sketch the derivation of this Hamiltonian (for
details, see [38], Sec. III).
In a first step, we project the tunneling Hamiltonian

Hc to the subgap states of the wires, giving Hc ¼
teffeiϕ=4

P
σðΓ†

L;σdσ þ d†σΓR;σÞ þ H:c:, where teff ≲ t0 and
the Bogoliubov operators for the zero-energy modes satisfy
Γ†
L ¼ Γ†

L;↑ ¼ iΓL;↓, and Γ†
R ¼ Γ†

R;↑ ¼ −iΓR;↓ (see [46,38],
Sec. II). Focusing on the particle-hole symmetric point
εd ¼ −U=2, and eliminating the empty and doubly occu-
pied states of the quantum dot by a Schrieffer-Wolff
transformation, we obtain (see [38], Sec. III for details,
including more general configurations)

Heff ¼ J

�
Szd

�
ðnL þ nR − 1Þ þ i sin

ϕ

2
ðΓ†

LΓR − Γ†
RΓLÞ

�

þ i cos
ϕ

2
ðS−dΓ†

LΓ
†
R − Sþd ΓRΓLÞ

�
; ð7Þ

where J ¼ 4t2eff=U and we defined the occupations
nα ¼ Γ†

αΓα. A convenient basis for this Hamiltonian is
jσ; nL; nRi with nα ¼ 0, 1 and σ ¼ ↑;↓. Note that nα also
labels the polarization of the fractional spins.
The HamiltonianHeff is easily diagonalized. It conserves

the number parity of n ¼ nL þ nR. For n ¼ 1, the terms
involving S�d do not contribute and we find doubly
degenerate eigenstates that are linear superpositions of
jσ; 1; 0i and jσ; 0; 1i with energy �J=2 sinðϕ=2Þ. For even
occupations n, we have two phase-independent states with
degenerate eigenergies J=2 corresponding to j↑; 1; 1i and
j↓; 0; 0i as well as a pair of nondegenerate states with
energies −J=2� J cosðϕ=2Þ, which are linear combina-
tions of the states j↑; 0; 0i and j↓; 1; 1i.
At all phase differences, the ground state is an equal-

probability superposition of j↑; 0; 0i and j↓; 1; 1i. These
states describe configurations with overall zero spin.
Indeed, in both states the quantum-dot spin of ℏ=2 is
pointing opposite to the fractional spins of ℏ=4 of the two
adjacent superconductors. Thus, these configurations can
be interpreted as an effective singlet configuration of the
quantum dot spin and the fractional spins of the topological
superconductors.
Similar to the singlet formation via hybridization with

the quasiparticle continuum of nontopological supercon-
ductors [19], this singlet formation with the fractional spins
quenches the π-junction behavior. Indeed, the low-energy
spectrum emerging from the Schrieffer-Wolff treatment
predicts a Josephson energy that is minimal at phase
differences equal to integer multiples of 2π. Moreover,
we also see that there is a cusp in the ground state energy at
a phase difference of π. Both of these results are consistent
with our numerical results that incorporate the hybridiza-
tion with the quasiparticle continuum above the super-
conducting gap.

In Fig. 3, we benchmark our low-energy Hamiltonian
with results for the LDOS at the quantum dot ρðωÞ ¼
−2

P
σIm½GR

d;σðωÞ�. The latter was calculated by analyti-
cally continuing the Monte Carlo data to the real frequency
axis. Results are shown in the color plot. The low-energy
spectrum obtained from Heff is shown as solid lines for
comparison. The peaks in the LDOS reflect the energy
necessary to add or remove one particle. Thus, the peak
positions can be estimated from Heff by the energy differ-
ence between the odd-parity eigenstates and the ground
state, which yields �½J=2þ Jj cosðϕ=2Þj � J=2 sinðϕ=2Þ�.
We find that our numerics is qualitatively consistent with
the predictions of Heff , although the numerics is performed
in a regime where the addition spectrum already hybridizes
with the quasiparticle continuum. Apart from shifts in
energy, the hybridization lifts the degeneracies at ϕ ¼ 0
and 2π. Besides the low-energy features that are qualita-
tively described by Heff, the numerical results also exhibit
high-energy features at �U=2, which are associated with
the charge-transfer peaks of the impurity Anderson model.
TRITOPS-QD-TRITOPS Josephson junctions combine

topological superconductivity with time-reversal symmetry
and electron-electron interactions. While this is super-
ficially similar to quantum spin Hall Josephson junctions
including interactions either within the edge states [47,48]
or through coupling to an interacting quantum dot [49,50],
these two types of Josephson junctions are governed
by remarkably different physics. Quantum spin Hall
Josephson junctions exhibit an 8π-perodic Josephson effect
that can be interpreted as resulting from the tunneling of
e=2 charges enabled by the formation of Z4 parafermions or
from a spin transmutation as a consequence of the fermion
parity anomaly [49]. In contrast, the present system has a
Josephson effect that is 4π periodic and results from an
effective singlet formation with two fractional spins.

FIG. 3. Local density of states (LDOS) at the quantum dot
obtained by QMC. The black dashed lines are the predictions for
the peaks in the density of states on the basis ofHeff with J ¼ 0.2.
The amplitude of the superconducting gapΔ ¼ 0.2 is indicated in
thin lines. Other parameters are U ¼ 4t, J ¼ 0.2, λ ¼ 0.5t, t0 ¼ t,
μ ¼ 0, and β ¼ 400.

PRL 119, 046801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
28 JULY 2017

046801-4



We acknowledge support from CONICET, and
UBACyT, Argentina as well as Deutsche
Forschungsgemeinschaft and the Alexander von
Humboldt Foundation, Germany. L. A. thanks the ICTP-
Trieste for hospitality through a Simons associateship. This
work was sponsored by Grant No. PIP 112-201101-00832
of CONICET and Grants No. PICT 2013-1045 and
No. PICT 2012- of the ANPCyT.

[1] S. De Franceschi, L. Kouwenhoven, C. Schönenberger, and
W. Wersdorfer, Nat. Nanotechnol. 5, 703 (2010).

[2] A. Martín-Rodero and A. Levy Yeyati, Adv. Phys. 60, 899
(2011).

[3] M. R. Buitelaar, T. Nussbaumer, and C. Schönenberger,
Phys. Rev. Lett. 89, 256801 (2002).

[4] T. Sand-Jespersen, J. Paaske, B. M. Andersen, K. Grove-
Rasmussen, H. I. Jorgensen, M. Aagesen, C. B. Sorensen,
P. E. Lindelof, K. Flensberg, and J. Nygärd, Phys. Rev. Lett.
99, 126603 (2007).

[5] C. Buizert, A. Oiwa, K. Shibata, K. Hirakawa, and S.
Tarucha, Phys. Rev. Lett. 99, 136806 (2007).

[6] J.-D. Pillet, P. Joyez, R. Žitko, and M. F. Goffman,
Phys. Rev. B 88, 045101 (2013).

[7] I. O. Kulik, Zh. Eksp. Teor. Fiz. 49, 585 (1965) [Sov. Phys.
JETP 22, 841 (1966)].

[8] H. Shiba and T. Soda, Prog. Theor. Phys. 41, 25 (1969).
[9] L. I. Glazman and K. A. Matveev, Pis’ma Zh. Eksp. Teor.

Fiz. 49, 570 (1989) [JETP Lett. 49, 659 (1989)].
[10] B. I. Spivak and S. A. Kivelson, Phys. Rev. B 43, 3740

(1991).
[11] E. Vecino, A. Martin-Rodero, and A. Levy Yeyati, Phys.

Rev. B 68, 035105 (2003).
[12] F. Siano and R. Egger, Phys. Rev. Lett. 93, 047002 (2004).
[13] M.-S. Choi, M. Lee, K. Kang, and W. Belzig, Phys. Rev. B

70, 020502 (2004).
[14] T. Meng, S. Florens, and P. Simon, Phys. Rev. B 79, 224521

(2009).
[15] D. J. Luitz and F. F. Assaad, Phys. Rev. B 81, 024509

(2010).
[16] D. J. Luitz, F. F. Assaad, T. Novotny, C. Karrasch, and V.

Meden, Phys. Rev. Lett. 108, 227001 (2012).
[17] A. Oguri, Y. Tanaka, and J. Bauer, Phys. Rev. B 87, 075432

(2013).
[18] R. Allub and C. R. Proetto, Phys. Rev. B 91, 045442 (2015).
[19] G. Kirsanskas, M. Goldstein, K. Flensberg, L. I. Glazman,

and J. Paaske, Phys. Rev. B 92, 235422 (2015).
[20] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012).
[21] A. Y. Kitaev, Phys. Usp. 44, 131 (2001).
[22] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Phys. Rev.

Lett. 105, 077001 (2010).
[23] Y. Oreg, G. Refael, and F. von Oppen, Phys. Rev. Lett. 105,

177002 (2010).
[24] C. L. M. Wong and K. T. Law, Phys. Rev. B 86, 184516

(2012).
[25] S. Nakosai, Y. Tanaka, and N. Nagaosa, Phys. Rev. Lett.

108, 147003 (2012).

[26] S. Deng, L. Viola, and G. Ortiz, Phys. Rev. Lett. 108,
036803 (2012).

[27] F. Zhang, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 111,
056402 (2013).

[28] A. Keselman, L. Fu, A. Stern, and E. Berg, Phys. Rev. Lett.
111, 116402 (2013).

[29] E. Dumitrescu and S. Tewari, Phys. Rev. B 88, 220505
(2013).

[30] S. B. Chung, J. Horowitz, and X.-L. Qi, Phys. Rev. B 88,
214514 (2013).

[31] S. Nakosai, J. C. Budich, Y. Tanaka, B. Trauzettel, and N.
Nagaosa, Phys. Rev. Lett. 110, 117002 (2013).

[32] A. Haim, A. Keselman, E. Berg, and Y. Oreg, Phys. Rev. B
89, 220504(R) (2014).

[33] E. Gaidamauskas, J. Paaske, and K. Flensberg, Phys. Rev.
Lett. 112, 126402 (2014).

[34] J. Klinovaja, A. Yacoby, and D. Loss, Phys. Rev. B 90,
155447 (2014).

[35] C. Schrade, A. A. Zyuzin, J. Klinovaja, and D. Loss, Phys.
Rev. Lett. 115, 237001 (2015).

[36] A. Haim, E. Berg, K. Flensberg, and Y. Oreg, Phys. Rev. B
94, 161110(R) (2016).

[37] Y. Kim, D. E. Liu, E. Gaidamauskas, J. Paaske, K.
Flensberg, and R. M. Lutchyn, Phys. Rev. B 94, 075439
(2016).

[38] See Supplemental Material http://link.aps.org/supplemental/
10.1103/PhysRevLett.119.046801 for the details on the
calculation of the Josephson current, the analysis of the
zero modes of a continuum model for the TRITOPS wire,
and the derivation of the low-energy effective Hamiltonian
for the quantum dot in the Josephson junction be means of a
Schrieffer-Wolf transformation.

[39] J. E. Hirsch and R. M. Fye, Phys. Rev. Lett. 56, 2521
(1986).

[40] L. Arrachea and M. J. Rozenberg, Phys. Rev. B 72, 041301
(2005).

[41] A. Camjayi and L. Arrachea, Phys. Rev. B 86, 235143
(2012); A. Camjayi and L. Arrachea, J. Phys. Condens.
Matter Lett. 26, 035602 (2014).

[42] P. Werner, A. Comanac, L. de Medici, M. Troyer, and A. J.
Millis, Phys. Rev. Lett. 97, 076405 (2006).

[43] K. Haule, Phys. Rev. B 75, 155113 (2007).
[44] A. Hewson, The Kondo Problem to Heavy Fermions

(Cambridge University Press, Cambridge, 1993).
[45] J. R. Schrieffer and P. A. Wolff, Phys. Rev. 149, 491

(1966).
[46] We introduce the notation ΓL=R;σ to make the tunneling

Hamiltonian more compact. It also turns out that this
notation is helpful in performing the Schrieffer-Wolff trans-
formation (see [38], Sec. III).

[47] F. Zhang and C. L. Kane, Phys. Rev. Lett. 113, 036401
(2014).

[48] C. P. Orth, R. P. Tiwari, T. Meng, and T. L. Schmidt,
Phys. Rev. B 91, 081406(R) (2015).

[49] Y. Peng, Y. Vinkler-Aviv, P. W. Brouwer, L. I. Glazman, and
F. von Oppen, Phys. Rev. Lett. 117, 267001 (2016).

[50] H.-Y. Hui and J. D. Sau, Phys. Rev. B 95, 014505
(2017).

PRL 119, 046801 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
28 JULY 2017

046801-5

https://doi.org/10.1038/nnano.2010.173
https://doi.org/10.1080/00018732.2011.624266
https://doi.org/10.1080/00018732.2011.624266
https://doi.org/10.1103/PhysRevLett.89.256801
https://doi.org/10.1103/PhysRevLett.99.126603
https://doi.org/10.1103/PhysRevLett.99.126603
https://doi.org/10.1103/PhysRevLett.99.136806
https://doi.org/10.1103/PhysRevB.88.045101
https://doi.org/10.1143/PTP.41.25
https://doi.org/10.1103/PhysRevB.43.3740
https://doi.org/10.1103/PhysRevB.43.3740
https://doi.org/10.1103/PhysRevB.68.035105
https://doi.org/10.1103/PhysRevB.68.035105
https://doi.org/10.1103/PhysRevLett.93.047002
https://doi.org/10.1103/PhysRevB.70.020502
https://doi.org/10.1103/PhysRevB.70.020502
https://doi.org/10.1103/PhysRevB.79.224521
https://doi.org/10.1103/PhysRevB.79.224521
https://doi.org/10.1103/PhysRevB.81.024509
https://doi.org/10.1103/PhysRevB.81.024509
https://doi.org/10.1103/PhysRevLett.108.227001
https://doi.org/10.1103/PhysRevB.87.075432
https://doi.org/10.1103/PhysRevB.87.075432
https://doi.org/10.1103/PhysRevB.91.045442
https://doi.org/10.1103/PhysRevB.92.235422
https://doi.org/10.1088/0034-4885/75/7/076501
https://doi.org/10.1070/1063-7869/44/10S/S29
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevB.86.184516
https://doi.org/10.1103/PhysRevB.86.184516
https://doi.org/10.1103/PhysRevLett.108.147003
https://doi.org/10.1103/PhysRevLett.108.147003
https://doi.org/10.1103/PhysRevLett.108.036803
https://doi.org/10.1103/PhysRevLett.108.036803
https://doi.org/10.1103/PhysRevLett.111.056402
https://doi.org/10.1103/PhysRevLett.111.056402
https://doi.org/10.1103/PhysRevLett.111.116402
https://doi.org/10.1103/PhysRevLett.111.116402
https://doi.org/10.1103/PhysRevB.88.220505
https://doi.org/10.1103/PhysRevB.88.220505
https://doi.org/10.1103/PhysRevB.88.214514
https://doi.org/10.1103/PhysRevB.88.214514
https://doi.org/10.1103/PhysRevLett.110.117002
https://doi.org/10.1103/PhysRevB.89.220504
https://doi.org/10.1103/PhysRevB.89.220504
https://doi.org/10.1103/PhysRevLett.112.126402
https://doi.org/10.1103/PhysRevLett.112.126402
https://doi.org/10.1103/PhysRevB.90.155447
https://doi.org/10.1103/PhysRevB.90.155447
https://doi.org/10.1103/PhysRevLett.115.237001
https://doi.org/10.1103/PhysRevLett.115.237001
https://doi.org/10.1103/PhysRevB.94.161110
https://doi.org/10.1103/PhysRevB.94.161110
https://doi.org/10.1103/PhysRevB.94.075439
https://doi.org/10.1103/PhysRevB.94.075439
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.046801
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.046801
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.046801
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.046801
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.046801
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.046801
http://link.aps.org/supplemental/10.1103/PhysRevLett.119.046801
https://doi.org/10.1103/PhysRevLett.56.2521
https://doi.org/10.1103/PhysRevLett.56.2521
https://doi.org/10.1103/PhysRevB.72.041301
https://doi.org/10.1103/PhysRevB.72.041301
https://doi.org/10.1103/PhysRevB.86.235143
https://doi.org/10.1103/PhysRevB.86.235143
https://doi.org/10.1088/0953-8984/26/3/035602
https://doi.org/10.1088/0953-8984/26/3/035602
https://doi.org/10.1103/PhysRevLett.97.076405
https://doi.org/10.1103/PhysRevB.75.155113
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRevLett.113.036401
https://doi.org/10.1103/PhysRevLett.113.036401
https://doi.org/10.1103/PhysRevB.91.081406
https://doi.org/10.1103/PhysRevLett.117.267001
https://doi.org/10.1103/PhysRevB.95.014505
https://doi.org/10.1103/PhysRevB.95.014505

