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Second-order topological insulators are crystalline insulators with a gapped bulk and gapped crystalline
boundaries, but with topologically protected gapless states at the intersection of two boundaries. Without
further spatial symmetries, five of the ten Altland-Zirnbauer symmetry classes allow for the existence of
such second-order topological insulators in two and three dimensions. We show that reflection symmetry
can be employed to systematically generate examples of second-order topological insulators and
superconductors, although the topologically protected states at corners (in two dimensions) or at crystal
edges (in three dimensions) continue to exist if reflection symmetry is broken. A three-dimensional second-
order topological insulator with broken time-reversal symmetry shows a Hall conductance quantized in
units of e2=h.
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Introduction.—After the discovery of topological
insulators and superconductors and their classification
for the ten Altland-Zirnbauer symmetry classes [1–3],
the concept of nontrivial topological band structures has
been extended to materials in which the crystal structure is
essential for the protection of topological phases [4]. This
includes weak topological insulators [5], which rely on the
discrete translation symmetry of the crystal lattice, and
topological crystalline insulators [6], for which other
crystal symmetries are invoked to protect a topological
phase. Whereas the original strong topological insulators
always have topologically protected boundary states, weak
topological insulators or topological crystalline insulators
have protected boundary states for selected surfaces or
edges only.
In a recent publication, Schindler et al. [7] proposed

another extension of the topological insulator (TI) family: a
higher-order topological insulator. Being crystalline insula-
tors, these have well-defined faces and well-defined edges
or corners at the intersections between the faces. An nth
order topological insulator has topologically protected
gapless states at the intersection of n crystal faces, but is
gapped otherwise [7]. For example, a second-order topo-
logical insulator in two dimensions (d ¼ 2) has zero-energy
states at corners, but a gapped bulk and no gapless edge
states. Earlier examples of higher-order topological insula-
tors and superconductors avant la lettre appeared in works
by Benalcazar et al. [8–10] (see also Refs. [11,12]), who
considered insulators and superconductors with protected
corner states in d ¼ 2 and d ¼ 3 [13]. Sitte et al. showed
that a three-dimensional topological insulator in a magnetic
field of generic direction also acquires the characteristics of
a second-order topological Chern insulator, with chiral
states moving along the sample edges [14]. (see also [15] in
the context of topological superfluid.)

Since a second-order TI has a topologically trivial
d-dimensional bulk, from a topological point of view its
boundaries are essentially stand-alone (d − 1)-dimensional
insulators, so that topologically protected states at corners
(for d ¼ 2) or edges (for d ¼ 3) arise naturally as “domain
walls” at the intersection of two boundaries if these are
in different topological classes [1,16,17]. Similarly, the
classification of nth order TIs derives from that of TIs
in dþ 1 − n dimensions, i.e., the same classification of
codimension n topological defects [18] (see Ref. [19] for a
scattering-approach based classification of nth order TIs).
Note that, unlike for strong topological insulators and
superconductors, which have protected states at all boun-
daries, nth-order topological insulators and superconduc-
tors have topologically protected states at the intersection
of n boundaries only if (some of) these boundaries are in
different topological classes; they do not necessarily have
protected states at all intersections of n boundaries.
Apart from their role in stabilizing well-defined crystal

faces, crystalline symmetries are not required for the
protection of higher-order TIs. However, crystal sym-
metries can be a key to ensure that a natural surface
termination—, i.e., a surface termination that respects the
crystal symmetries—automatically leads to a nontrivial
higher-order topological phase. For example, Benalcazar
et al. employed a combination of multiple reflection
symmetries [9], whereas Schindler et al. considered C4T
symmetry, the product of a π=2 rotation and time reversal,
as well as a model with reflection symmetry [7].
In this Letter, we show that a single mirror symmetry is

sufficient to construct models for second-order topological
insulators and superconductors in d ¼ 2 and d ¼ 3 for
all five Altland-Zirnbauer classes for which second-order
topological insulators are allowed. Reflection-symmetric
topological crystalline insulators were the first to be
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realized experimentally [17,35,36]. A complete classifica-
tion of reflection-symmetric topological insulators and
superconductors exists for all ten Altland-Zirnbauer classes
[20–22,32], and our construction makes use of this clas-
sification. Since the second-order topological phase does
not require the reflection symmetry for its existence—see
our general remarks above and our detailed discussion
below—, in practice an approximate reflection symmetry
may well be sufficient, which significantly enhances the
prospects of an experimental realization.
An (approximately) reflection-symmetric three-

dimensional second-order topological insulator with bro-
ken time-reversal symmetry has chiral edge states winding
around the sample if none of its crystal faces is reflection
symmetric; see Fig. 1(a). Despite being three-dimensional,
such crystals show a Hall effect with Hall conductance
quantized in units of e2=h, if current and voltage probes are
attached such that they touch a single sample edge or two
neighboring edges; see Fig. 1(b) [14]. Such a quantized
Hall effect for a three-dimensional crystal is different from
the “three-dimensional quantized Hall effect,” which
involves a topologically nontrivial bulk state and a quan-
tized Hall conductivity [37–41]. Similarly, a reflection- and
time-reversal-symmetric three-dimensional second-order
topological insulator has a one-dimensional helical edge
state winding around the crystal, corresponding to a
quantized spin Hall effect in three dimensions. The exper-
imental detection of such a quantized (spin) Hall effect
should be an unambiguous experimental signature of a
second-order TI.
Second-order topological insulators with reflecton

symmetry.—Since corners and edges follow the classifica-
tion of one-dimensional and two-dimensional topological
insulators and superconductors, second-order topological
insulators with protected zero-energy corner states or with
gapless edge states can exist for selected Altland-Zirnbauer
classes only; see Table I. We now provide a systematic
method to construct examples of second-order topological
insulators in all five nontrivial Altland-Zirnbauer classes,
using a single reflection symmetryR to ensure the presence
of topologically protected corner or edge states.
For each allowed Altland-Zirnbauer class, the construc-

tion requires (i) one or more pairs of crystal faces that are

mapped onto each other by reflection and (ii) a reflection-
symmetric topological crystalline phase that becomes
trivial if the reflection symmetry is broken. The nontrivial
topology of the corresponding Altland-Zirnbauer class in
d − 1 dimensions guarantees that the reflection-symmetry-
breaking mass term that gaps out any boundary states
existing in the presence of reflection symmetry is unique.
Since this mass term must be odd under reflection, the two
surfaces listed under (i) must be in different topological
classes, ensuring the existence of zero energy (gapless)
states at least two corners (edges). Table I lists the
reflection-symmetric phases that meet these criteria. We
emphasize again that the reflection symmetry is used to
construct the second-order topological insulator; it is itself
not essential for the existence of zero-energy corner states
(for d ¼ 2) or gapless edge states (for d ¼ 3). The corner
states (edge states) are robust against a reflection-symmetry
breaking perturbation, as long as the bulk and edge (sur-
face) gaps are not closed [42].
Below we discuss three examples in detail: A two-

dimensional second-order topological superconductor
with Majorana corner states (class D), a three-dimensional
second-order topological insulator with chiral edge states
(class A), and a three-dimensional second-order topological
insulator with helical edge states (class AII). In all cases we
take reflection to map the momentum component k1 into
−k1, leaving the other momentum components unchanged.
Second-order topological superconductor: Class D.—

For a superconductor with broken time-reversal and spin-
rotation symmetry, particle-hole symmetry P is the only
relevant symmetry operation. Without loss of generality we
may represent P by complex conjugation K by working in

FIG. 1. A generic reflection-symmetric second-order topologi-
cal insulator has chiral edge states winding around the crystal
(left). If current and voltage contacts cover at most two neighbor-
ing edges, such a sample shows edge transport and, consequently,
a quantized Hall effect in three dimensions (right).

TABLE I. The ten Altland-Zirnbauer classes are defined
according to the presence or absence of time-reversal (T ),
particle-hole (P), and chiral symmetry (C). A nonzero entry
indicates the square of the antiunitary symmetry operations T or
P. Two-dimensional and three-dimensional reflection-symmetric
topological crystalline phases that can be used for the construc-
tion of second-order topological insulator or superconductor
phases are listed in the right two columns, together with the
corresponding topological classification. The symbolsRσT ,RσP ,
RσC , and RσT ;σP refer to a reflection operator that squares to one
and commutes (σ ¼ þ) or anticommutes (σ ¼ −) with T , P, or C.

Cartan T P C d ¼ 2 d ¼ 3

A 0 0 0 0 � � � Z R
AIII 0 0 1 Z Rþ 0 � � �
AI 1 0 0 0 � � � 0 � � �
BDI 1 1 1 Z Rþþ 0 � � �
D 0 1 0 Z2 Rþ Z Rþ
DIII −1 1 1 Z2 Rþþ, R−− R−þ Z2 Rþþ, R−þ
AII −1 0 0 0 � � � Z2 Rþ, R−
CII −1 −1 1 Z Rþþ, R−− 0 � � �
C 0 −1 0 0 � � � Z Rþ, R−
CI 1 −1 1 0 � � � 0 � � �
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a Majorana basis and the reflection operation by the Pauli
matrix σ1 in an orbital subspace, so that the Hamiltonian
Hðk1; k2Þ satisfies

Hðk1; k2Þ ¼ −H�ð−k1;−k2Þ ¼ σ1Hð−k1; k2Þσ1: ð1Þ

Without reflection symmetry, class D in two dimensions
has aZ classification, where the integer topological number
counts the number of chiral Majorana edge modes [43,44].
Chiral Majorana modes are incompatible with reflection
symmetry. Instead, with reflection symmetry a Z2 topo-
logical structure remains [20,21,32], counting the parity of
the number of helical (i.e., counterpropagating) Majorana
edge modes. A minimal reflection-symmetric nontrivial
gapless edge state at a reflection-symmetric edge has edge
Hamiltonian Hedge ¼ vk1σ3, with v the velocity, which is a
trivial edge in the absence of R. Indeed, upon breaking
reflection symmetry, Hedge is gapped out by a unique mass
termmσ2. An explicit model realizing this scenario is given
by the four-band tight-binding Hamiltonian,

H ¼ ðM − cos k1 − cos k2Þτ2 þ τ1σ3 sin k1 þ τ3 sin k2

þ λτ2σ1; ð2Þ

with 0 < jMj < 2 and λ numerically small. The physical
implementaion would require stacking two px � ipy super-
conductors [45] with opposite chirality and coupling them
in such a way to gap out edge modes at nonreflection
symmetric edges.
Computing the spectrum of low-lying excitations for a

rectangular crystal with edges at 45° with respect to the
symmetry axis we find a zero-energy state well separated
from higher-lying excitations by a gap. The wave function
of the zero-energy states is localized near the two sample
corners where the reflection-related edges meet, as shown
in Figs. 2(a) and 2(b) for two different arrangements of
the reflection line with respect to the corner of the crystal.
The localized zero mode persists if the crystal is rotated,
such that there are no longer any reflection-related edges
[Fig. 2(c)].
Second-order topological insulator in three dimensions:

Class A.—In three dimensions the presence of reflection
symmetry allows for a topological crystalline phase with an

integer “mirror Chern number” enumerating gapless surface
states at reflection-symmetric surfaces [20,21,32,46]. Using
σ1 to represent the reflection operation, such surface states
have Hamiltonian Hsurface ¼ v1k1σ3 þ v2k2σ1. The unique
mass term gapping out such surface states is mσ2, which is
odd under reflection. Explicitly, one may consider the four-
band Hamiltonian

H ¼ ðM − cos k1 − cos k2 − cos k3Þτ2σ1
þ σ3 sin k1 þ τ1σ1 sin k2 þ τ3σ1 sin k3 þ Bτ2; ð3Þ

where σ and τ are Pauli matrices in the space spanned by
the unit-cell orbitals, two of which are even (odd) under
reflection. For 1 < M < 3 and B numerically small this
Hamiltonian describes a three-dimensional topologial insu-
lator with a reflection-symmetric time-reversal symmetry-
breaking term. To see how the bulk Bτ2 term gives rise to
the σ2 term at the nonreflection symmetric facet, we first note
that the details of the boundary do not have influence of
the choice of theB term. Thus to obtain facet Hamiltonian for
oneof theyz facets it is sufficient to use low-energy expansion
of theHamiltonian (3) andmodel the boundary by themassM
domain wall along the x direction. This way we immediately
conclude that the projector onto the yz-facet Hamiltonian is
given by τ2σ2 ¼ �1; therefore, the term Bτ2 acts like ∼σ2
within the surface subspace (the proportionality factor does
depend on the interface details).
Figure 3(b) shows the band structure of a rectangular

crystal with surfaces in the (110) and (11̄0) direction, and

(a) (b) (c)

FIG. 2. Weight of the zero-energy wave function for the
Hamiltonian (2) with M ¼ 0.9 and λ ¼ −0.25 for three orienta-
tions of the crystal lattice. The reflection line is shown dashed.

FIG. 3. (a) The crystal shape and the spatial profile of one of the
in-gap states. Left: when the two surfaces meet at the reflection
plane under a sharp angle, the in-gap state is well localized; right:
one surface is perpendicular to the reflection plane, the in-gap
state becomes completely delocalized on that surface. (b) Band
structure of a rectangular crystal with periodic boundary con-
ditions in the k3 direction, for the model (3) with parameters
M ¼ 2, B ¼ 0.2. (c) Weight of the zero-energy chiral edge states
for a finite lattice with generic orientation with respect to the
reflection plane.
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periodic boundary conditions in the k3 direction. The two
gapless chiral modes running in the positive and negative k3
direction are located at the intersection of the (110) and
(11̄0) surfaces related by R; see Fig. 3(a). We verified that
the chiral edge states persist if the crystal orientation is
rotated by an angle less than 45° and migrates to the other
pair of edges for larger rotation angles. Figure 3(c) shows
the support of a chiral edge state for the above model
Hamiltonian for a cubic sample randomly oriented with
respect to the reflection plane (so that none of the facets are
reflection symmetric).
Second-order topological insulator in three dimensions:

class AII.—We represent the time-reversal and reflection
operations by σ2K and σ1, respectively, so thatHðk1; k2; k3Þ
satisfies

Hðk1; k2; k3Þ ¼ σ2Hð−k1;−k2;−k3Þ�σ2
¼ σ1Hð−k1; k2; k3Þσ1: ð4Þ

Hamiltonians with this symmetry have a Z topological
classification [20,21,32,46] which enumerates the number
of surface states with Dirac-like dispersion Hsurface ¼
v1k1σ3 þ v2k2σ1 at reflection-symmetric surfaces. The
unique R-breaking mass term that gaps out such a pair of
surface states is mσ2τ2, where τ2 is an additional Pauli
matrix. (A single surface Dirac cone is protected by time-
reversal symmetry.) Since this mass term is odd under
reflection, we expect an integer number of one-dimensional
helical states at the intersection of two surfaces related byR.
An even number of helical states is unstable, however, to a
local perturbation at the edge and can be gapped out without
closing the gaps in the sample bulk or at the surfaces,
consistent with the Z2 classification in Table I.
(At this point our classification differs from that of
Ref. [7], which does not allow for reflection-symmetry
breaking perturbations at the crystal edge, thus arriving at a
Z [22] classification.) As a specific example, we consider
the eight-band Hamiltonian

H ¼ ½ðM − cos k1 − cos k2 − cos k3Þτ2σ1
þ σ3 sin k1 þ τ1σ1 sin k2 þ τ3σ1 sin k3�ρ0 þ Bτ2ρ2;

ð5Þ

where ρ0;1;2 are an additional set of Pauli matrices,
1 < M < 3, and B numerically small. One-dimensional
band structure and weights for zero-energy states are shown
in Fig. 4 for the same geometry as in the previous example.
Conclusion.—Although second-order topological insula-

tors and superconductors can exist without a topological
crystalline bulk phase, the existence of (approximate)
crystalline symmetries can help in the construction of
models or in the identification of materials that realize
these phases. For reflection-symmetric topological crystal-
line insulators, the published literature has focused on
reflection-symmetric surfaces, because these surfaces har-
bor topologically protected surface states [4,17,35,36,46].
We have shown that there is a good reason to look at
crystals with arbitrarily oriented surfaces, because such
crystals are good candidates for second-order TIs. Whereas
the surface states of reflection-symmetric topological
crystalline insulators are vulnerable to even weak pertur-
bations that break the reflection symmetry, the associated
edge states are robust and persist as long as surface and
bulk gaps remain open. Combined with the unique prospect
of isolated Majorana bound states (for two-dimensional
second-order topological superconductors) or one-
dimensional chiral modes and a quantized Hall effect
(for three-dimensional second-order TIs), higher-order
TIs are a promising addition to the topological materials
family. Very recently, some early experimental realizations
of second-order topological insulators appeared [47–50],
where Ref. [47] uses the bismuth nanowire which was
previously shown to support edge states [51].
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