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Chains of magnetic adatoms on superconductors have been discussed as promising systems for realizing
Majorana end states. Here, we show that dilute Yu-Shiba-Rusinov (YSR) chains are also a versatile
platform for quantum magnetism and correlated electron dynamics, with widely adjustable spin values and
couplings. Focusing on subgap excitations, we derive an extended t − J model for dilute quantum YSR
chains and use it to study the phase diagram as well as tunneling spectra. We explore the implications of
quantum magnetism for the formation of a topological superconducting phase, contrasting it to existing
models assuming classical spin textures.
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Introduction.—Dilute chains of magnetic adatoms on
superconductors have been proposed as a possible setting
for topological superconductivity [1–6], complementing
the frequently studied densely packed chains [7–12]. While
the latter are dominated by direct hybridization of adatom d
orbitals [13,14], the former couple adatoms only indirectly
via the substrate provided that the adatoms are spaced close
enough that their Yu-Shiba-Rusinov (YSR) states [15–18]
overlap. Theoretical models assume that the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction, possibly aided
by magnetic anisotropy, induce ordered magnetic textures,
which are then described as chains of classical spins
[1,2,19–26].
Contrasting with classical spin models, observations of

Kondo resonances and discrete spin excitations imply that
individual adatom spins behave quantum mechanically,
both on normal and on superconducting substrates [27–30].
Here, we show that the quantum nature of adatom spins
makes dilute chains an intriguing experimental platform
beyond Majorana physics, displaying rich correlated-
electron physics as reflected in qualitatively different phase
diagrams and excitation spectra. This is a consequence of
quantum phase transitions [31,32], which change the
effective spin due to screening by bound quasiparticles
[30,33,34], a phenomenon specific to quantum spins and
absent for classical spins.
We find that signatures of the quantum spin nature are

directly observable in local excitation spectra of adatom
chains, as probed, for instance, by scanning tunneling
spectroscopy. Moreover, the topological superconducting
phase exhibiting Majorana states can be dramatically
reduced in parameter space compared to classical models.
The effective spin as well as magnitude and sign of the
RKKY coupling between impurity spins can, in principle,
be adjusted. In real materials, magnetic anisotropy,

Dzyaloshinskii-Moriya (DM) interactions, and spin-orbit
coupled substrate electrons further enrich the physics of
these quantum spin chains.
The correlated-electron physics of dilute adatom chains

is due to correlated spin-fermion dynamics, which we find
to be described by an extension of the t − J model [35],
admitting topological superconductivity for ferromagnetic
and spin-charge separation for antiferromagnetic RKKY
coupling. For a theoretical treatment of quantum chains, we
project out the quasiparticle continuum of the supercon-
ductor in the limit of a large pairing gap and retain only the
subgap YSR excitations induced by the magnetic adatoms.
The resulting model includes a single superconducting site
per adatom (and conduction-electron channel), so that
Kondo renormalizations must be accounted for separately.
Despite its simplicity, the model qualitatively reproduces
[32] phase diagrams and excitation spectra of individual
higher-spin impurities subject to single-ion anisotropy [36]
and spin-1

2
dimers [37,38] obtained from the numerical

renormalization group.
Model.—We therefore extend this approach to quantum

chains of spin-S adatoms. For a single YSR excitation per
adatom, the model takes the form

H ¼
X

j

fΔðc†j↑c†j↓ þ H:c:Þ þ c†jσ½Vδσσ0 þ Sj · K · sσσ0 �cjσ0

− t½c†jσcjþ1;σ þ H:c:� þ Sj · J · Sjþ1 þDðSzjÞ2g; ð1Þ

where j enumerates the adatoms along the chain and sums
over repeated spin indices σ, σ0 are implied. At each site j,
the conduction electrons (creation operator c†jσ, spin-1

2

matrices s) couple to the local impurity spin Sj via
antiferromagnetic exchange K and potential scattering V.
The hopping t between adjacent superconducting sites
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(pairing strength Δ) models the hybridization of YSR
states. The quasiparticle continuum of the substrate medi-
ates an interaction J between nearest-neighbor adatom
spins, incorporating both the RKKY (symmetric part)
and the DM interaction (antisymmetric part) [38]. We also
include single-ion anisotropy D relevant for S ≥ 1. In
general, magnetic adatoms induce YSR states in multiple
conduction-electron channels. This could be included in
Eq. (1) by coupling each impurity spin to multiple super-
conducting sites [32].
Spin-1

2
impurities.—We exemplify the physics of dilute

quantum YSR chains by spin-1
2
adatoms. The individual

impurities undergo a quantum phase transition with
increasing exchange coupling K [18,31,32]. At weak
coupling, the conduction electrons are fully paired (even
fermion parity), leaving an unscreened (free) impurity spin
and a doubly degenerate ground state. Within the single-site
model, the doublet ground state (energy EBCS) takes the
form j�i ¼ jSz ¼ ⇑=⇓i ⊗ jBCSi, where jBCSi ¼ ðuþ
vc†↓c

†
↑Þjvaci is the paired BCS state. At strong coupling, the

impurity forms a singlet with the conduction electrons by
binding a quasiparticle (odd fermion parity). The resulting
screened-spin ground state (energy E0) is nondegenerate
and takes the form j0i ¼ ð1= ffiffiffi

2
p Þðj⇑↓i − j⇓ ↑iÞ. The

transition between these ground states occurs when the
energy of the YSR excitation EYSR ¼ E0 − EBCS changes
sign (see Supplemental Material [39] for details, including
explicit expressions for u, v, and EYSR).
Whereas, for quantum spins, the quantum phase tran-

sition is associated with screening of the adatom spin due to
the singlet formation, screening is absent in classical spin
models [39]. This difference has important ramifications in
dilute chains. When coupling adatoms in the unscreened
state (EYSR large and positive) into a dilute chain, they form
a quantum spin-1=2 chain subject to RKKY interactions.
The YSR excitation of one of the adatoms into the screened
state, e.g., by tunneling from a STM tip, quenches its spin
and breaks the adjacent RKKY bonds. The quenched spin
is mobile along the chain due to the hybridization of YSR
states and propagates in a correlated spin background. In
contrast, there is only a single low-energy state when
coupling impurities in the screened state (EYSR large and
negative). The YSR excitation of an adatom into the free-
spin state introduces one free spin, which propagates in a
(largely) spin-free background. For intermediate values of
jEYSRj, the impurity spins may neither be all free (no bound
quasiparticles) nor all screened (N bound quasiparticles).
However, the adatom chain gains RKKYenergy only when
coupling unscreened adatoms, so that RKKY coupling
favors the fully unscreened phase. This causes dramatic
differences between the phase diagrams of chains of
classical and quantum spins.
Extended t − J model.—We explore the phase diagram

by exact diagonalization complemented by analytical

considerations. We eliminate the above-gap states (which
are unphysical in our model) and retain only the fully
paired states j�i and the singlet j0i of each site by
considering Δ; K; V ≫ EYSR; t; J. In this limit, Eq. (1)
projects to an extended t − J model. Regarding the local
singlets j0i as the vacuum and introducing a spinful
fermion dσ for each site through j�i ¼ d†�j0i and
d�j0i ¼ 0, we find [40]

HtJ ¼ P
X

j

f−EYSRnj þ Sj · J · Sjþ1 − ½t̃d†j;σdjþ1;σ

þ Δ̃ðd†j;↑d†jþ1;↓ − d†j;↓d
†
jþ1;↑Þ þ H:c:�gP: ð2Þ

As in the t − J model, the projection to the physical
subspace that excludes doubly occupied sites is imple-
mented by the projector P. Here, nj ¼

P
σ nj;σ ¼P

σ d
†
j;σdj;σ , the spin operators Sj ¼

P
σσ0 d

†
j;σsσσ0dj;σ0 are

now associated with the d fermions, and the effective
hopping and pairing amplitudes are t̃ ¼ tV=ð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ V2

p
Þ

and Δ̃ ¼ tΔ=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ V2

p
Þ [39]. These originate from

conduction electrons hopping between adjacent sites
(amplitude t) as illustrated in Fig. 1(a). Hopping between
a screened and a free-spin site effectively moves the free
spin (amplitude t̃) and thus the d fermion. Hopping
between two free-spin sites screens them (or vice versa),
annihilating (creating) a d-fermion pair and inducing
pairing (amplitude Δ̃). Finally, EYSR acts as a chemical
potential for the d fermions. We note that the Hamiltonian
in Eq. (2) conserves fermion parity and total spin (for
isotropic J), but not fermion number.
The phase diagram as a function of EYSR and the

(isotropic) RKKY interaction J can be inferred from the
expectation value of the number of holes (sites with
screened impurity spin) nholes ¼ N −

P
j nj, as well as

the total spin Stot in the ground state. Figure 1(b) shows
corresponding exact-diagonalization results for a chain of
N ¼ 10 impurity spins with periodic boundary conditions.
For sufficiently large EYSR > 0, the chain has no holes and
realizes a spin-1

2
Heisenberg chain. As EYSR is reduced, the

number of holes increases and eventually becomes equal to
N. In this state, all impurity spins are screened and the
ground state has Stot ¼ 0.
Figure 1(c) shows a corresponding phase diagram for a

chain of classical spins for contrast (see Supplemental
Material [39] for more details). The classical phase diagram
reflects filling of a YSR band. The YSR bands emerge from
the positive- and negative-energy YSR states (band ener-
gies �EYSR − ðΛ=2Þ< ϵ<�EYSRþðΛ=2Þ) and overlap
when −ðΛ=2Þ < EYSR < ðΛ=2Þ. As EYSR decreases from
ðΛ=2Þ to −ðΛ=2Þ, the number of holes nholes increases
continuously from 0 to N. Here, the bandwidth Λ depends
only on the sign, but not on the magnitude of the RKKY
coupling.
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This contrasts starkly with the strong J dependence of
the phase boundaries for quantum spins. For quantum
spins, the RKKY energy contributes only for unscreened
spins, so that the Heisenberg phases in which all spins are
unscreened are stabilized by increasing jJj. The physics is
reminiscent of the classical picture only near J ¼ 0 [41],
where nholes varies from 0 to N for jEYSRj≲ 2t̃ [green
region in Fig. 1(b)]. On the antiferromagnetic side (J > 0),
the width of the shifted transition region [green in Fig. 1(b)]
narrows, saturating for larger J. While increasing antifer-
romagnetic correlations suppress the effect of hopping t̃,
the spin-singlet pairing Δ̃ introduces an uncertainty in
nholes, which eventually governs the width of the transition
region. At the same time, the total spin of the ground state is
Stot ¼ 0, regardless of EYSR. As EYSR is reduced, the
ground state changes from a total singlet formed by
antiferromagnetically coupled impurity spins to a chain
of local singlets between impurity spins and conduction
electrons.
On the ferromagnetic side (J < 0), the transition region

rapidly narrows as jJj increases, ultimately giving way to a
direct phase boundary between the Heisenberg spin chain
and fully screened state. This transition is largely insensi-
tive to the spin-singlet pairing Δ̃ due to the strong spin
polarization. Reducing EYSR at smaller jJj eventually
introduces holes into the Heisenberg ferromagnet, and
the system becomes a metallic ferromagnet. A stepwise
increase in the number of holes prompts a corresponding
reduction of the total spin Stot from its maximum of N=2
[inset in Fig. 1(b)]. Although this is similar to the classical
scenario, Stot jumps discontinuously to zero before the

number of holes reaches N. Here, the metallic ferromagnet
becomes energetically less favorable than a superconduct-
ing phase favored by the spin-singlet pairing Δ̃. This singlet
superconductor has Stot ¼ 0, as do the Heisenberg anti-
ferromagnet and the local-singlet phase at large and
negative EYSR. The fine structure of the phase boundaries
in Fig. 1(b) reflects finite-size effects related to the infinite-
U Hubbard model, see [39,42].
Pronounced differences from the classical scenario

also appear in the site-resolved single-particle spectral
function, which directly reveal strong correlations and
are accessible by scanning tunneling microscopy [43].
Corresponding exact-diagonalization data for a chain of
N ¼ 10 impurity spins with open boundary conditions are
shown in Figs. 1(d)–1(g). (Corresponding results for
classical spins are shown in the Supplemental Material
[39].) Probing the Heisenberg spin chain (sufficiently large
EYSR > 0), the YSR excitation of one of the impurities
screens its spin and induces a mobile hole. In the ferro-
magnetic phase [Fig. 1(d)], the excited hole perturbs the
spin background only weakly and to a good approxi-
mation, its motion is described by a tight-binding chain.
Correspondingly, in the lower (upper) half of the hole band,
i.e., 2≲ E=t≲ 3 (3≲ E=t≲ 4), the number of nodes in
the spectral function increases (decreases) with energy.
Moreover, there is enhanced (reduced) intensity at the ends,
since a hole on a boundary site breaks only one rather than
two ferromagnetic bonds, inducing a lower site energy. (We
note that, at finite energy resolution and a small excitation
gap, this effect may lead to similar experimental phenom-
enology as a Majorana.) In the antiferromagnetic phase

FIG. 1. (a) Processes underlying effective hopping (t̃) and pairing (Δ̃) of extended t − J model. (b)–(g) Exact-diagonalization results
for a chain of N ¼ 10 impurity spins (V ¼ 2Δ; t̃ ¼ 2Δ̃). (b) Phase diagram for a (periodic) chain of quantum spins (with isotropic K) as
a function of YSR energy EYSR and isotropic RKKY interaction J, based on the number of holes (screened spins) nholes (color scale) and
total spin Stot. White lines delineate borders of maximal (minimal) spin phases, which are indicated by horizontal (tilted) mesh. Regions
without mesh have intermediate Stot. (c) Corresponding phase diagram for a classical chain (see Supplemental Material [39] for details).
(d)–(g) Site-resolved single-particle spectral functions of a quantum chain with open boundary conditions for (d) ðEYSR; JÞ ¼ ð1.5;−3Þ,
(e) (1.5,2), (f) ð−1.5; 0Þ, (g) ð0;−1.25Þ. Panel numbers in (d)–(g) refer to numbered diamonds in (b).
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[Fig. 1(e)], in contrast, the spectral weight spreads over
many more many-body states due to the spin-charge
separation in the antiferromagnetic t − J model.
For a chain of fully screened impurity spins [Fig. 1(f)],

the YSR excitation unscreens one of the impurity spins. To
lowest order, the spectral function can again be understood
in terms of a tight-binding band describing the mobile spin,
now with uniform site energies throughout the chain.
However, unlike in the ferromagnetic phase, the number
of spins is no longer a good quantum number due to the
effective pairing. The associated redistribution of spectral
weight to states with additional spins leads to a reduction in
intensity of the single-particle-like spectral peaks with
increasing excitation energy.
The metallic ferromagnet has strong similarities with the

regime of overlapping YSR bands for classical ferromag-
netic textures in the absence of spin-orbit coupling. In
particular, it has a gapless excitation spectrum [Fig. 1(g)].
The spectral function exhibits several nodes even at the
lowest energy, as holes are already present in the ground
state, and becomes dense at higher energies due to the
coupling to the particle-hole continuum.
The metallic ferromagnet can become a topological

superconductor for spin-orbit coupled superconductors.
Spin-orbit coupling makes the YSR hybridization spin
dependent and breaks spin-rotation symmetry. Specifi-
cally, we introduce spin-dependent hopping −t

P
j c

†
jð1þ

iασyÞcjþ1 þ H:c: and anisotropic (Ising-like) RKKY inter-
actions Jz

P
j S

z
jS

z
jþ1 polarized perpendicular to the spin-

orbit field. Without double-occupation constraint, Ref. [44]
studied this model as a paradigm for the interplay of
topological superconductivity and interactions.
Corresponding numerical results are shown in Fig. 2 for

a chain of N ¼ 12 sites with open boundary conditions.
Without spin-orbit coupling, the phase diagram (see
Supplemental Material [39]) is qualitatively similar to
Fig. 1(b) for Heisenberg interactions. Spin-orbit coupling
only weakly affects the ferromagnetic insulator at Jz=t ≲
−1.8 or the singlet superconductor at Jz=t≳ −0.7, but the
spectrum of the metallic ferromagnet (−1.8≲ Jz=t ≲ −0.7)
develops a p-wave pairing gap [Fig. 2(a)]. The associated
formation of Majorana end states leads to four (up to finite-
size corrections) degenerate ground states, a pair of even-
and odd- fermion-parity states for each of the two symmetry-
broken spin configurations. In line with a topological
degeneracy, even- and odd-parity ground states are indis-
tinguishable by the local observables nholes and the total spin
projection Sztot [Fig. 2(b)]. For sufficiently large jJj, the p-
wave gap [Fig. 2(a)] as well as nholes and S

z
tot [Fig. 2(b)] can

be well reproduced analytically, using a variational trial state
for the metallic ferromagnet and including the spin-orbit
coupling into the extended t − J model (see [39] for
theoretical details). At smaller jJj, the analytical descrip-
tion breaks down as it neglects the effects of the singlet
pairing Δ̃. Tunneling spectra clearly reveal the formation of

zero-energy Majorana end states protected by a gap
[Fig. 2(c)].
Discussion.—Dilute YSR chains constitute a versatile

platform for quantum magnetism. Even for spin-1
2
adatoms,

we uncover a rich phase diagram described by an extended
t − J model. Unlike the standard t − J model, there are no
restrictions on the sign of J nor on its strength relative to t.
Tunneling spectra reflect its local spectral function, when
accounting for additional pairing correlations.
Spin-1

2
impurities are directly realized for magnetic

adatoms with one unpaired electron in the valence shell
(e.g., cerium). Importantly, however, the relevant spin is not
identical to the bare spin S0 of the magnetic adatom on the
superconducting substrate. Adatoms can bind a quasipar-
ticle in any of the 2S0 conduction-electron channels [32].
The effective spin is thus equal to S0 −Q=2, where Q
denotes the number of bound quasiparticles, and the
extended t − J model can apply to higher-spin impurities,
if all but one channel robustly bind a quasiparticle.
More generally, our results exemplify the importance of

treating dilute YSR chains as quantum spin chains. Their
effective spin depends on the detailed coupling between

FIG. 2. Exact-diagonalization results for N ¼ 12 chain with
Ising RKKY interaction and spin-orbit coupling. (a) Ten lowest-
energy eigenstates each vs RKKY coupling Jz in even- and odd-
parity sectors at EYSR ¼ 0, cutting through the metallic ferro-
magnet for zero spin-orbit coupling (for phase diagram, see
Supplemental Material [39]). For −1.8≲ Jz=t ≲ −0.7, the four
lowest states (even, blue; odd, orange) are separated by a
topological gap from a continuum of excited states. Black
dash-dotted line, approximate analytical gap [39]. (b) Corre-
sponding nholes (green, diamonds) and total magnetization jSztotj
(pink, stars). Dash-dotted lines, analytical results based on trial
state. Fillings of symbols color coded as in (a). (c) Tunneling
spectra at Jz ¼ −1.25t revealing zero-energy Majorana end
states. (Parameters: V ¼ 2Δ, spin-orbit coupling α ¼ 0.25; a
minute Zeeman field Bz ¼ 10−3t singles out spin-polarized states
in numerics and induces small intraparity splittings in ground-
state manifold.)
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adatom and substrate and can conceivably be tuned even for
a given system, for instance, on gate-tunable superconduc-
tors [33] and on moiré [30] or charge-density-modulated
[45,46] structures. The phenomenology of dilute YSR
chains with higher spins is further refined by single-ion
anisotropy as well as both intra- and interchannel YSR
hybridization.
Unraveling the phenomenology of quantum YSR chains

therefore promises important insights into the physics of
magnetic adatoms on superconductors. While hybridizing
subgap states form YSR bands in models with classical spin
textures, we find that subgap spectra exhibit a plethora of
qualitatively distinct behaviors depending on the magnetic
phase. The quantum magnetism must also inform the
search for topological superconductivity and Majorana
zero modes in dilute YSR chains. In particular, we find
that the parent metallic ferromagnet is limited in scope by
competing insulating-ferromagnet and singlet-supercon-
ductor phases.
Finally, the physics of dilute YSR chains is not limited to

magnetic adatoms, but can also be realized in chains of
Coulomb-blockaded quantum dots coupled to a super-
conductor. Previous theoretical work focused on classical
spins [47–49], but recent experiments on double quantum
dots construct the elementary unit of quantum YSR chains
[50,51]. When the quantum dots are tuned to odd Coulomb
blockade islands, they realize S ¼ 1

2
spins, which can be

coupled via a superconducting bulk. This provides a
promising complement to recent work [52] on quantum
dot arrays as quantum simulators of quantum magnetism.

We gratefully acknowledge funding through QuantERA
grant TOPOQUANT and Deutsche Forschungsgemein-
schaft through CRC 183 (project C03) as well as CRC 910.

[1] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and A.
Yazdani, Phys. Rev. B 88, 020407(R) (2013).

[2] F. Pientka, L. I. Glazman, and F. von Oppen, Phys. Rev. B
88, 155420 (2013).

[3] D.-J. Choi, N. Lorente, J. Wiebe, K. von Bergmann, A. F.
Otte, and A. J. Heinrich, Rev. Mod. Phys. 91, 041001
(2019).

[4] R. Pawlak, S. Hoffman, J. Klinovaja, D. Loss, and E. Meyer,
Prog. Part. Nucl. Phys. 107, 1 (2019).

[5] K. Flensberg, F. von Oppen, and A. Stern, Nat. Rev. Mater.
6, 944 (2021).

[6] B. Jäck, Y. Xie, and A. Yazdani, arXiv:2103.13210.
[7] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, J. Seo,

A. H. MacDonald, B. A. Bernevig, and A. Yazdani, Science
346, 602 (2014).

[8] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. Heinrich,
and K. J. Franke, Phys. Rev. Lett. 115, 197204 (2015).

[9] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, S. Kawai, T.
Glatzel, D. Loss, and E. Meyer, npj Quantum Inf. 2, 16035
(2016).

[10] B. E. Feldman, M. T. Randeria, J. Li, S. Jeon, Y. Xie, Z.
Wang, I. K. Drozdov, B. Andrei Bernevig, and A. Yazdani,
Nat. Phys. 13, 286 (2017).

[11] S. Jeon, Y. Xie, J. Li, Z. Wang, B. A. Bernevig, and A.
Yazdani, Science 358, 772 (2017).

[12] H. Kim, A. Palacio-Morales, T. Posske, L. Rózsa, K.
Palotás, L. Szunyogh, M. Thorwart, and R. Wiesendanger,
Sci. Adv. 4, eaar5251 (2018).

[13] J. Li, H. Chen, I. K. Drozdov, A. Yazdani, B. A. Bernevig,
and A. H. Macdonald, Phys. Rev. B 90, 235433 (2014).

[14] Y. Peng, F. Pientka, L. I. Glazman, and F. von Oppen, Phys.
Rev. Lett. 114, 106801 (2015).

[15] L. Yu, Acta Phys. Sin. 21, 75 (1965).
[16] H. Shiba, Prog. Theor. Phys. 40, 435 (1968).
[17] A. I. Rusinov, JETP Lett. 9, 85 (1969).
[18] A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. Phys.

78, 373 (2006).
[19] K. Pöyhönen, A. Westström, J. Röntynen, and T. Ojanen,

Phys. Rev. B 89, 115109 (2014).
[20] A. Heimes, P. Kotetes, and G. Schön, Phys. Rev. B 90,

060507(R) (2014).
[21] Y. Kim, M. Cheng, B. Bauer, R. M. Lutchyn, and S. Das

Sarma, Phys. Rev. B 90, 060401(R) (2014).
[22] P. M. R. Brydon, S. Das Sarma, H.-Y. Hui, and J. D. Sau,

Phys. Rev. B 91, 064505 (2015).
[23] S. Hoffman, J. Klinovaja, T. Meng, and D. Loss, Phys. Rev.

B 92, 125422 (2015).
[24] M. Schecter, K. Flensberg, M. H. Christensen, B. M.

Andersen, and J. Paaske, Phys. Rev. B 93, 140503(R)
(2016).

[25] V. Kaladzhyan, C. Bena, and P. Simon, Phys. Rev. B 93,
214514 (2016).

[26] S. Körber, B. Trauzettel, and O. Kashuba, Phys. Rev. B 97,
184503 (2018).

[27] V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and
N. S. Wingreen, Science 280, 567 (1998).

[28] J. Li, W.-D. Schneider, R. Berndt, and B. Delley, Phys. Rev.
Lett. 80, 2893 (1998).

[29] C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P.
Lutz, B. A. Jones, and A. J. Heinrich, Science 317, 1199
(2007).

[30] K. J. Franke, G. Schulze, and J. I. Pascual, Science 332, 940
(2011).

[31] A. Sakurai, Prog. Theor. Phys. 44, 1472 (1970).
[32] F. von Oppen and K. J. Franke, Phys. Rev. B 103, 205424

(2021).
[33] E. J. Lee, X. Jiang, M. Houzet, R. Aguado, C. M. Lieber,

and S. De Franceschi, Nat. Nanotechnol. 9, 79 (2014).
[34] L. Farinacci, G. Ahmadi, G. Reecht, M. Ruby, N. Bogdanoff,

O. Peters, B.W. Heinrich, F. von Oppen, and K. J. Franke,
Phys. Rev. Lett. 121, 196803 (2018).

[35] P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78,
17 (2006).

[36] R. Zitko, O. Bodensiek, and T. Pruschke, Phys. Rev. B 83,
054512 (2011).

[37] R. Zitko, M. Lee, R. López, R. Aguado, and M.-S. Choi,
Phys. Rev. Lett. 105, 116803 (2010).

[38] N. Y. Yao, C. P. Moca, I. Weymann, J. D. Sau, M. D. Lukin,
E. A. Demler, and G. Zaránd, Phys. Rev. B 90, 241108(R)
(2014).

PHYSICAL REVIEW LETTERS 128, 036801 (2022)

036801-5

https://doi.org/10.1103/PhysRevB.88.020407
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/PhysRevB.88.155420
https://doi.org/10.1103/RevModPhys.91.041001
https://doi.org/10.1103/RevModPhys.91.041001
https://doi.org/10.1016/j.ppnp.2019.04.004
https://doi.org/10.1038/s41578-021-00336-6
https://doi.org/10.1038/s41578-021-00336-6
https://arXiv.org/abs/2103.13210
https://doi.org/10.1126/science.1259327
https://doi.org/10.1126/science.1259327
https://doi.org/10.1103/PhysRevLett.115.197204
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/npjqi.2016.35
https://doi.org/10.1038/nphys3947
https://doi.org/10.1126/science.aan3670
https://doi.org/10.1126/sciadv.aar5251
https://doi.org/10.1103/PhysRevB.90.235433
https://doi.org/10.1103/PhysRevLett.114.106801
https://doi.org/10.1103/PhysRevLett.114.106801
https://doi.org/10.7498/aps.21.75
https://doi.org/10.1143/PTP.40.435
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1103/RevModPhys.78.373
https://doi.org/10.1103/PhysRevB.89.115109
https://doi.org/10.1103/PhysRevB.90.060507
https://doi.org/10.1103/PhysRevB.90.060507
https://doi.org/10.1103/PhysRevB.90.060401
https://doi.org/10.1103/PhysRevB.91.064505
https://doi.org/10.1103/PhysRevB.92.125422
https://doi.org/10.1103/PhysRevB.92.125422
https://doi.org/10.1103/PhysRevB.93.140503
https://doi.org/10.1103/PhysRevB.93.140503
https://doi.org/10.1103/PhysRevB.93.214514
https://doi.org/10.1103/PhysRevB.93.214514
https://doi.org/10.1103/PhysRevB.97.184503
https://doi.org/10.1103/PhysRevB.97.184503
https://doi.org/10.1126/science.280.5363.567
https://doi.org/10.1103/PhysRevLett.80.2893
https://doi.org/10.1103/PhysRevLett.80.2893
https://doi.org/10.1126/science.1146110
https://doi.org/10.1126/science.1146110
https://doi.org/10.1126/science.1202204
https://doi.org/10.1126/science.1202204
https://doi.org/10.1143/PTP.44.1472
https://doi.org/10.1103/PhysRevB.103.205424
https://doi.org/10.1103/PhysRevB.103.205424
https://doi.org/10.1038/nnano.2013.267
https://doi.org/10.1103/PhysRevLett.121.196803
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/RevModPhys.78.17
https://doi.org/10.1103/PhysRevB.83.054512
https://doi.org/10.1103/PhysRevB.83.054512
https://doi.org/10.1103/PhysRevLett.105.116803
https://doi.org/10.1103/PhysRevB.90.241108
https://doi.org/10.1103/PhysRevB.90.241108


[39] See Supplementary Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.128.036801 for addi-
tional details of the analytical and numerical calculations.

[40] A detailed discussion of the mapping is included in [39] to
cover subtleties for periodic boundary conditions.

[41] The small isolated regions near J ¼ 0 are due to finite-size
effects, which can be understood by noting that, for J ¼ 0,
Eq. (2) is an infinite-U Hubbard chain [39,42].

[42] B. Doucot and X. G. Wen, Phys. Rev. B 40, 2719
(1989).

[43] We compute the physical spectral function of the Hamil-
tonian in Eq. (1), which incorporates anomalous correlators
of the extended t − J model, see [39] for details.

[44] E. M. Stoudenmire, J. Alicea, O. A. Starykh, and M. P. A.
Fisher, Phys. Rev. B 84, 014503 (2011).

[45] E. Liebhaber, S. Acero González, R. Baba, G. Reecht, B. W.
Heinrich, S. Rohlf, K. Rossnagel, F. von Oppen, and K. J.
Franke, Nano Lett. 20, 339 (2020).

[46] E. Liebhaber, L. Rütten, G. Reecht, J. Steiner, S. Rohlf, K.
Rossnagel, F. von Oppen, and K. Franke, arXiv:2107
.06361.

[47] T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C.W. J.
Beenakker, Phys. Rev. B 84, 195442 (2011).

[48] J. D. Sau and S. D. Sarma, Nat. Commun. 3, 964 (2012).
[49] I. C. Fulga, A. Haim, A. R. Akhmerov, and Y. Oreg, New J.

Phys. 15, 045020 (2013).
[50] K. Grove-Rasmussen, G. Steffensen, A. Jellinggaard, M. H.

Madsen, R. Zitko, J. Paaske, and J. Nygard, Nat. Commun.
9 (2018).

[51] J. C. Estrada Saldaña, A. Vekris, R. Žitko, G. Steffensen, P.
Krogstrup, J. Paaske, K. Grove-Rasmussen, and J. Nygård,
Phys. Rev. B 102, 195143 (2020).

[52] J. P. Dehollain, U. Mukhopadhyay, V. P. Michal, Y. Wang,
B. Wunsch, C. Reichl, W. Wegscheider, M. S. Rudner, E.
Demler, and L. M. K. Vandersypen, Nature (London) 579,
528 (2020).

PHYSICAL REVIEW LETTERS 128, 036801 (2022)

036801-6

http://link.aps.org/supplemental/10.1103/PhysRevLett.128.036801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.036801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.036801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.036801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.036801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.036801
http://link.aps.org/supplemental/10.1103/PhysRevLett.128.036801
https://doi.org/10.1103/PhysRevB.40.2719
https://doi.org/10.1103/PhysRevB.40.2719
https://doi.org/10.1103/PhysRevB.84.014503
https://doi.org/10.1021/acs.nanolett.9b03988
https://arXiv.org/abs/2107.06361
https://arXiv.org/abs/2107.06361
https://doi.org/10.1103/PhysRevB.84.195442
https://doi.org/10.1038/ncomms1966
https://doi.org/10.1088/1367-2630/15/4/045020
https://doi.org/10.1088/1367-2630/15/4/045020
https://doi.org/10.1038/s41467-018-04683-x
https://doi.org/10.1038/s41467-018-04683-x
https://doi.org/10.1103/PhysRevB.102.195143
https://doi.org/10.1038/s41586-020-2051-0
https://doi.org/10.1038/s41586-020-2051-0

