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Absence of Skew Scattering in Two-Dimensional Systems:
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We study the anomalous Hall conductivity in spin-polarized, asymmetrically confined two-dimensional
electron and hole systems, taking into account the intrinsic, side-jump, and skew-scattering contributions
to the transport. We find that the skew scattering, principally responsible for the extrinsic contribution to
the anomalous Hall effect, vanishes for the two-dimensional electron system if both chiral Rashba
subbands are partially occupied, and vanishes always for the two-dimensional hole gas studied here,
regardless of the band filling. Our prediction can be tested with the proposed coplanar two-dimensional
electron-hole gas device and can be used as a benchmark to understand the crossover from the intrinsic to

the extrinsic anomalous Hall effect.
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Introduction.—The observed Hall resistance of a mag-
netic film contains the ordinary Hall response to the exter-
nal magnetic field and the anomalous Hall response to the
internal magnetization. Although the anomalous Hall ef-
fect (AHE) has been known for a century and used for
decades as a basic characterization tool for ferromagnets,
its origin is still being debated, also in the context of the
closely related spin-Hall effect [1-4]. Three mechanisms
giving rise to AHE conductivity have been identified: (1)
an intrinsic mechanism based solely on the topological
properties of the Bloch states originating from the spin-
orbit-coupled electronic structure [5], (2) a skew-scattering
mechanism originating from the asymmetry of the scatter-
ing rate [6], and (3) a side-jump contribution, which is
viewed as a side-step-type of scattering and gives a current
perpendicular to the initial momentum [7].

Recent experimental and theoretical studies of
transition-metal ferromagnets and of less conventional
systems, such as diluted magnetic semiconductors, oxide,
and spinel ferromagnets, etc., have collected numerous
examples of the intrinsic AHE and of the transition to the
extrinsic AHE dominated by disorder scattering [8]. The
unambiguous determination of the origin of the AHE in
these experimental systems is hindered, in part, by their
complex band structures, which has motivated studies of
simpler model Hamiltonians, such as the two-dimensional
(2D) Rashba and Dirac band models [9-13]. Attempts to
describe all the contributions to the AHE within the same
framework have yielded farraginous results, however. So
far a rigorous connection of the more intuitive semiclassi-
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cal transport treatment with the more systematic diagram-
matic treatment, providing a clear-cut interpretation of the
intrinsic, skew, and side-jump AHE terms, has only been
demonstrated for the Dirac Hamiltonian model [14].

In this Letter we calculate the transport coefficients in
these two complementary approaches for asymmetrically
confined 2D electron and hole gases in the presence of
spin-independent disorder, finding perfect agreement. The
motivation for the study of these systems is threefold: First,
they can be represented by simple spin-orbit-coupled
bands, which, similar to the Dirac Hamiltonian model,
allows us to unambiguously identify the individual AHE
contributions. Second, the extrinsic skew-scattering term
vanishes for a two-subband occupation in the case of the
Rashba 2D electron gas and for any band occupation for
the studied 2D hole gas. This provides a clean test of the
intrinsic AHE mechanism and of the transition between the
intrinsic and skew-scattering dominated AHE. We propose
a 2D electron gas or 2D hole gas coplanar magneto-optical
device in which the unique AHE phenomenology found in
our theoretical models can be systematically explored
experimentally.

Model Hamiltonians.—We study the 2D Hamiltonians
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with m being the effective in-plane mass, o; the 2 X 2
Pauli matrices, k+ = k, = iky, h the exchange field, «,, the
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spin-orbit coupling parameter, and V(r) a spin-independent
disorder potential. The exponent n = 1 (3) describes a 2D
electron (hole) gas [15]. The eigenenergies of the clean
system are E. = h?k?/2m = \Jh> + (a,k")?. The eigen-
vectors in the clean system take the form [¥} ) = exp(ik -
r)|uy) with k = k(cos¢, singp) and

+ie M) = h)

luy) = 2
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where A = \/h> + (a,k")*>. We now define k. (E) as the

wave number for the * band at a given energy E and define
A+ = A(k<). If E is not specified, it is assumed to be the
Fermi energy. We consider the model of randomly located
o-function scatterers, V(r) = Y ;V;6(r — R;) with R; ran-
dom and disorder averages satistying (V,)gis = 0, (VZ)gis =
V2 # 0, and (V)4 = V§ # 0. This model is different
from the standard white-noise disorder with nonzero:
(VR [P)ais = n;V§, where n; is the impurity concentration
and other correlators are either zero or related to this
correlator by Wick’s theorem. The deviation from white
noise is quantified by V; # 0, and is necessary to capture
part of the skew-scattering contribution.

Semiclassical approach.—We sketch here the semiclas-
sical procedure used in the calculation; for further details
we refer to Ref. [14]. The multiband Boltzmann equation
in a weak electric field E is given by

6f;+ ¢E - v
ot

= IfJeon: 3

where [ = (k, u), w = * is the subband index, and
1[fleon = 2w fdzk'/(27r)2a)”/(fl — f1) is the impurity
collision integral. The distribution function f; is the sum of
the equilibrium function and a correction, f; = f{z) + g
The scattering rates w;y are related to the T-matrix ele-
ments through w;, = 27/a|Ty|>8(ey — €). Ty =
(I'|VI), and i) are eigenstates of the complete
Hamiltonian, and |/} of the disorder free Hamiltonian.

Skew scattering.—Skew scattering appears in the
Boltzmann equation through the asymmetric part of
the scattering rate, i.e., w;y # wy; [6]. The scattering
rates to second and third order in disorder strength are
given by oy, = wglz/) + a)ﬁ,) + -+, where wglz,) =
27/ 0|V |*)ais6(e, — €p) s symmetric. Here, V;, =
(I'V|l). We break up the third-order contribution into
symmetric and antisymmetric parts. We ignore the first,
since only the second gives rise to skew scattering. This
antisymmetric term is [14]
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The solution of Eq. (3) is found by looking at the deviation
of the distribution function from equilibrium [14],

0
g = —a—”eElv |(A, cos¢p + B, sing). )
Je pl\ Ay n

Assuming that the transverse conductivity is much
smaller than the longitudinal one (A, > B,,) and substi-

tuting Eq. (5) into Eq. (3) one finds A,, = T|/|L and B, =
(7! )Z/Tt, where

d*k’
|| Z ] 277.)2

1 k' |yl . ,
% = Z an) wyy |v—1| sin(¢p — ¢’). (7)
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For symmetric Ferml surfaces, the skew-scattering contri-
bution to the conductivity tensor at zero temperature can
now be expressed using the scattering times,

Oxx = Z(T” VF, ,u,k,u,: Ubkew )zgy,v,u Sln(d))

(7))
R R ®
The calculation of (TLL)‘I and (75)"! uses the matrix
elements of Eq. (4). To simplify the notation we define

21
(!, p'p, M”M)Elmﬁ A"l |udl Yul! ul,

Xty ufl), )
where all momenta are taken on the Fermi surface. Note
that in Eq. (9) |k”| can be different from |Kk’| or |K| since
the Fermi momenta of different bands do not coincide.

The matrix elements appearing in Eq. (9) can be calcu-
lated directly from the basis functions, yielding

(!, ' w, " py = hm%kzkz sin(ng — ne’),
20, A A
(10)
from which we obtain
a 1 "
wp! = = 5”:“’135(61 — ) v pp!, w1 ),
MH

an

where v* is related to the density of states of each band
at the Fermi energy, (v*)~! = #?/m = n(a, k" 1)*/ A+
The symmetric part of the scattering rates to second

@ _
i

277/ VIl |us, 28(€, — €;). The relaxation times are
found by inserting this into Eq. (6) and (11) into Eq. (7).
For n = 1 (2D electron gas) we obtain

order in the disorder potential is given by w

1 ln V2 h_2 N aik?, N atk
B A PV VY W Y
vH h?
+7<1_)\ 1 >j|, (12)
—Ay

066604-2



PRL 99, 066604 (2007)

PHYSICAL REVIEW LETTERS

week ending
10 AUGUST 2007

__nVihaiv# (ki 3 k%)(v“ vk

1
I — . (13)
7 8nA,  \A,  Az)\A Aﬁ>

® ® a/\"u

where g = —pu. If both subbands are occupied, the last
factor in Eq. (13) vanishes and there is no skew-scattering
contribution. If only the majority subband is occupied
(Ep < h), (7'f;)_1 is nonzero and skew scattering contrib-
utes. For the skew-scattering Hall conductivity and the
longitudinal conductivity we obtain in this case

e [A_k_\? 1
= s 14
T Whnng< - ) 3n2 + A2 (14)
okew — _ esz h)l_a%k‘i ‘ (15)
w 2whn;Vy v_(3h* + A2)?

If n = 3, i.e., for the 2D hole gas, we obtain T% =0,
w

1 v#

1 vE(A_Ay — h?)
——=—mV{ (M-+W)+————i———}
R PV
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and skew scattering vanishes irrespective of band filling.
Microscopic  approach.—Within the diagrammatic

Kubo formalism the skew-scattering contribution to the

off-diagonal conductivity is obtained from the expression

2
I(a eh
o = 3oy LTTGHEDVGHER] (16
where the bare velocity vertex factors for n = 1 are
hk hk
v, = —0, —%a'y, v, =g, +%0'X. 17

As shown in a previous study [14], the skew-scattering
contribution proportional to V3 /(n;V{) corresponds to the
diagrams shown in Fig. 1, where the current vertices j,, j,
on both sides are the bare velocities v,, v, renormalized by
ladder vertex corrections. Only the skew-scattering dia-
grams with a single third-order vertex, shown in Fig. 1,
contribute to order V;/(n;Vy). All other terms from a
ladder-type summation of third-order vertices are smaller
because they are either not of the order 1/n; or of higher
order in V;/V,. The sum of the skew-scattering vertices
gives

in,V?h(IJ—_ V+>(0'0 0, — 0,8 0y). (18)

4 AL
In the linear Rashba model we find v, /AL =v_/A_,

+
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FIG. 1 (color online). Diagramatic representatation of the
skew-scattering contribution to o,. Both current vertices, de-
noted by squares, are renormalized by ladder vertex corrections.

implying that skew scattering vanishes if both subbands
are occupied. In the case that only one subband is occu-
pied, the evaluation of Fig. 1 to order V;/(n;V{) yields
exactly the same expression for a'il;ew as in the semiclas-
sical Eq. (15). The only effect of the ladder vertex correc-
tions is to renormalize each bare velocity by a factor of
2(h%> + A2)/(3h* + A%) which approaches 1 in the limit of
small a;ky and 2 in the limit of small A.
For n = 3 (2D hole gas) the bare velocity vertices are

nk, 6as
T T T

3a
y,x * T?’(k,zr - k%)"x;
(19)

Here the vertex corrections disappear because integrals of
the type 3 GRv, ;G4 = 0 vanish. This implies the absence
of skew scattering for any subband filling [16], consistent
with the semiclassical result. We note that the same con-
sistency between semiclassical and microscopic quantum
theory calculations for the studied 2D models is also
obtained for the intrinsic and side-jump terms similar to
the results in the graphene model [14]; the longer details of
those calculations will be shown elsewhere and are in
general agreement with Ref. [12].

The absence of the skew scattering is akin but not
equivalent to the results of spin-Hall-effect calculations
in 2D systems [17]. For the Rashba 2D electron gas the
disappearance of the dc spin Hall conductivity is guaran-
teed by sum rules that relate the spin current to the dynam-
ics of the induced spin polarization [18,19]. In the case of a
charge current no similar sum rule is known. As we have
shown, the skew-scattering contribution in fact becomes
finite when the minority band is depleted. The vanishing of
the Hall conductivity in the Rashba 2D electron gas for
Er > h is attributed to the simplicity of the Hamiltonian.
In particular the relation », /A, = v_/A_ does not hold
generally beyond the case of the linear-in-k Rashba cou-
pling. The absence of skew scattering in the 2D hole
system has a different origin: Because of the cubic depen-
dence of spin-orbit coupling on momentum, the matrix
elements, Eq. (10), in the antisymmetric part of the colli-
sion term behave like sin(3¢p — 3¢’). Together with the
sin(¢ — @') dependence of the velocity factor in Eq. (7),
this makes the integral over k' vanish.

Our results predict that the AHE in 2D electron and hole
systems can be dominated by contributions independent of
the impurity concentration, for which the anomalous Hall
resistance is « ¢ 2. We also predict that in the Rashba 2D
electron gas with only one subband occupied the extrinsic
skew-scattering contribution, leading to anomalous Hall
resistance proportional to oy, is nonzero [20]. This term
has not been identified in previous works that considered
only white-noise disorder [9-13]. Since its conductivity
contribution is inversely proportional to the impurity con-
centration, the skew-scattering mechanism can dominate in
clean samples.

Proposed experimental setup.—The unique phenome-
nology of the AHE in the studied 2D systems, in particular,
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FIG. 2 (color online). Top panel: Top-view schematics of the
Hall bar with coplanar 2D hole and electron gases. Spin-
polarized carriers are generated by shining circularly polarized
light on the p-n junction. Center bottom panel: Cross section of
the heterostructure containing p-type and n-type AlGaAs/GaAs
single junctions. The left band diagram shows the unetched part
of the wafer with the 2D hole gas, the right band diagram shows
the 2D electron gas in the etched section of the wafer.

the sudden disappearance of skew scattering when the
Fermi level crosses the depletion point of the minority
2D Rashba band, represents an opportunity for a clean
test of the presence of intrinsic and extrinsic sources of
the AHE and of the transition between these two regimes.
In the absence of 2D ferromagnetic system with Rashba
like spin-orbit interatciton, we proposed an experimental
setup for this test as shown in Fig. 2. The device is based on
a AlGaAs/GaAs heterostructure containing a coplanar 2D
hole gas or 2D electron gas p-n junction. The cross section
of the heterostructure and corresponding band diagrams
are shown in the lower panels of Fig. 2 (for more details see
Ref. [3]). Under a forward bias the junction was success-
fully utilized as a light-emitting-diode spin detector for the
spin-Hall effect [3]. Here we propose to operate the junc-
tion in the reverse-bias mode, while shining monochro-
matic, circularly polarized light of tunable wavelength on
the p-n junction. The photogenerated spin-polarized holes
and electrons will propagate in opposite directions through
the respective 2D hole and electron channels. The longitu-
dinal voltage and the generated anomalous Hall voltage
can be detected by the successive sets of Hall probes, as
shown in the upper panel of Fig. 2. For the 2D electron gas,
the macroscopic spin diffusion length allows us to use
standard lithography for defining the Hall probes. Surface
or back gates in close proximity to the 2D electron system
can be used to modify the effective 2D confinements,
carrier density, and spin-orbit coupling in order to control
the transition between the intrinsic and extrinsic AHE
regimes. The exploration of the AHE in the 2D hole gas
is more challenging due to the expected submicron spin
diffusion length, but may still be feasible in the proposed
experiment.
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