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If a quantum dot is coupled to a topological superconductor via tunneling contacts, each contact hosts a
Majorana zero mode in the limit of zero transmission. Close to a resonance and at a finite contact
transparency, the resonant level in the quantum dot couples the Majorana modes, but a ground-state
degeneracy per fermion parity subspace remains if the number of Majorana modes coupled to the dot is five
or larger. Upon varying shape-defining gate voltages while remaining close to resonance, a nontrivial
evolution within the degenerate ground-state manifold is achieved. We characterize the corresponding non-
Abelian holonomy for a quantum dot with chaotic classical dynamics using random matrix theory and
discuss measurable signatures of the non-Abelian time evolution.
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Billiards are among the simplest physical systems that
exhibit chaotic dynamics if the boundary is of sufficiently
irregular shape [1]. When the motion of the particle in the
billiard is coherent, the statistics of its energy eigenvalues
follows a universal law [2] that, depending on the particle’s
spin and the presence of time-reversal symmetry, derives
from one of the three Wigner-Dyson random matrix
ensembles [3,4]. An “electron billiard”—a quantum dot
(QD)—coupled to a superconductor confines quasiparticles
by Andreev reflection [5]. The chaotic quantum dynamics
of such “Andreev billiards” [6–9] are described by novel
random matrix ensembles, exhaustively contained in the
tenfold-way classification [10].
Here, we consider a chaotic QD coupled to a topological

superconductor, so that reflection at the boundary allows
tunneling into Majorana zero modes (MZMs). We show
that for weak coupling and close to a resonance, such a
system has a degenerate ground-state manifold with non-
Abelian evolution under generic cyclic adiabatic changes of
the dot shape if the number of coupled separated MZMs,N,
is five or larger. The holonomy of closed loops in “shape
space” inherits its statistical distribution from the universal
statistics of QD wave functions.
Demonstrating non-Abelian properties of MZMs

remains an open milestone. Other approaches, such as
braiding or fusion [11], require strong direct manipulations
of the MZMs. This may be challenging due to the
sensitivity of MZMs to disorder [12,13]. Our approach
eases these requirements by coupling only perturbatively to
the MZMs and driving nonlocally via the QD.
A schematic picture of the QD is shown in Fig. 1. The

MZMs γ̂j; j ¼ 1;…; N are located at tunneling contacts to
a topological superconductor. For weak coupling, if the
Fermi energy is close to a QD resonance, hybridization

between MZMs and QD is dominated by a single dot level
and may be described by the Hamiltonian [14,15]

Ĥ ¼ εĉ†ĉþ
XN
j¼1

ðv�j ĉ† − vjĉÞγ̂j; ð1Þ

where ĉ† and ĉ are creation and annihilation operators of
the resonant level, ε is its energy (relative to the Fermi
level), and the vj are complex coefficients describing
tunneling between the dot level and the MZMs.
Neglecting hybridization with nonresonant levels, only
two linearly independent superpositions of MZMs hybrid-
ize with the dot mode and acquire a finite energy. The
remainingN − 2MZMs are “dark”modes, which remain at
zero energy despite being coupled to the dot. The
Hamiltonian (1) is easily diagonalized and one obtains
the dark modes Γ̂i as superpositions of the original MZMs
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FIG. 1. N MZMs γ̂j supported by a grounded topological
superconductor are tunnel-coupled to a chaotic QD. The dot
shape can be changed by two gates with dimensionless voltages x
and y, whereas a third gate allows for a uniform shift of the dot
potential. A parity measurement involving two of the MZMs
allows for the detection of non-Abelian evolution resulting from a
closed loop in “shape space”.
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Γ̂i ¼
P

N
j¼1 ojiγ̂j, i ¼ 1;…; N − 2, with real coefficients oij

satisfying the (complex) orthogonality condition

XN
j¼1

ojivj ¼ 0: ð2Þ

Changing the shape of the dot, while keeping ε close to
zero, changes its eigenmodes and, hence, the tunneling
amplitudes vj between the resonant mode and the MZMs.
(Keeping ε close to zero requires adjusting a third gate
voltage while performing the shape change.) Via the
orthogonality condition (2), adiabatically changing the
dot shape therefore leads to an adiabatic change of
the subspace spanned by the N − 2 dark MZMs. A loop
C in “billiard shape space,” which returns the dot to its
original shape, may nevertheless lead to a “rotation” in the
space of the N − 2 dark MZMs,

Γj →
XN−2

k¼1

WkjΓk; ð3Þ

where the matrix W ∈SOðN − 2Þ is known as the “hol-
onomy” of the loop C. For N ≥ 5, the group SOðN − 2Þ is
non-Abelian, so that holonomies of different loops in shape
space generally do not commute [16].
Wave functions of a chaotic QD and their response to a

change of the dot shape are random, with a universal
statistical distribution described by random matrix theory
[17–19]. As a result, the holonomy W of a loop in “shape
space” is also a random quantity with universal statistics.
We consider a QD with two parameters x and y that
determine its shape. In random matrix theory, the “shape
coordinates” x and y are dimensionless, normalized such
that a change Δx; y ∼ 1 corresponds to an effective “scram-
bling” of the spectrum [18–21]. In the remainder of this
Letter, we determine the universal distribution of the
holonomy W for small and large loops in “shape space.”
We propose two observables of the non-Abelian holonomy
for N ≥ 5—a “fermion parity signature” and a “charge
signature”—and show that these have universal statistics
for a chaotic QD.
Holonomy.—We consider a QD with two parameters x

and y determining its shape. Hence, “shape space” is the
two-dimensional plane, parametrized by “shape coordi-
nates” x and y. A loop therein is parametrized by xðτÞ, yðτÞ,
0 ≤ τ ≤ 1, with xð0Þ ¼ xð1Þ ¼ 0, yð0Þ ¼ yð1Þ ¼ 0.
The corresponding holonomy matrix W ∈SOðN − 2Þ
results from the Wilson loop operator [22] W ¼
Lτe

−
R

1

0
dτPðx;yÞdPðx;yÞ=dτP, where Pðx; yÞ is the projector

on the (N − 2)-dimensional subspace of dark MZMs, we
abbreviated P ¼ Pð0; 0Þ, and Lτ denotes path ordering,
such that factors with lower τ appear to the right of factors
with higher τ. To remain within the dark space, the loop in
parameter space must be performed slowly on the timescale

associated with coupling to the resonant level, but fast
compared to the timescale related to the coupling to the
nonresonant levels. For an infinitesimal shape-space loop
with enclosed area A, the Wilson loop operator takes the
form

W ≃ ewAP; w ¼ P½∂P=∂y; ∂P=∂x�P; ð4Þ
where w ¼ Pð∂xAy − ∂yAx þ i½Ax;Ay�ÞP is the projected
non-Abelian field strength associated to the gauge field
Aρ ¼ P∂ρP, ρ ¼ x, y. The dark subspace is defined by the
orthogonality condition (2). The projection operator P can
be expressed in terms of the N-component vector
v ¼ ðv1;…; vNÞ, P ¼ 1N − ð2Q=trQÞ, where 1N is the
N × N unit matrix andQ ¼ Re½vðv†vÞv† − vðv†v�ÞvT�. For
the generator w of the holonomy one then obtains (for
details, see Supplemental Material [23])

w ¼ 2P
trQ

Re½d�
xðv†vÞdT

y − dxðv†v�ÞdT
y − ðx ↔ yÞ�P; ð5Þ

where we abbreviated dx ¼ ∂v=∂x, dy ¼ ∂v=∂y. The
matrix elements Wkj of Eq. (3) are found by the pro-
jection of W onto the dark MZM wave functions,
Wkj ¼

P
N
n;m¼1 omkWmnonj.

Statistics of the holonomy.—The statistics of the coef-
ficients vj and their dependence on the two shape param-
eters x and y can be obtained by modeling the Hamiltonian
of the dot, without coupling to the superconductors, as an
M ×M random hermitian matrix [17,18],

Hðx; yÞ ¼ H0 þ
1ffiffiffiffiffi
M

p ðxHx þ yHyÞ: ð6Þ

Assuming broken time reversal and lifted spin degeneracy,
e.g., by the Zeeman coupling to an applied magnetic field
[31], the matrices H0, Hx, and Hy are statistically inde-
pendent and taken from the Gaussian unitary ensemble.
The normalization factors

ffiffiffiffiffi
M

p
are included such that the

results become independent ofM asM → ∞. The resonant
dot mode is identified with the mth eigenstate of H, with
eigenvalue ε≡ εm and m ∼M=2 near the center of its
spectrum. Its eigenket jεmi determines the complex coef-
ficients vj ¼ ηjhjjεmi

ffiffiffiffiffi
M

p
, where ηj is a proportionality

factor depending on the QD level spacing δ, superconduct-
ing gap Δj and normal-state transmission coefficient Tj ≪
1 of the jth tunnel contact to a MZM with wave function
jji. The coefficients vj have independent Gaussian dis-
tributions with zero mean and with variance hjvjj2i ¼ η2j .
The derivatives dx;y follow from first-order perturbation
theory in Hx and Hy,

dx;y ¼
1ffiffiffiffiffi
M

p
X
k≠m

hεkjHx;yjεmi
εk − ε

vk; ð7Þ
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where εk, k ≠ m, are the other eigenvalues of H and jεki
and vk the corresponding eigenket and vector of coupling
coefficients, respectively. The matrix elements hεkjHx;yjεmi
are independently distributed complex Gaussian random
numbers with zero mean and with variance Mδ2=π2. The
vectors vk are statistically independent and have the same
distribution as v≡ vm.
To find the statistical distribution of the generator w of

the holonomy, we make the additional assumption that all
N tunnel contacts have the same proportionality constants
η≡ ηj. Then, from a statistical point of view, the MZMs are
interchangeable. With this simplifying assumption, the
complex coefficients vj have Gaussian distributions with
the same variance and the distributions of theN-component
vector v and its derivatives dx;y are separately invariant with
respect to unitary transformations. It then follows that w is
an ðN − 2Þ × ðN − 2Þ antisymmetric real matrix of the
form

w ¼

8>>>>>><
>>>>>>:

0 if N ¼ 3;

iλσy if N ¼ 4;

iλOdiagðσy; 0ÞOT if N ¼ 5;

iOdiagðλ1σy; λ2σyÞOT if N ¼ 6;

iOdiagðλ1σy; λ2σy; 0;…ÞOT if N > 6;

ð8Þ

where σy is the Pauli matrix and O∈SOðN − 2Þ is
uniformly distributed. In contrast, the principal values λj
of the holonomy generator w have nontrivial and distinctive
statistical distributions. Figure 2 displays the numerically
sampled probability distribution functions (PDFs) PðλÞ (for
N ¼ 4, 5) and Pðλ1; λ2Þ (forN ¼ 6, 10). ForN ¼ 5, PðλÞ ∝
λ2 for small λ. For N ≥ 6, Pðλ1; λ2Þ exhibits quadratic level
repulsion ∝ jλ2 − λ1j2 for λ1 ≈ λ2, in agreement with the
result for real skew-symmetric matrices [10], and a power-
law repulsion from the coordinate axes following
Pðλ1; λ2Þ ∝ λN−6

1 λN−6
2 for jλ1j ≪ 1 or jλ2j ≪ 1. For large

values, the PDFs of λ (for N ¼ 4, 5) and of λ≡maxðλ1; λ2Þ
have an algebraic tail ∝ λ−5=2 [32], which can be traced
back to rare events with a small spacing between ε ¼ εm
and the neighboring dot levels εm−1 or εmþ1 [33–36].

For loops with small area in shape space, the distribution
of the holonomy matrix W is found by exponentiating the
generator w, see Eq. (4), and its statistical distribution
follows accordingly. To obtain a holonomy matrix that
significantly differs from the identity, one may repeat a
small-area loop Z ≫ 1 times. In this case, W ¼ eZAw is of
the formOdiagðeiα1σy ; eiα2σy ; 1;…ÞOT if N ≥ 4, whereO is
uniformly distributed in SOðN − 2Þ and the phase angles
αj ¼ ZAλj mod 2π, j ¼ 1, 2, are uniformly and independ-
ently distributed in the interval ð−π; π� if ZA ≫ 1. (The
phase angle α2 ¼ 0 for N ¼ 4, 5.) A large holonomy may
also be obtained simply by taking a shape-space loop with
large area A ≫ 1. In this case, the holonomymatrixW itself
becomes uniformly distributed in SOðN − 2Þ in the limit of
large A.
The holonomy W cannot be observed directly, because

the dark MZMs involved in it are nonlocal modes without
weight in the QD. Below we propose two measurement
protocols that circumvent this problem. In the first protocol,
which we refer to as “fermion parity signature,” two dark
MZMs are fully isolated from the chaotic dot and coupled
to a small QD instead, which allows their parity to be
measured. In the second protocol, referred to as “charge
signature,” a sudden change of the coupling parameters
transfers weight from the dark MZMs to the chaotic QD,
which leads to a change of the charge on the dot, which is
then measured capacitively.
Fermion parity signature.—A pair of MZMs may be

combined into a single (complex) fermion [37,38]. Figure 1
displays a setup that permits to observe a signature of the
non-Abelian evolution through the measurement of the
fermion occupation f̂†1f̂1 ¼ 1

2
ð1þ iγ̂1γ̂2Þ of two MZMs γ̂1

and γ̂2 by coupling both MZMs to a QD [39–41]. For
initialization, we take γ̂1 and bγ2 decoupled from the chaotic
dot and set the occupation f̂†1f̂1 to zero by a projective
measurement. The “dark” MZM operators Γ̂i, i ¼ 1;…;
N − 2, then consist of Γ̂1 ¼ γ̂1, Γ̂2 ¼ γ̂2, as well as the
operators Γ̂3;…; Γ̂N−2, which are linear combinations of
the MZMs γ̂3;…; γ̂N . Their state can be initialized by
letting the system relax to its unique ground state on
timescales large enough that the coupling to nonresonant
dot levels becomes relevant. To bring about the non-
Abelian evolution, we then (i) adiabatically increase the
coupling strength of γ̂1;2 to the dot from 0 to η, (ii) perform
a loop in shape space, and (iii) again measure f̂†1f̂1 after
decoupling γ̂1;2 from the dot.
Choosing the basis of the remaining dark-space MZMs

such that the initial state corresponds to the vacuum for the
associated fermions f̂i ¼ ð1=2ÞðΓ̂2i−1 þ iΓ̂2iÞ, i ¼ 2;…;
N=2, the probability Δp that the occupation f̂†1f̂1 has
changed is [23]

Δp ¼ 1

2
−
1

2

XN=2−1

j¼1

ðW2j;2W2j−1;1 −W2j−1;2W2j;1Þ: ð9Þ

(a) (b) (c)

FIG. 2. PDFs PðλÞ (for N ¼ 4, 5 MZMs coupled to the dot) and
Pðλ1; λ2Þ (for N ¼ 6, 10) of the principal values of the holonomy
generator w. The statistical ensemble used to sample the dis-
tributions consists of 107 realizations of the random matrix model
(6) with matrix size M ¼ 20.
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Since a rotation among the MZMs preserves the total
fermion parity [42,43], the holonomy W can have a
nontrivial parity signature Δp only if more than one
fermion is associated with the MZMs in the dark subspace.
This condition is met if N ≥ 5.
For small areas A of the enclosed loop in phase space,

Δp ∝ A2 depends on the infinitesimal Wilson loop operator
wonly. Figure 3(a) displays the PDFof the normalized parity
signature Δp=A2 for N ¼ 5;…; 12, using the random-
matrix model (6). The asymptotic distribution at small
Δp is proportional to ðΔpÞminðN−4;8Þ=2−1 for N even and
ðΔpÞminðN−3;8Þ=2−1 for N odd, while it decays algebraically
∝ ðΔpÞ−7=4 at large Δp. For repeated small-area loops with
cumulative area ZA ≫ 1, the distribution converges toward
the results shown in Fig. 3(c). For N ¼ 5, 6, the distribution
diverges as ðΔpÞ−1=2 for Δp → 0 and is finite at Δp ¼ 1.
For larger N, the distribution is finite at Δp ¼ 0 and zero at
Δp ¼ 1. In the limit of a large loop area A, Δp is
symmetrically distributed around Δp ¼ 0.5, see Fig. 3(e),
and becomes more peaked atΔp ¼ 1=2 upon increasingN.
Charge signature.—An alternative method to observe

the non-Abelian evolution involves a measurement of the
charge on the QD. Hereto, (i) the system is initialized in a
unique reference state, (ii) a shape-space loop is performed,
and (iii) the time-averaged charge Q̄ of the QD is measured

after the coupling coefficients vj are diabatically changed,
e.g., by suddenly changing the transparency of some of the
tunnel contacts to theMZMs [44].Measurement of the time-
averaged charge on a QD is possible with established
techniques [45–48]. The diabatic change of the vj is
necessary because it drives the system into a nonequilibrium
state with a time-averaged dot charge that depends on the
state of the dark MZMs before the quench. The signature of
the non-Abelian time evolution is the difference ΔQ̄ ¼
QðWÞ −Qð1Þ of the time-averaged dot charge with and
without performing a closed loop in shape space at stage (ii).
An expression for ΔQ̄ in terms of W is derived in [23].
The charge signature depends on the resonant energy ε

and is maximal for ε=η ∼ 4 [23]. Unlike the parity signature
Δp, the charge signature ΔQ̄ is linear in A for small A. The
charge signature distribution ΔQ̄ depends on N and on the
type of diabatic quench used to obtain the nonequilibrium
state. Figure 3 (right) shows the PDF ΔQ̄=A for selected
values of N, for the case that diabatic change of the
coupling coefficients vj is obtained by suddenly decou-
pling two MZMs from the dot. (The charge signature
ΔQ̄ ¼ 0 if only one MZM is suddenly decoupled [23].)
The distribution shows a logarithmic singularity at ΔQ̄ ¼ 0

and has a power-law dependence ∝ jΔQ̄j−5=2 for large
jΔQ̄j=A ≫ 1. The logarithmic singularity persists for re-
peated infinitesimal loops with cumulative area ZA ≫ 1
and for large loops with enclosed area A ≫ 1, cf. Figs. 3(d)
and (f). It dominates the distribution such that the depend-
ence on N is weak. Decoupling three or more but fewer
than N − 2 MZMs results in a nondivergent density at
ΔQ̄ ¼ 0 [23].
MZMs vs Andreev bound states (ABSs).—Super-

conductor contacts may host zero-energy ABS that mimic
MZMs [12,13]. Although ABSs need not be pinned to zero
energy, for weak coupling to the dot, an ABS that is
accidentally at zero energy ≪ η will remain there if the dot
shape is changed. An ABS may be seen as consisting of
two MZMs. The replacement of MZMs by ABSs has no
effect if the two MZMs making up the ABS have very
different coupling strength to the dot. If both MZMs couple
to the dot with equal strength, their effect is to change the
effective number N of MZMs involved in the holonomyW.
A strong signature distinguishing MZMs from ABSs
results from the charge signature: pinching off one (two)
contacts with MZMs has no charge signature (a logarithmic
divergence around zero), while pinching off one (two)
contacts with ABSs results in a logarithmic divergence (a
finite density) around zero. The parity signature strongly
distinguishes five and six MZMs from more than six
MZMs from its behavior around Δp ¼ 0, 1. The distinc-
tions are based on the associated ground-state degeneracy,
similar to the topological Kondo effect [49].
Concluding remarks.—We have shown that weakly

coupling multiple Majorana zero modes to a chaotic QD

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Left: PDF of the parity signature Δp. Right: PDF of the
charge signature ΔQ for resonant energy ε=η ¼ 2

ffiffiffiffiffi
20

p
≈ 9,

obtained by suddenly decoupling two MZMs from the dot. In
(a),(b), the distributions of the normalized signatures Δp=A and
ΔQ̄=A2 are shown for N ¼ 5; 6;…; 12 and in the limit of small
loop area A ≪ 1. In (c),(d), distributions of Δp and ΔQ̄ are
shown for repeated infinitesimal loops with ZA ¼ 1000. For (a),
(b) and (c),(d), distributions are obtained from 107 and 106

realizations, respectively, of the random-matrix model (6) with
matrix size M ¼ 20. The last row, (e),(f), shows distributions of
Δp and ΔQ̄ for large loop area A ≫ 1, M ¼ 64, sampled over
105 realizations, and with ϵ=η ¼ 16. (See Ref. [23] for more
details on the numerical simulations.).
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leaves a dark subspace of zero-energy modes if the Fermi
energy is close to a resonance of the QD. Tuning the shape
of the chaotic QD leads to a nontrivial evolution inside the
dark subspace, which has observable signatures with
universal PDFs. Since the single-particle QD states are
nondegenerate, our conclusions remain valid if Coulomb
repulsion on the QD considered. The same applies,
qualitatively, for Andreev reflections at the QD boundaries,
although the precise PDFs may differ in this case, because
Andreev reflections change the symmetry class of the QD
Hamiltonian to Cartan class D [10].
Estimating the relevant energy scales [23], we expect that

our proposal is challenging but within reach of the InAs=Al
platform [50]. Another near-term experimental study could
utilize “poor man’s” Majorana fermions [51–53] or other
types of degenerate qubits [54–59] interfaced by a single,
chaotic element.
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