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Surface photogalvanic effect in Weyl semimetals
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The photogalvanic effect—a rectified current induced by light irradiation—requires the intrinsic symmetry
of the medium to be sufficiently low, which strongly limits candidate materials for this effect. In this paper
we explore how in Weyl semimetals the photogalvanic effect can be enabled and controlled by design of the
material surface. Specifically, we provide a theory of ballistic linear and circular photogalvanic current in a Weyl
semimetal spatially confined to a slab under general and variable surface boundary conditions. The results are
applicable to Weyl semimetals with an arbitrary number of Weyl nodes at radiation frequencies small compared
to the energy of nonlinear terms in the dispersion at the Fermi level. The confinement-induced response is tightly
linked to the configuration of Fermi-arc surface states, specifically the Fermi-arc connectivity and direction of
emanation from the Weyl nodes, thus inheriting the same directionality and sensitivity to boundary conditions.
As a result, the photogalvanic response of the system becomes much richer than that of an infinite system, and
may be tuned via surface manipulations.
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I. INTRODUCTION

In the past decade, Weyl semimetals (WSMs) have at-
tracted great attention, from theoretical prediction [1] to
experimental realization [2–5]. Of particular interest are the
peculiar transport phenomena [6,7] due to the presence of
Weyl fermions, the associated chiral anomaly [8–10], and
topological Fermi-arc surface states [1,11]. For instance,
WSMs are considered a promising platform for optoelectronic
applications [12,13] because chirality and the topologically
protected linear dispersion of Weyl fermions generally tend
to enable and enhance the response to incident light [14].
The relevant light frequencies lie typically in the mid- and
far-infrared region, bounded from below by the typically small
but finite chemical potential at the Weyl nodes and from above
by the onsetting nonlinear corrections to the Weyl dispersion.

Most discussed is the photogalvanic effect (PGE) in
noncentrosymmetric WSMs—a dc current response to light
irradiation [15–24]. Generally, the photogalvanic current den-
sity may be expanded as [25,26]

J =
∑

i, j=x,y,z

�i jEiE∗
j , (1)

where E is the polarization vector of the light field and � is
the photogalvanic response tensor. One distinguishes between
a ballistic current, induced by asymmetric in momentum pho-
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togeneration (or injection following the terminology of [27]),
which is proportional to the relaxation time and dominates
in clean samples, and the shift current, which is finite even
in the absence of relaxation processes. Notably, in noncen-
trosymmetric WSMs a quantized photogeneration induced by
circularly polarized light was predicted and observed [28,29].
WSMs that in addition to inversion also break time-reversal
symmetry may further exhibit a ballistic response to linearly
polarized light, which may be giant [17,24,30–33].

Besides the bulk PGE that can be understood in terms of
infinite-system models, the PGE has been explored at the sur-
faces of metals [34–36] and topological insulators [37–40], in
which case the surface-normal component of � (but not that of
E) vanishes. In the field of WSMs, recently there was evidence
from experiments and first principles calculations that Fermi
arc states might play an important role in the photogalvanic
response [41,42], a contribution that was neglected in previous
theories. In particular, Chang et al. [42] have shown that the
contribution of surface states to the PGE due to excitations
between the surface states of the same surface are possible
in chiral crystals due to high Chern numbers and a nonlinear
dispersion of those surface states.

The mere presence of surface states, however, does not
capture the full peculiarity of a WSM. Importantly, the two-
dimensional Fermi-arc surface states, constituting in some
sense the reaction of a pair of chiral Weyl fermions to con-
finement, are tightly glued to the three-dimensional Weyl
fermions [43], as illustrated in Fig. 1(a). This connectivity
distinguishes Fermi arcs from surface states of metals and
topological insulators and was shown to give rise to a number
intriguing, counter-intuitive linear-response effects [44–54].
Understanding its role also for the photogalvanic response
is highly desirable. The theoretical challenge to capture the
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FIG. 1. (a) Dispersion (energy vs in-plane momenta) of Weyl
fermions confined to a slab of thickness W . The plot shows bulk
states (blue) and surface states of bottom surface (red) and top surface
(green). The surface states are tightly glued to the bulk Weyl cone
and emanate in the direction α2 (−β2) for bottom (top) surface. The
figure also shows the directions of Fermi-arc motion (α1 and β1),
as well as the photon penetration depth δ. (b) Low-energy band
structure at the Weyl node. The Fermi energy μ and the energy
range of the linear-dispersion regime ωmax determine the range of
considered photon frequencies 2μ < ω < ωmax.

effect of the connectivity is the requirement to go beyond an
effective surface theory and consider a full three-dimensional,
yet spatially confined, model.

In this paper we present a theory of ballistic photogal-
vanic response of Weyl fermions spatially confined in one
direction with general boundary conditions, relevant for Weyl-
semimetal slabs with an arbitrary configuration of Weyl nodes
and arbitrary orientations of Fermi arcs at the bottom and top
surfaces, which need not be the same.

Specifically, the orientation of the bottom (top) Fermi arc
is defined by the direction of its velocity α1 (β1) or the per-
pendicular direction at which the arc emanates from the Weyl
node α2 (-β2), see Fig. 1(a). We show that this symmetry-
breaking directionality gives rise to a vastly richer response
behavior compared to an unconfined WSM. In particular,
the confinement enables the otherwise vanishing linear and
circular PGE in centrosymmetric WSMs. Furthermore, the
response is crucially determined by the orientations of the
Fermi arcs. The latter may be adjusted by choosing different
surface terminations [55,56] or surface doping [57]. In prin-
ciple, this allows control over the photogalvanic response by
modification of the surface only.

To focus on Weyl physics, we consider a photon frequency
range for which excitations can take place only close to
Weyl nodes where the bulk and arc dispersions are linear,
see Fig. 1(b). The total response is then the sum of the re-
sponses of individual Weyl nodes. Further, we focus on the
semimetallic regime, in which the Fermi level μ is close to
the Weyl node and smaller than the photon energy, such that
Pauli blocking as well as screening may be neglected. In this
regime, intrasurface (arc-arc) excitations are forbidden [58],
but bulk-bulk excitations as well as arc-bulk excitations exist.

Most strikingly, for a centrosymmetric WSM confined
to a slab, the photogalvanic response is fully determined
by the Fermi-arc orientation. Considering the current den-
sity in Eq. (1) as the current density averaged over the
slab width, the response tensor can be decomposed into
a confinement-independent bulk-bulk contribution �bb and
confinement-induced contributions, which in turn consist of
bulk-bulk δ�bb as well as arc-bulk �ab parts,

� = �bb + δ�bb + �ab. (2)

For a centrosymmetric WSM, �bb vanishes according to gen-
eral symmetry considerations [25]. The response is thus given
by

�centrosymm. = δ�bb + �ab, (3)

where both contributions are fully determined by the Fermi-
arc orientations since the orientation of the arcs and modifi-
cation of the bulk-state wave functions are both defined by
the boundary conditions. Moreover, a centrosymmetric WSM
necessarily breaks time-reversal symmetry, which implies that
�centrosymm. will include a ballistic response to linearly po-
larized light of the type discussed in [31]. This is directly
relevant to magnetic WSMs, such as Co3Sn2S2 [59], RhSi
[29], and GdPtBi [60]. Table I summarizes which types of
photogalvanic response are possible in unconfined and con-
fined WSMs, depending on the mechanism and the presence
of time-reversal and inversion symmetry.

Finally, the confinement-induced PGE is categorized de-
pending on the slab thickness. For a sufficiently thick slab or
sufficiently high frequency the light field does not penetrate
the whole slab. This is the case when the penetration depth
δ, which for photon energies h̄ω ∼ 1 meV to 1 eV lies in the
range 1 µm to 1 mm, is much smaller than the slab thickness
W . For light incident at the bottom surface, see Fig. 1(a), the
top surface no longer contributes to the response. This changes
the symmetry of the response tensor. We refer to this limit as

TABLE I. Allowed types of photogalvanic response in WSMs, bCPGE, sCPGE, bLPGE, and sLPGE, distinguished by light polarization,
circular (CPGE) and linear (LPGE), and origin (b for bulk) and (s for surface). Setups are categorized by mechanism (ballistic/shift current)
and presence/absence of time-reversal and inversion symmetry of the WSM material. Terms in parentheses give subdominant response in
clean systems. Italic text marks contributions first discussed in this work. In the presence of inversion symmetry, the bulk photogalvanic
response vanishes and only surface contributions remain. In this case, the response is fully determined by the directionality of the Fermi arcs.
In particular, there is a surface induced ballistic LPGE enabled by broken time-reversal symmetry.

Time reversal Inversion
Symmetry (broken inversion) (broken time reversal) Neither

Ballistic current (injection) bCPGE, sCPGE sCPGE, sLPGE bCPGE, bLPGE, sCPGE, sLPGE
Shift current bLPGE, sLPGE (sCPGE, sLPGE) (bCPGE, bLPGE, sCPGE, sLPGE)
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the thick slab. In the opposite limit, referred to as the thin
slab, δ � W , both surfaces contribute. Technically, the two
limits require substantially different calculations, we will thus
mostly consider the thick- and thin-slab regimes separately,
using different analytical and numerical techniques.

This article is organized as follows. In Sec. II we introduce
the model of a WSM in the slab geometry for which we
perform our calculations. We also briefly discuss the decay of
light waves in WSMs. Finally, we present the semiclassical
formulas for the photogalvanic current that we employ. In
Sec. III we classify the different contributions to the photogal-
vanic response tensor and estimate their magnitude. Further,
we comment on the irrelevance of finite light momentum. In
Sec. IV we discuss the symmetry constraints on the response
tensor. Finally, in Sec. V we present analytical results for the
different contributions to the response tensor for a single Weyl
cone in the different regimes. We further present a lattice sim-
ulation in the thin limit, which confirms the analytical results.
At the end of this section we apply our results to WSMs with
several Weyl cones by considering a centrosymmetric WSM
with two nodes. We conclude in Sec. VI. Technical details are
delegated to the Appendices.

II. MODEL

A. Weyl semimetal

We consider a WSM slab with a set of Weyl nodes, which
are close to the Fermi level. We also assume that the pro-
jections of the Weyl points to the surface Brillouin zone are
well separated. Since we consider the response to excitations
occurring close to the Weyl nodes only, it suffices to consider
the response of a single Weyl node, from which the response
of a WSM with several Weyl nodes will follow by combining
the single-Weyl-node response tensors, transformed according
to the specific Weyl-node arrangement.

In order to evaluate the matrix elements relevant for the
photogalvanic response tensors we seek explicit expressions
for the wave-functions in the slab geometry (see Appendix A
for a detailed derivation). To this end, we model a single Weyl
fermion confined to 0 < z < W with the Hamiltonian (we set
h̄ = 1)

H = χ v p · σ, (4)

where p is the momentum (with pz = −i∂z), σ the spin, χ =
± the chirality, and v the velocity. For better transparency of
the following calculations we here assume isotropic velocity
of the Weyl fermion; in Appendix B we generalize the results
to an anisotropic Weyl node, which leads to a simple transfor-
mation of the response tensor. In the absence of a tilt, the Weyl
Hamiltonian Eq. (4) commutes with the operator T = iσyK ,
where K is complex conjugation. By analogy with relativistic
theory we refer to this intranode symmetry as time reversal
(TR) symmetry. Note that it does not correspond to the time
reversal operation acting on the whole crystal, as this connects
different Weyl nodes. Thus the intranode TR symmetry allows
to constrain the response due to a single Weyl node only. A
WSM with several Weyl nodes at generic points in momentum
space clearly does not need to satisfy TR symmetry.

Using translation invariance parallel to the surface we seek
energy eigenstates in the form of plane waves in the xy

plane with the continuous in-plane momenta p‖ = (px, py) ≡
p‖(cos φ, sin φ). Their dependence on z is given by the solu-
tions to the Weyl equation Hψ (z) = Eψ (z), which may be
written as

ψ (z) ∝ exp{iPzz}ψ (0)

∝ (pz cos(pzz) + i sin(pzz)Pz )ψ (0), (5)

where pz =
√

E2 − p2
‖ and the generalized momentum opera-

tor reads

Pz =
(

ipy,−ipx,
χE

v

)
· σ. (6)

The discrete energy eigenvalues of the slab (at fixed p‖) are
to be determined by boundary conditions. A generic bound-
ary condition on the wave function is a vanishing current jz
across the boundaries. Since jz ∝ ∂pz H ∝ σz this corresponds
to ψ†σzψ = 0. Accounting for the possibility of differing
boundary conditions for the bottom and top surfaces, a general
boundary condition thus reads

ψ (0) ∝
(

1
eiα

)
, ψ (W ) ∝

(
1

eiβ

)
, (7)

parametrized by two independent angles α and β. Surface
inhomogeneities would correspond to a spatial dependence of
α and β. Here we assume translation invariance at the surface
(up to a relaxation mean free path that will be introduced per-
turbatively below) and thus consider α and β to be constant.

The boundary conditions lead to the equation

sin
β − α

2
= tan(pzW )

pz

[
p‖ cos

(
φ − β + α

2

)

∓ χ p cos
β − α

2

]
, (8)

which determines the quantized eigenvalues pz. Solutions
with real pz correspond to bulk states, imaginary solutions
correspond to surface “arc” states. For details and explicit
expressions of the arc and bulk states see Appendix A. Note
that α and β define the velocity of the Fermi arcs localized at
the bottom (b) and top (t) surfaces,

vb
arc = χvα1, vt

arc = χvβ1. (9)

as well as the direction at which they emanate from the Weyl
node, given by the constraint

p · α2 ≡ κb > 0, p · (−β2) ≡ κt > 0, (10)

for bottom and top arc, respectively, where we defined the
vectors

α1 =
⎛
⎝cos α

sin α

0

⎞
⎠, α2 =

⎛
⎝− sin α

cos α

0

⎞
⎠, (11a)

β1 =
⎛
⎝cos β

sin β

0

⎞
⎠, β2 =

⎛
⎝− sin β

cos β

0

⎞
⎠. (11b)

The quantities κt and κb introduced in Eq. (10) have the
meaning of inverse decay lengths of the evanescent wave
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functions of arc states at the top and bottom surfaces respec-
tively.

In order to analyze symmetries in the presence of the
boundary conditions, it proves helpful to define an equivalent
multilayer setup, which reproduces the same spectrum and
wave functions as the boundary conditions Eq. (7). Note that
this is a fictitious system only introduced to assist in under-
standing the response of a single Weyl node. The equivalent
multilayer setup is defined by the Hamiltonian

Hχm = χvp · σ +
⎧⎨
⎩

−χm σ · α2 z < 0
0 0 < z < W
χm σ · β2 z > W

, (12)

with m → ∞ [61,62]. Under TR the multilayer Hamiltonian
transforms like

T −1HχmT = Hχ−m. (13)

The mass terms of the boundary conditions thus behave like
TR-breaking magnetizations in the directions −χα2 and χβ2
at the two boundaries. Note that this does not imply TR-
breaking of the WSM with several Weyl nodes.

Furthermore, note that the directions of the boundary
spinors can be additionally controlled by TR-preserving
boundary potentials [57]. One can easily check that adding
a boundary potential δHb = δ(z)μ0 + δ(z − W )μW to the
Hamiltonian (12), rotates the boundary spinors like α → α +
χ2μ0 and β → β − χ2μW . Boundary potentials are typi-
cally disregarded in minimal models of Weyl-semimetal slabs,
which corresponds to straight arcs connecting the Weyl cones,
i.e., β = α + π . Here we instead consider the general case
that the Fermi arcs can emanate in any direction, considering
the boundary spinors (7) to be given by two independent
variables α and β. The resulting curvature of Fermi arcs,
which is necessary to connect pairs of Weyl nodes and is often
observed in experiments, is irrelevant in the close vicinity of
the Weyl nodes to which the optical transitions that we con-
sider are bound. The directionality introduced by the boundary
conditions will crucially determine the direction of the re-
sponse. It is therefore convenient to define the coordinate axes
along the emergent high-symmetry directions. Those depend
on whether current is induced at a single surface (thick-slab
case) or in the whole slab (thin-slab case). Figure 2 illustrates
the geometry and the high-symmetry axes in these two cases.

B. Electromagnetic waves in Weyl semimetals

For frequencies ω � μ the conductivity in WSMs is given
by [6,63]

σ (ω) = N
e2

24πε∞v
|ω| = N

ξ

24π
|ω|, (14)

Here, N is the total number of Weyl nodes in the system,
ε∞ ∼ 10 is the permittivity due to inert bands and we let
e2 → e2/ε∞ to account for screening. Finally, we defined the
dimensionless coupling constant

ξ = e2

ε∞v
= 1

137
× c

v
× 1

ε∞
∼ 0.1. (15)

Note that N = Nξ/6 takes values between 1/30 and 1 in a
WSM, depending on the number of nodes. The imaginary

FIG. 2. Top view on the slab dispersion (left, see also Fig. 1)
showing the choice of coordinate axes px and py to lie along high-
symmetry directions in (a) the thick-slab (W � δ) and (b) the thin-
slab case (W � δ). The slab dispersion features bulk states (blue),
surface states of bottom (red) and top (green) surfaces. In (a) only
the bottom surface matters since the light penetrating over the depth
δ at the bottom surface does not reach the top arc.

part of σ has only weak frequency dependence and has been
absorbed into ε∞. The frequency dependent permittivity then
reads

ε(ω) = ε∞

[
1 + 4π i

ω
σ (ω)

]
= ε∞

[
1 + i

Nξ

6
sign(ω)

]
. (16)

We consider light entering the WSM at the z = 0 surface. The
field inside the WSM has the form,

E(r, t ) ∝ exp i(k · r − ωt ) exp −z/δ, (17)

where k is the momentum inside the medium and δ is the pen-
etration depth. In terms of the vacuum wave number kv = ω/c
and to leading order in N , they are given by

|k| = √
ε∞kv

(
1 + N 2

)1/4
cos

arctanN
2

 √
ε∞kv, (18a)

1

δ
= √

ε∞kv

(
1 + N 2)1/4

sin
arctanN

2


√
ε∞N
2

kv. (18b)

With the above estimate of N , depending on the number of
Weyl nodes, we thus obtain kδ ∼ 1 . . . 10.

C. Photogalvanic response tensor

We consider the response of the Weyl slab to the weak
external oscillating electric field

E(r, t ) = [Eeik·r−iωt + c.c.
]
e−z/δ. (19)

In the temporal gauge E = −∂t A, the perturbation to the
Hamiltonian reads

δH = j · A(r, t ) = iχe�E · σe−iωt eik·r−z/δ + H.c., (20)

where j = −eχvσ is the current operator and � = v/ω is the
smallest length scale of our model. In the following we will
use dimensionless length and momenta, denoted with a tilde:

r̃ = r
�
, p̃ = p �, (21)

in units of � and �−1, respectively.
The ballistic PGE can be described within the framework

of the Boltzmann kinetic equation by balancing asymmetric
photogeneration and impurity-induced relaxation. Using the
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standard perturbation theory and relaxation-time approxima-
tion, one can express the photogalvanic response in terms of
the momentum relaxation time τ in the form [17,27]

�i j = 8πητ

W̃

∫
d2 p̃‖

∑
qz pz

(vp+
v

− vq−
v

)

× δ
(

1 − Ep

ω
− Eq

ω

)(
M pq ⊗ M∗

pq

)
i j

(22)

where ⊗ denotes the dyadic product, p = (p‖, pz ), q = (p‖ −
k‖, qz ), d2 p̃‖ = �2d p‖, and we introduced the matrix elements

M pq = 〈+, p|σeik·r−z/δ|−, q〉, (23)

and the constant (restoring h̄, which is set to one)

η = e3

16π2h̄2 . (24)

Note that 4πη is the quantum of the CPGE trace and may be
assumed large compared to ordinary PGE magnitudes [28].
These expressions hold for both bulk-bulk and and arc-bulk
excitations. To avoid overcounting of states, for bulk states
the sum runs only over pz > 0 while for arc states it runs over
�pz > 0. Note that �z = 0 as vz = 0 for all states due to the
boundary conditions.

The relaxation-time approximation of Eq. (22) neglects
energy and momentum dependencies, as well as forward-
scattering corrections. Especially in the interplay of surface
and bulk states, those can lead to potentially interesting quan-
titative refinements [54] of the results, which is left for future
work. We also neglect interaction effects, which are known to
modify the PGE quantitatively [64].

Note that the three 3 × 3 matrices � are hermitian. Ac-
cording to standard terminology, the imaginary antisymmetric
part is associated with the circular PGE, which is present
only if the incident light is elliptically polarized (the inverse
implication is not true: elliptically polarized light can give rise
to photogalvanic response stemming from the real symmetric
part). The real symmetric part is referred to as the linear pho-
togalvanic response, which exists even for linearly polarized
radiation.

III. CLASSIFICATION AND ESTIMATE OF RESPONSE
CONTRIBUTIONS

There are three relevant length scales in the problem [65],
the v/c-weighted light wavelength � = v/ω, the light penetra-
tion depth δ, and the slab thickness W , whereby the weighted
light wavelength is always much smaller than the penetra-
tion depth, �/δ ∼ v/c ∼ 10−2. The width W is considered in
two limits, the thick-slab case W � δ and the thin-slab case
δ � W . In the thick-slab case the light completely decays
inside the slab and only a single slab surface is excited. In the
thin-slab case the light penetrates nearly homogeneously the
whole slab such that both surfaces are equally excited. In this
limit, for simplicity of analytical calculations we introduce a
lower bound for the width, W � �, so that energy quantiza-
tion of slab modes is small compared to the light frequency.
The ultrathin case W ∼ � will be considered numerically on a
lattice model.

TABLE II. Scaling of the confinement-independent contribution
�bb and the confinement-induced contributions δ�bb, �ab with rele-
vant length scales of the system (W , �, δ) in the cases of a thin and
thick slab.

Thick slab W � δ Thin slab δ � W

�bb δ

W = δ̃

W̃
1

δ�bb, �ab �

W = 1
W̃

�

W = 1
W̃

Before coming to the detailed calculation, it is useful to
classify the response contributions according to their depen-
dencies on the relevant length scales (�, δ, W ), separating
confinement-independent from confinement-induced contri-
butions and distinguishing contributions due to arc-bulk and
bulk-bulk excitations as given in (2). The result is summarized
in Table II and is explained in the following.

To estimate the magnitudes of contributions it suffices to
disregard the spin degree of freedom and consider the bulk
wave functions to be of the form |q〉 = exp(iqzz)/

√
W and

that of arc states of the form |q〉 = exp(−z/�)/
√

l . In the
latter, the inverse decay length κ , given in (10), has been ap-
proximated by the typical inverse distance from the Weyl node
in the active region of excitations, which is set by �−1 ≡ ω/v.
Neglecting the in-plane light momentum k (will be justified
below), the matrix elements (23) for the thick-slab case can
be estimated as

|M|2 ∼
{(

δ
W

)2 1
1+[(qz−pz )δ]2 bulk-bulk

�
W

1
1+(qz�)2 arc-bulk.

(25)

The momentum separation of modes is 1/W , hence the num-
ber of modes within the active range around the node is W/�.
The summation over pz and qz thus gives∑

pzqz

|M|2 ∼
{

δ
�

bulk-bulk
1 arc-bulk

(26)

and the magnitude of the response tensor will thus scale like

�bb ∼ δ

W
, �ab ∼ �

W
, (27)

for bulk-bulk and arc-bulk excitations, respectively.
Since δ � �, bulk-bulk excitations will give the dominant

current contribution, while the confinement-induced correc-
tion due to arc-bulk excitations give the finite-size correction
with the small parameter �/δ. Importantly, there are also con-
tributions due to bulk-bulk excitations possible that scale like
those from arc-bulk excitations,

δ�bb ∼ �ab. (28)

To see this, note that the contribution �bb stems from approx-
imating the peaked behavior of the bulk-bulk matrix elements
in (25) at qz = pz by a delta function, the correction to setting
qz = pz is of the order �/δ because the peak width is 1/δ

and the effective integration range 1/�. Hence the leading
correction scales like the arc-bulk contribution, and needs to
be taken into account.

Upon changing the scales from the thick-slab case, W � δ,
to the thin-slab case, δ � W , the scaling of the contribution of
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arc-bulk excitations does not change because the localization
length of most arc states κ−1, given in (10), is set by � and
hence much smaller than both W and δ.

For bulk-bulk excitations, the matrix elements are now the
overlaps of wave functions over the whole slab width,

|M|2 ∼ 1 − cos [(qm − qn)W ]

[(qm − qn)W ]2 . (29)

Summation over pz and qz gives
∑

pzqz
|M|2 ∼ W̃ and the

magnitude of the current thus scales like

�bb ∼ 1, (30)

missing the factor δ/W as compared to the limit W � δ given
in (27), since transitions are now produced across the full
width of the slab.

As before, the matrix elements are peaked at qm = qn; the
correction δ�bb to the qm = qn contribution �bb is of order
l/W because the peak width is now 1/W , while the integration
range is still 1/�. Thus δ�bb ∼ �ab remains valid also in the
thin-slab limit. This concludes the explanation of the scaling
summarized in Table II.

A. Irrelevance of the light momentum

The momentum transfer due to a finite light momentum has
the magnitude k ∼ ω/c. The small parameter of corrections
due to this momentum shift is k/p, where p ∼ 1/� = ω/v is
the typical momentum of excited states, hence k/p ∼ v/c ∼
0.01. Comparing the smallness of corrections to the response,
those due to a finite k are irrelevant for the thin-slab case
but potentially relevant in the case of a thick slab, where
they are on the same order as the finite-size corrections, cf.
Table II. It turns out, however, that corrections to leading order
in k/p ∼ v/c vanish also for the thick-slab case, which we
show explicitly for our slab model in Appendix E. An easier
way to find the same result is to realize that considering the
correction due to a finite k/p, one can neglect the finite-size
corrections, which would give terms that are quadratic in the
small parameter. Neglecting finite-size corrections, the result
should thus coincide with that of an infinite system. In particu-
lar, the directionality introduced by the confinement becomes
irrelevant. It is straightforward to verify that for a bulk Weyl
cone the first-order k/p corrections vanish.

For the response tensor in Eq. (22) this means that k can be
set to zero, the matrix elements become

M pq = 〈+, p|σe−z/δ|−, q〉, (31)

and the momenta have the same parallel component, p =
(p‖, pz ), q = (p‖, qz ).

Finally, we comment on the spatial structure of the con-
finement induced response current. While our calculation
considers only the spatial average of the current, we expect the
spatial profile of the photogalvanic current to be uniform. This
can be understood as follows. The total number of electrons in
the surface Fermi arc states is unaffected by the perturbation,
as just as many electrons are excited to positive energy Fermi
arc states from the bulk as electrons are excited from negative
energy Fermi arc states to the bulk. Close to the Weyl point
all Fermi arc states have the same velocity. Hence, the net
velocity due to Fermi arcs is unchanged. The non-equilibrium

current stems from the asymmetric population of bulk states
and hence is expected to be spatially uniform.

IV. SYMMETRY CONSTRAINTS

As the last preliminary consideration before coming to the
explicit results, we now consider symmetry constraints on the
response tensor. Considering the transition matrix elements
(31) we realize that since the band index ± enters the wave
functions in the form ±χ , which can be explicitly seen in
Appendix A, Eq. (A9), we obtain the relation

M∗
pq

∣∣
χ

= Mqp

∣∣
−χ

. (32)

Using this and that other terms in the response expression,
Eq. (22), are symmetric in p ↔ q, we conclude that(

� ± �T
)
χ

= ±(� ± �T
)
−χ

, (33)

showing that the (anti)symmetric part of the response ten-
sor is even (odd) in the chirality χ . Moreover, generally the
(anti)symmetric part of the response tensor is odd (even) un-
der TR [25], which, according to the transformation behavior
(13) is given by m → −m (in the fictitious multilayer system)
and thus (

� ± �T
)

m = ∓(� ± �T
)
−m. (34)

For the thick-slab case, only the bottom surface is involved
and m → −m corresponds to inversion of α2 ≡ ŷ, i.e., mirror
reflection Ry with respect to the xz plane. Taking into account
also symmetry with respect to Rx, the response tensor assumes
the form

�thick = x̂

⎛
⎝ 0 �xxy 0

�xxy 0 �xyz

0 −�xyz 0

⎞
⎠

+ ŷ

⎛
⎝�yxx 0 −�yzx

0 �yyy 0
�yzx 0 �yzz

⎞
⎠. (35)

For the thin-slab case, both surfaces are involved and com-
binations of two reflections leave the Hamiltonian invariant or
time reversed. In the thin-slab basis [Fig. 2(c)] we obtain

RyRzHχmRzRy = Hχm, (36a)

RxRyHχmRyRx = Hχ−m. (36b)

The resulting transformation behavior of the response ten-
sor dictates the form

�thin = x̂

⎛
⎝�xxx 0 0

0 �xyy �xyz

0 −�xyz �xzz

⎞
⎠

+ ŷ

⎛
⎝ 0 �yxy −�yzx

�yxy 0 0
�yzx 0 0

⎞
⎠. (37)

A more detailed derivation of the tensor forms is given in
Appendix C.
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V. RESULTS

A. PGE due to arc-bulk excitations

Arc-bulk excitations give rise to a current that is “auto-
matically” a finite-size effect. Other finite-size corrections
are negligible, which can be used to simplify the expression
for the response tensor in Eq. (22); we can disregard the
quantization of modes and replace the sums by integrals. The
integration over z in the matrix elements of Eq. (31) may
be extended to infinity since the decay of surface modes
at most momenta is on the order of � � δ,W , in both the
thick-slab and thin-slab limits. Moreover we can neglect
confinement-induced corrections of bulk states. A straightfor-

ward calculation (see Appendix D for details) then gives

�ab,thick
i j = 2πητ

W̃

[
iχ

8

3
εxi j x̂ + ln(2) δi j (1 − δxi )ŷ

]
(38)

for the bottom arc in the thick-slab basis x̂ = α1, ŷ = α2

[Fig. 2(b)]. The antisymmetric part is expressed using the
Levi-Civita symbol εi jk . This is the only arc-bulk contribution
in the thick-slab case.

In the thin-slab case we add the contribution of the top
arc, which is equivalent to the bottom arc up to the changed
directions, α1 → β1, α2 → −β2, see Fig. 2. Adding both
contributions after appropriate rotation into the thin-slab basis
[Fig. 2(c)] we obtain

�ab,thin

4πητ/W̃
= x̂

⎛
⎝ln 2 sin3 � 0 0

0 ln 2 sin � cos2 � i 8
3χ cos2 �

0 −i 8
3χ cos2 � ln 2 sin �

⎞
⎠+ ŷ sin �

⎛
⎝ 0 ln 2 cos2 � −i 8

3χ sin �

ln 2 cos2 � 0 0
i 8

3χ sin � 0 0

⎞
⎠, (39)

where we defined

� = β − α

2
.

To understand this result, it suffices to understand the
current production due to arc-bulk excitations at a single (bot-
tom) surface, illustrated in Fig. 3. First we note that arc-bulk
excitations vanish for the polarization component x because
such a photon does not act on the spinor of the arc (which
is an eigenspinor of σx) and thus cannot induce a transition
to the orthogonal bulk state. This is circumvented when the
linear polarization points in the other directions, y and z.
The induced velocity due to arc-bulk excitations sum up to
a total velocity pointing in the ŷ direction, see Fig. 3(c), which
explains the second term of (38).

FIG. 3. (a) Dispersion of Weyl fermions confined to a slab as
function of in-plane momenta in the thick slab basis. Bulk states are
colored blue and the Fermi-arc surface states red (only the bottom
surface is shown). Velocities of initial (dashed arrow) and final state
(solid arrow) of a photoexcitation are indicated. (b) Top view on
bulk states in (a) showing the velocity change due to a bulk-bulk
excitation. (c) Same as (b) but with indicated velocity change from
arc-bulk excitations. Red contours indicate those states of the surface
arc states that satisfy the energy-conservation constraint for arc-bulk
excitations ω = χvpx ± vp.

Circular y + iz polarization instead acts like a ladder oper-
ator on the σx eigenspinor and thus enhances the amplitude of
spin-flip excitations where the spin is increased (at positive px

in Fig. 3) and suppresses those where the spin is lowered (at
negative px in Fig. 3), and vice versa for the opposite polariza-
tion handedness, y − iz, or chirality χ of the Weyl fermions.
As is clear from Fig. 3, this asymmetry can produce velocity
in the x direction, which sign depends on the polarization
handedness and the chirality. This explains the first term of
Eq. (38).

B. PGE due to bulk-bulk excitations

In contrast to the arc-bulk excitations, the contribution of
excitations within the bulk bands (from the valence bulk band
to the conduction bulk band) strongly differ for the thin- and
thick-slab cases. We thus consider the two cases separately.

1. Thick slab limit W � δ

In this limit the light-induced excitations are produced at
a single (bottom) surface in the finite strip of width δ. For
the confinement-independent contribution �bb we neglect all
finite-size effects and obtain (see Appendix E 1 for details)

�bb,thick
i j = iχ

2πητ

3

δ

W
(εxi j x̂ + εyi j ŷ). (40)

Apart from the absence of current in the direction perpen-
dicular to the boundary and the factor δ/W , this expression
is identical to the circular PGE found in the infinite system
model [17], which here has been rederived using slab eigen-
states. It is manifestly independent of the orientation of the
Fermi arc. The prefactor δ/W correctly reflects the fact that
excitations occur in the fraction of the penetration depth of
the full sample width.

The leading corrections in the thick-slab limit are of a
higher order in �/δ, see Table II. They stem from the z in-
tegration in the matrix elements (31), where we can still take
the limit W → ∞ but keep the finite light penetration depth.
Other finite-size corrections are controlled by the small pa-
rameter �/W and can thus be neglected. Expansion to leading
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order in �/δ and numerical evaluation of the integral gives (see
Appendix E 1 for details)

δ�bb,thick

ητ/W̃
 x̂

⎛
⎝ 0 4.2 0

4.2 0 −16.8iχ
0 16.8iχ 0

⎞
⎠

+ ŷ

⎛
⎝ −4.2 0 9.9iχ

0 −4.2 0
−9.9iχ 0 −8.4

⎞
⎠, (41)

written in the thick-slab basis, α1 = x̂, α2 = ŷ. We estimate
that these expressions are accurate to below 0.5%. Corrections
to the circular PGE (antisymmetric part of the tensor) are
in the same tensor components as the leading terms, as they
should according to the symmetry constraints. The corrections
are of opposite sign as the leading contribution because the
tendency of the boundary to align the initial and final spinor
suppresses the transition amplitude (circular PGE needs spin-
flip processes). A difference between x and y components is
a manifestation of the boundary-condition-broken symmetry
between the x and y directions.

The response to linearly polarized light (symmetric part of
the tensor) is something that is not found for an infinite-system
Weyl cone in the absence of tilt. This follows from the fact
that a single unconfined tiltless Weyl node is intranode TR
symmetric and hence there is no linear PGE. The vanishing
of the linear PGE in such a system is due to cancellation
of the linearly-polarized-light-induced current from states at
opposite momenta parallel to the polarization [17]. While
the symmetry considerations have already shown that linear
PGE contributions are possible in the presence of a boundary,
(which breaks intranode TR symmetry) it is peculiar that
these contributions stem not only from arc-bulk but also from
bulk-bulk excitations. To understand how the boundary breaks
the symmetry between opposite momenta of bulk states, we
consider the bulk-state spinor as a function of z, explicitly
given in Eq. (A9). At z = 0 the boundary condition forces the
spinors at all momenta to coincide with ψ (0) ∝ (1, exp[iα]).
Going away from the boundary, the spinors rotate in the
in-plane basis: At small z the spinor can be written as
(1, exp[i�(z)]), with �(z) = −2 arctan[(±χ p − px )z]. Since
p > |px|, the rotation handedness is the same for all momenta
and is set only by the chirality and the band (±). The spin
averaged over the whole slab width coincides with the spin of
an infinite system—parallel or antiparallel to the momentum,
depending on the band and chirality. As illustrated in Fig. 4,
the angle between the spinor at z = 0 and the averaged spinor,
measured in the direction of rotation, thus always differs by π

for opposite momenta, which provides the crucial symmetry
breaking and enables the response to linearly polarized radia-

FIG. 4. Characterization of bulk Weyl spinors in a semi-infinite
spatial geometry. Spinors at the boundary are shown as arrows in
the gray areas. They point in the x direction for all states. Going
away from the boundary the spinors rotate so that the average spin,
indicated as arrows at the cones, are like in an infinite system pointing
parallel or antiparallel to the momentum, depending on the band and
chirality (here positive). The numbers characterize the angle between
the boundary and the average spinor (in units of π/2), which differ by
π for opposite momenta. [(a), (b)] Spinors at momenta perpendicular
and parallel to the boundary spinor, respectively.

tion. Moreover, as can be seen from Eq. (A9) and in Fig. 4(b),
the x (i.e., α1) component of the spinor is invariant under
simultaneous band change and p → −p, which explains the
vanishing diagonal components for the response in the x di-
rection.

2. Thin slab δ � W � �

The confinement-independent contribution �bb is obtained
similarly to the thick-slab case by neglecting all finite-size
corrections. The only difference is that the integration over
z now extends over the whole slab width instead of δ. The
result,

�bb,thin
i j = iχ

4πητ

3
(εxi j x̂ + εyi j ŷ), (42)

is, up to the missing factor δ/2W , identical to the thick-slab
case and, up to the vanishing current normal to the slab,
identical to the known infinite-system result, as it should.

For the confinement-induced contributions we collect
finite-size corrections of the type �/W . They stem from the
quantization of qz and pz as well as from corrections to the
wave functions and the velocity of bulk states. We solve the
problem numerically via discretizing the polar angle φ, and
finding qz, pz pairs satisfying the energy conservation and
Eq. (8) using standard numerical tools (see Appendix E 2 for
details), yielding

δ�bb,thin

ητ/W̃
 x̂

⎛
⎝−14.1 sin � + 4.7 sin 3� 0 0

0 −21.5 sin � − 4.7 sin 3� −iχ (26.7 + 6.9 cos 2�)
0 iχ (26.7 + 6.9 cos 2�) −23.0 sin �

⎞
⎠

+ ŷ

⎛
⎝ 0 3.7 sin � − 4.7 sin 3� iχ (26.5 − 6.9 cos 2�)

3.7 sin � − 4.7 sin 3� 0 0
−iχ (26.5 − 6.9 cos 2�) 0 0

⎞
⎠, (43)
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where we defined

� ≡ β − α

2
. (44)

The numerical coefficients are accurate to the first decimal.
Together with Eqs. (38) and (41), Eq. (43) represents the
central quantitative result of this work. Because of scale in-
variance of the Weyl Hamiltonian, these results are generic for
any Weyl semimetal with untilted Weyl cones, up to straight-
forward directional rescaling in case of anisotropic velocity,
as discussed in Appendix B.

C. Discussion of confinement induced contributions and
comparison to lattice simulation

The arc-bulk contribution �ab and the confinement-induced
bulk-bulk contribution δ�bb are intimately linked: They are of
the same order of magnitude and they always occur in combi-
nation. Therefore, only the sum δ�bb + �ab is experimentally
relevant.

In the thick-slab limit, the confinement-induced response
tensor is

δ�bb,thick + �ab,thick

ητ/W̃

 x̂

⎛
⎝ 0 4.2 0

4.2 0 0
0 0 0

⎞
⎠+ ŷ

⎛
⎜⎝

−4.2 0 9.9iχ

0 0.2 0

−9.9iχ 0 −4.0

⎞
⎟⎠.

(45)

Note that since �bb,thick
xyz and �ab,thick

xyz cancel (within numerical
accuracy), circularly polarized light may produce a sizable
current only parallel to the Fermi arc (α2 = ŷ), whereas lin-
early polarized light may produce currents perpendicular to
the Fermi arc as well.

The thin-slab limit result is plotted in Fig. 5 as a function
of �. For β = α (� = 0), the linear PGE vanishes because
the second surface restores the symmetry between opposite
momenta: With regard to the corresponding discussion for the

η
τ
/W̃

δΓ
b
b

+
Γ

a
b

FIG. 5. Confinement-induced response tensor δ�bb,thin
i jk + �ab,thin

i jk

as a function of �. Only nonzero components are shown, labeled
with i jk, the circular-PGE components have an additional prefactor
iχ as indicated.

thick-slab limit, the sense of rotation of spinors away from the
z = W boundary is opposite to z = 0 since z runs “backwards”
there. For β = ±π + α (� = ±π/2) the symmetric part of
the response tensor is approximately maximized, while the
weight of circular response is simply shifted from one com-
ponent to the other. The Fermi arc orientations thus change
the nature of the response completely.

More generally, one can understand that the
(anti)symmetric part of the tensor, i.e., the linear (circular)
PGE, must be odd (even) in �. In terms of �, the TR-breaking
directions in (12) are given by α2 = (− sin �, cos �) and
β2 = (sin �, cos �). The transformation � → −� combined
with the reflection Rx and χ → −χ leaves the Hamiltonian
invariant. From the corresponding transformation of the
tensor follows that components of the symmetric part are odd
while components of the anti-symmetric part are even in �,
as seen in Fig. 5.

While for clarity of the analysis we considered the thin-slab
case assuming W � �, it is possible to relax this constraint
and consider ultrathin slabs with W ∼ � resorting to numer-
ical techniques. In this regime also transitions between arc
states of the different surfaces become important. Here, we
used a one-dimensional lattice realization of a single Weyl
node (discretizing the z direction while keeping r‖ continuous)
to numerically evaluate the photogalvanic response tensor in
Eq. (22). Details can be found in Appendix F. The results are
shown in Fig. 6, demonstrating that our semi-analytical results
can be reproduced in a lattice setting, and that the qualitative
behavior, such as sign and magnitude of the confinement
induced contributions, extends down to W ∼ �. For W � 2�,
the finite-size gap of modes becomes larger than the photon
energy and the response vanishes.

D. Centrosymmetric Weyl semimetal

Our results for a single Weyl node allow to infer on the
response of a WSM with several nodes by adding the con-
tributions of each node. Probably the most interesting case is
that of centrosymmetric WSMs, for which the confinement-
independent bulk-bulk contributions �bb cancel and only the
confinement-induced contributions, δ�bb and �ab, survive. A
minimal model of a centrosymmetric bulk WSM consists of a
single pair of Weyl nodes with opposite chirality. Considering
the multilayer Hamiltonian Hχm in (12) as the Hamiltonian
describing one of the Weyl nodes, for the Hamiltonian de-
scribing the second Weyl node of opposite chirality we take
H−χ−m. In this case the Fermi arcs emanate in opposite di-
rections, which happens when the Weyl nodes are connected
in a straight line. However, we have seen in Sec. II that an
additional boundary potential δHb = δ(z)μ0 + δ(z − W )μW

rotates the spinors by α → α + χ2μ0 and β → β − χ2μW .
The generic situation is thus that there is a finite angle ϕ

characterizing the deviation from an antiparallel alignment, as
shown in the inset of Fig. 7(a). Note that between the nodes,
the Fermi arcs thus must be curved, as is typically seen in
experiments; the curvature itself plays however no role for our
results since excitations occur only close to the Weyl nodes.

The total response �WSM
abc is obtained from the single-cone

result �i jk (χ, m) (now explicitly denoting the χ, m depen-
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FIG. 6. (a) Circular and (b) linear response tensor components
in the ultrathin limit W̃ = W/� ∼ 1 at � = π/2. The data points
correspond to the photogalvanic response tensor Eq. (22) numeri-
cally evaluated for a lattice realization of a single Weyl point (see
Appendix F for details). The dashed lines correspond to the semi-
analytical results � = �bb + δ�bb + �ab in the limit W̃ � 1. For
W̃ � 2, the lattice response vanishes as the frequency drops below
the finite size gap. For W̃ � 2, the response converges towards the
semi-analytical W̃ � 1 results.

dence),

�WSM
abc = R(ϕ)aiR(ϕ)b jR(ϕ)ck�i jk (χ, m)

+ R(−ϕ)aiR(−ϕ)b jR(−ϕ)ck�i jk (−χ,−m), (46)

where R(ϕ) is the spatial rotation matrix for a rotation around
z by ϕ. The results are plotted in Fig. 7. From the transfor-
mation behavior of the response tensor discussed in Sec. IV
(symmetric part odd in m and even in χ , antisymmetric part
odd in χ and even in m), the response of the two Weyl nodes
cancel each other at φ = 0. This means that in the thick-
slab case the response vanishes when the Fermi arcs of the
illuminated surface emanate from the Weyl nodes in exactly
opposite directions. In the thin-slab case, the same applies but
the emanation direction is replaced by the bisector of the top-
and bottom-surface Fermi arcs.

For φ = π/2 the directions just discussed (emanation di-
rection for thick slab and bisector direction for thin slab)
are parallel. This is equivalent to taking the contributions of
the two Weyl nodes at the same m (instead of m and −m),
while χ are still opposite. Since the (anti)symmetric part is
even (odd) in χ , the antisymmetric parts cancel also here but

Γ
W

S
M

η
τ
/W̃

Γ
W

S
M

η
τ
/W̃

FIG. 7. Response-tensor components for a centrosymmetric
WSM in (a) the thick- and (b) the thin-slab case, as a function the
angle ϕ. As shown in the lower insets, φ sets the deviation from
antiparallel alignment of (a) the direction of bottom-surface Fermi
arcs; and (b) the directions of bisectors of bottom- and top-surface
Fermi arcs. In the thin-slab case (b) the angle between top and bottom
arcs is chosen as � = π/2; the inset in the right top shows the result
for � = 0, for which the linear PGE vanishes.

the symmetric parts add up to twice the value of a single
cone. This can be seen by comparison of Fig. 7(b) with the
single-cone results shown in Fig. 5 for the thin-slab case and
Fig. 7(a) with �ab,thick + δ�bb,thick from Eqs. (38) and (41) for
the thick-slab case. (Note that the coordinate system is now
rotated by π/2, i.e., y → x and x → −y, compared to the
single-cone case).

VI. CONCLUSION

In conclusion, we have explored the PGE of a WSM spa-
tially confined to a slab geometry. Symmetry breaking on the
surfaces via the orientation of the Fermi arcs enables circu-
lar and linear photogalvanic response currents, which would
otherwise not be possible, in particular, in centrosymmetric
WSMs.

The magnitude of the confinement-enabled PGE inher-
its the topology-enhancement of unconfined Weyl fermions,
based on the topologically protected band touchings [28,30].
However, while in infinite systems those band touchings in-
clude only the chiral pairs of Weyl nodes, a confined system
features topological surface states, which are tightly glued to
the Weyl nodes.
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The ratio of confinement-induced contributions to bulk
contributions scales in case of a thin slab like (v/c) × (λ/W )
and for the thick slab like v/c, where λ is the light wave-
length, W the slab thickness, and v/c ≈ 0.01 the node- versus
light-velocity. Considering the upper and lower bounds of λ

set by the finite Fermi level and the band width of typical
WSM materials, the confinement-induced PGE is on the order
of bulk PGE for widths of order W ∼ 0.1 . . . 1 μm. Surface-
controlled PGE is thus found in such thin slabs even for
noncentrosymmetric WSMs, which makes the experimental
realization of thin WSM slabs or even stacks of those espe-
cially interesting.

One of the most remarkable properties of the confinement-
induced PGE is that it is controlled by surface boundary
conditions. We explicitly discussed the effect of a surface
potential, which rotates the direction of Fermi arcs. Another
interesting possibility, known from experiments, are layered
WSMs for which the different surface terminations can not
only change the directionality of Fermi arcs but even lead
to different connectivities to the Weyl nodes [55,56]. This
Fermi-arc geometry is observable, e.g., via angle-resolved
photoemission spectroscopy [3–5]; our paper links this ge-
ometry with the photogalvanic response. In principle, a
confinement-related photogalvanic response may exist also in
regular metals due to Tamm surface states. However, such
a response does not share the remarkable features of the
confinement-induced PGE in WSMs. The difference is due
to topology: While in a regular metal, the surface state wave-
functions depend on microscopic details, in a WSM the Fermi
arc wave functions are uniquely determined by the Fermi arc
directionality. This fact enables the sensitivity to boundary
conditions and hence the control of the confinement-induced
PGE in WSM. Moreover, a confinement-related PGE in a
regular metal would lack the aforementioned enhancement
due to the band touchings in a WSM and should hence be
much smaller than the effect discussed in this paper.

With regard to the remarkable recent progress in device
microstructuring [48,66–69], our paper might thus play an
important role in identifying Weyl physics and shaping the
photogalvanic response by designing the material surface.

Note added. Recently, we became aware of a recent article
[70] considering the PGE of a finite system using a minimal
centrosymmetric lattice model that features two Weyl nodes.
This article focuses on Fermi energies far away from the Weyl
nodes where the PGE is governed by nonlinear terms of the
dispersion, while in the semimetallic regime, which is the
focus of our paper, the response of their model vanishes as
it, in terms of our model, considers only the specific ϕ = 0
case of Sec. V D. This trivial case is the only place of overlap
of our papers.
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APPENDIX A: CONFINED WEYL FERMION
WAVE FUNCTIONS

In this Appendix we derive the explicit form of the eigen-
functions of Eq. (4) in the slab geometry 0 < z < W . Writing
the momentum operator pz in the spatial basis, pz = −i∂z the
Weyl equation Hψ (z) = Eψ (z) can be written as

−i∂zψ (z) = Pzψ (z), (A1)

where the generalized momentum Pz was defined in Eq. (6).
The Weyl equation is formally solved by Eq. (5). Defining an
orthonormal basis for our model of zero out-of-plane current
states,

|α±〉 = 1√
2

(
1

±eiα

)
, |β±〉 = 1√

2

(
1

±eiβ

)
, (A2)

the generic boundary conditions at the two surfaces can be
written as

ψ (0) ∝ |α+〉, ψ (W ) ∝ |β+〉. (A3)

From the boundary conditions, the quantized eigenvalues pz

are the solutions of

0 = sin
α − β

2
+ tan(pzW )

pz

[
px ∓ χ p cos

α − β

2

]
, (A4)

where px is in the basis of Fig. 2(c). Solutions with real pz

correspond to bulk states, imaginary solutions correspond to
surface “arc” states, which we will now discuss in more detail.

1. Arc states

For an imaginary pz, normalizable wave functions are
found that are localized at the bottom (b) and top (t) surfaces,

ψb
arc(z) =

√
2p · α2 e−p·α2z|α+〉 = 〈z|arc,b, p‖〉, (A5a)

ψ t
arc(z) =

√
−2p · β2 ep·β2(W −z)|β+〉 = 〈z|arc,t, p‖〉. (A5b)

(These expressions assume W |x2 · p| � 1 for x ∈ {α, β}.)
From the criterion of normalizability, the momenta of Fermi
arcs are bound to

p · α2 > 0, p · β2 < 0. (A6)

The dispersion relations read

Eb
arc = χvp · α1, E t

arc = χvp · β1, (A7)

and hence the velocity expectation values are

vb
arc = χvα1, vt

arc = χvβ1. (A8)

The directions αi and βi are thus the directions in which
the Fermi arcs emanate from the Weyl node (i = 1) and the
directions of their motion (i = 2), both up to the sign, as
indicated in Fig. 2.
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2. Bulk states

For a real pz, from (5) the normalized wave functions of
the conduction (+) and valence band (−) read

ψp±(z) = 1√
W Np±

{[pz cos pzz − α2 · p sin pzz]|α+〉

+ i[±χ p − α1 · p] sin pzz|α−〉}
= 〈z|bulk,±, p〉, (A9)

where the normalization factor, isolating the finite-size correc-
tion ∼1/W , is given by

Np± = p(p ∓ χα1 · p) + δNp±, (A10a)

δNp± = − sin(W pz )

W pz

[(
p2

‖ ∓ χ p α1 · p
)

cos(W pz )

+ pzα2 · p sin(W pz )
]
. (A10b)

The velocity expectation values read

vp± = ±v
p‖
p

+ δvp±, (A11a)

δvp± = ∂Ep±
∂ pz

d pz

d p
= ±v

pz

p

d pz

d p
, (A11b)

where we again isolated the finite-size correction
δvp± ∼ 1/W , which stems from the weak p‖ dependence
of the quantized pz, as implicitly given in (8). Note that
vz = 0 due to the boundary conditions for all states.

APPENDIX B: ANISOTROPIC WEYL NODE

Here we generalize our calculations to Weyl fermions with
anisotropic velocity. We consider the Hamiltonian

h′(p) = vi jσi p j ≡ χvp′ · σ = h(p′), (B1)

where vi j = v ji and we defined p′
i = ṽi j p j in terms of

ṽi j = χ
vi j

v
, v > 0. (B2)

The chirality of the anisotropic Weyl node is χ = sign(det v).
Undashed symbols refer to the isotropic case discussed in the
main text. The current operator is

j′i = −evi jσ j = ṽi j j j . (B3)

To avoid complications in the boundary condition we specify
to

v = diag(v‖, vz ), (B4)

where v‖ is a 2 x 2 matrix acting only on components parallel
to the boundary. Furthermore, we set v = |vz|. With this we
may again employ the boundary conditions of Eq. (7). Then,
the arc and bulk wave functions may be obtained by simply
replacing p → p′ in Eqs. (A5a), (A5b), and (A9). Similarly,
the velocities can be expressed in terms of the isotropic ex-
pressions via

(
v′

p,n

)
i
= dE ′

p,n

d pi
= ∂ p′

i

∂ pi

dEp′,n

d p′
i

= ṽi j (vp′,n) j . (B5)

Altogether, the response tensor of the anisotropic Weyl node
is related to the isotropic node via [c.f. Eq. (22)]

�′
i jk = 8πητ

W

∫
d2 p‖

∑
qz pz

(
v′

p+
v

− v′
q−
v

)
i

δ

(
1 − E ′

p

ω
− E ′

q

ω

)[
M ′

pq ⊗ (M ′
pq)∗
]

jk
(B6a)

= ṽil ṽ jmṽkn

|det ṽ|
8πητ

W

∫
d2 p′

‖
∑
q′

z p′
z

(vp′+
v

− vq′−
v

)
l
δ
(

1 − Ep′

ω
− Eq′

ω

)[
M p′q′ ⊗ M∗

p′q′
]

mn
(B6b)

= ṽil ṽ jmṽkn

|det ṽ| �lmn, (B6c)

where the determinant stems from the change of variables
p‖ to p′

‖ (using |det ṽ‖| = |det ṽ| due to our choice of v).

APPENDIX C: SYMMETRY CONSIDERATIONS

1. Thick slab

We work in the basis of the thick slab α1 = x̂, α2 = ŷ.
The heterostructure Hamiltonian Eq. (12) of the semi-infinite
system under consideration can be written as

Hχm = χvp · σ +
{−χmσy z < 0

0 z > 0 , (C1)

where the vacuum at z < 0 is modeled by a large mass term
with m → ∞, which acts like a magnetization in breaking
the intra-node TR symmetry, as discussed in the main text.
We consider spatial mirror-plane reflections Ri, i = x, y, z,
with i = x corresponding to reflection with respect to the yz
plane, etc. A single reflection reverses the component of the

momentum and the current that is normal to the mirror plane
and the components of the spin that are parallel to the mirror
plane. The action of the reflections on the Hamiltonian thus
read

RxHχmRx = H−χm, RyHχmRy = H−χ−m. (C2)

In words, reflection Rx reverses the chirality and reflection Ry

reverses the chirality and the magnetization.
From this we can infer on the transformation behavior

of the response tensor. First, note that the (anti)symmetric
part of the response tensor �s (�a) is generally odd (even)
under TR [25]—the (anti)symmetric part is thus odd (even)
under m → −m. Second, in Sec. IV we have shown that
the (anti)symmetric part of the response tensor is even (odd)
under χ → −χ . Taking also into account the transformation
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of the current under reflections, we obtain for the symmetric
part,

Rx�
s
xRx = −�s

x, (C3a)

Rx�
s
yRx = �s

y, (C3b)

Ry�
s
xRy = −�s

x, (C3c)

Ry�
s
yRy = �s

y, (C3d)

while the antisymmetric part satisfies

Rx�
as
x Rx = �as

x , (C4a)

Rx�
as
y Rx = −�as

y , (C4b)

Ry�
as
x Ry = −�as

x , (C4c)

Ry�
as
y Ry = �as

y . (C4d)

From this follows

�thick
x =

⎛
⎝ 0 �xxy 0

�xxy 0 �xyz

0 −�xyz 0

⎞
⎠,

�thick
y =

⎛
⎝�yxx 0 −�yzx

0 �yyy 0
�yzx 0 �yzz

⎞
⎠. (C5)

2. Thin slab

We now work in the basis of the thin slab, depicted in
Fig. 2(c). We now consider the full heterostructure Hamilto-
nian (12),

Hχm = χvp · σ +
⎧⎨
⎩

−χm σ · α2 z < 0
0 0 < z < W
χm σ · β2 z > W

, (C6)

with m → ∞. The behavior under reflections and TR is as in
the previous section but now with two TR-breaking magneti-
zations.

We consider two symmetry transformations. First we note
that the combined reflection Rz, which swaps the top and
bottom surfaces, and Ry, which interchanges σ · α2 and σ · β2,
leave the Hamiltonian invariant. Second, the combination of
Rx and Ry inverts both σ · α2 and σ · β2, which can be com-
pensated by m → −m. Altogether,

RyRzHχmRzRy = Hχm, RxRyHχmRyRx = Hχ−m. (C7)

Both the symmetric and the antisymmetric parts of the
response tensor thus satisfy

RyRz�xRzRy = �x, (C8a)

RyRz�yRzRy = −�y, (C8b)

and, since the symmetric part is odd under m → −m, it satis-
fies

RxRy�
s
xRyRx = �s

x, (C9a)

RxRy�
s
yRyRx = �s

y, (C9b)

while the antisymmetric part satisfies

RxRy�
as
x RxRy = −�as

x , (C10a)

RxRy�
as
y RxRy = −�as

y . (C10b)
From this follows,

�thin
x =

⎛
⎝�xxx 0 0

0 �xyy �xyz

0 −�xyz �xzz

⎞
⎠,

�thin
y =

⎛
⎝ 0 �yxy −�yzx

�yxy 0 0
�yzx 0 0

⎞
⎠. (C11)

Finally, we may also constrain the dependency of the com-
ponents with respect to the angle � = (β − α)/2 ∈ [−π, π ].
In terms of �, the magnetization directions are given by α2 =
(− sin �, cos �) and β2 = (sin �, cos �). First, note that the
transformation � → −� may be compensated by Rx. From
this follows that components of the symmetric part of � are
odd under � → −� while components of the anti-symmetric
part are even. Next note, that � → � + π inverts both mag-
netizations and may be compensated by TR. From this follows
that components of the symmetric part of � are odd under
� → � + π while components of the antisymmetric part are
even.

APPENDIX D: PHOTOGALVANIC CURRENT DUE
TO ARC-BULK EXCITATIONS

As explained in the main text, the leading-order current
contribution due to arc-bulk excitations is of the same order of
magnitude as the subleading contributions from bulk-bulk ex-
citations. Other types of finite-size corrections that we had to
account for when considering bulk-bulk excitations can now
be disregarded, as they would give corrections of higher order.
In particular, we can replace the momentum sum over pz by
integrals in both the thick and thin slab regimes. Furthermore,
we can assume W → ∞ and δ → ∞ in both regimes and
neglect the finite light momentum k. In the thick-slab limit
only the bottom arc is relevant, in the thin-slab limit both arcs
contribute.

The response tensor due to the bottom arc is

�ab,b
i j = 8ητ

W

∫
d3 p

p
�(pz )�(py)

{
�(−χ px )δ(1 − p + χ px )

[
p‖
p

− χα1

]
Mab,b,+

i

(
Mab,b,+

j

)∗

+ �(χ px )δ(1 − χ px − p)

[
χα1 + p‖

p

]
Mab,b,−

i

(
Mab,b,−

j

)∗}
(D1)

where all momenta are dimensionless (in the Appendix we suppress the tilde, which denotes dimensionless units in the main text).
The first line captures transitions between conduction band and arc sheet, while the second captures transitions between the arc
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sheet and the valence band (the first Heaviside-� function enforces normalizability of the arc states, the second allows transitions
between empty and occupied states only). We also defined the arc-bulk matrix elements [p = p(sin θ cos φ, sin θ sin φ, cos θ )]

Mab,b,+ =
√

W p〈bulk,+, p|σ|arc,b, p‖〉 =
√

2 sin θ sin φ

1 − χ sin θ cos φ

cos θ (−α2 − iẑ)

χ + sin θ cos φ
, (D2a)

Mab,b,− =
√

W p〈arc,b, p‖|σ|bulk,−, p〉 =
√

2 sin θ sin φ

1 + χ sin θ cos φ

cos θ (α2 − iẑ)

χ − sin θ cos φ
. (D2b)

Letting px → −px in the second term of Eq. (D1) the current may be written as

�ab,b
i j = 16ητ

W̃

∫
d3 p

p
�(cos θ )�(sin φ)�(−χ cos φ)

δ(1 − p(1 − χ sin θ cos φ)) cos2 θ sin θ sin φ

(1 − χ sin θ cos φ)(1 + χ sin θ cos φ)2

×
{(

sin θ cos φ − χ

sin θ sin φ

)
(α2 + iẑ)i(α2 − iẑ) j +

(− sin θ cos φ + χ

sin θ sin φ

)
(α2 − iẑ)i(α2 + iẑ) j

}
. (D3)

This may be evaluated straightforwardly. The resulting response tensor in the thick slab basis is

�ab,thick
x = �ab,b

x = ητ

W

⎛
⎝0 0 0

0 0 i 16π
3 χ

0 −i 16π
3 χ 0

⎞
⎠, �ab,thick

y = �ab,b
y = ητ

W

⎛
⎝0 0 0

0 2π ln 2 0
0 0 2π ln 2

⎞
⎠. (D4)

The current due to the top arc (present only in the thin slab regime) may be obtained analogously. The result for the top arc
in the basis x̂ = β1, ŷ = β2 is

�ab,t
x = ητ

W

⎛
⎝0 0 0

0 0 i 16π
3 χ

0 −i 16π
3 χ 0

⎞
⎠, �ab,t

y = −ητ

W

⎛
⎝0 0 0

0 2π ln 2 0
0 0 2π ln 2

⎞
⎠. (D5)

In the thin-slab case both contributions combine into the total arc-bulk contribution. Introducing the rotation operator

R(ϕ) =
⎛
⎝cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0
0 0 1

⎞
⎠, (D6)

the total arc-bulk contribution, in the thin-slab basis [Fig. 2(c)], is given by

�
ab,thin
abc = R(�)aiR(�)b jR(�)ck�

ab,t
i jk + R(−�)aiR(−�)b jR(−�)ck�

ab,b
i jk , (D7)

which evaluates to

�ab,thin

4πητ/W
= x̂

⎛
⎝ln 2 sin3 � 0 0

0 ln 2 sin � cos2 � i 8
3χ cos2 �

0 −i 8
3χ cos2 � ln 2 sin �

⎞
⎠+ ŷ sin �

⎛
⎝ 0 ln 2 cos2 � −i 8

3χ sin �

ln 2 cos2 � 0 0
i 8

3χ sin � 0 0

⎞
⎠. (D8)

APPENDIX E: PHOTOGALVANIC CURRENT DUE TO BULK-BULK EXCITATIONS

This Appendix section is structured as follows. First we perform some general manipulations. Next we discuss the thick- and
thin-slab limits separately. In the thick-slab limit, we may let W → ∞ and ignore the quantization condition Eq. (8). Corrections
to the infinite system response arise from the spatial variation of the electromagnetic field corresponding to finite k, 1/δ. These
are of the same order of magnitude as the current due to arc-bulk excitations. Conversely, in the thin-slab limit, the spatial
dependence of the electromagnetic field may be ignored (k = 0, 1/δ = 0), but the quantization condition due to finite W leads
to corrections of the same order as the arc-bulk current.

We start from Eq. (22) and specify to bulk states m = (p,+) and n = (q,−),

�bb
i j = 8πητ

W̃ 3

∫
d2 p̃‖

∑
p̃z q̃z

(v̂p+ + v̂q−)δ(1 − p̃ − q̃)
[
M̃

bb ⊗
(

M̃
bb
)∗]

i j

∣∣∣∣∣
q‖=p‖−k‖

(E1)

where we defined the dimensionless bulk-bulk matrix elements

M̃
bb = W̃ 〈bulk,+, p̃|σeiz̃k̃z−z̃/δ̃|bulk,−, q̃〉. (E2)

Note that as opposed to the main text here we explicitly include the light momentum k. Since k = ω/c, the light momentum is a
factor v/c smaller than the typical momenta of excited states ∼1/� = ω/v. We will show below that it does not contribute at the
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relevant order of magnitude, in agreement with the argumentation in the main text. We set k = (k‖ cos γ , k‖ sin γ , kz ) and keep
terms to first order in k̃z, k̃‖ ∼ v/c.

We proceed by performing the integral over p‖ using the conservation of energy. The delta function gives the condition

g(p‖) = 1 −
√

p2
‖ + p2

z −
√

p2
‖ + q2

z − 2p‖k‖ cos(φ − γ ) + k2
‖ = 0.

This has a real solution if, to leading order in k‖,

pz + qz < 1 or P < 1/2, (E3)

where we defined new variables

P = 1

2
(pz + qz ), Q = 1

2
(pz − qz ) (E4)

with P > 0, P > Q > −P. The solution to g(p‖) = 0 is given by

p‖ = 1

2

√
(1 − 4P2)(1 − 4Q2) + k‖

2
cos(φ − γ )(1 + 4PQ). (E5)

Performing the integration over p‖ also gives rise to the Jacobian factor

1

|g′(p‖)| =
[

p‖ + pz(d pz/d p‖)

p
+ p‖ + qz(dqz/d p‖) − k‖ cos(φ − γ )

q

]−1

. (E6)

The derivatives d pz/d p‖ may be obtained from the boundary condition Eq. (A4). They contribute at order 1/W . Altogether, the
bulk-bulk response tensor is now

�bb
i jk = 8πητ

W 3

∫
dφ
∑
pzqz

p‖
|g′(p‖)| (v̂p+ + v̂q−)iM

bb
j

(
Mbb

k

)∗
�[1 − pz − qz]

∣∣∣∣∣
p‖=p‖(pz,qz,φ), q‖=p‖−k‖

. (E7)

Next, consider the matrix elements, Mbb
i . We can split them into a normalization factor that is common to all Mi and a factor

that depends on i,

Mbb
i = W 〈bulk,+, p|σie

ikzz−z/δ|bulk,−, q〉 = 1√
Np+Nq−

Mi, (E8)

where the Np± are defined in Eq. (A10). Using

〈α+|σ|α+〉 = − 〈α−|σ|α−〉 = α1, 〈α+|σ|α−〉 = 〈α−|σ|α+〉∗ = iα2 + ẑ, (E9)

the Mi read

M = {pzqzI1 + [p2q2 + (p − χ p1)(q + χq1)]I2 − (pzq2I3 + p2qzI4)}α1

+ {[χ · (pq2 − p2q) − (p1q2 + p2q1)]I2 + (pzq1I3 + p1qzI4) + χ (pzqI3 − pqzI4)}α2

+ i{[χ (pq2 + p2q) − (p1q2 − p2q1)]I2 − (pzq1I3 − p1qzI4) − χ (pzqI3 + pqzI4)}ẑ, (E10)

where we defined xi = αi · x as well as the integrals

I1 =
∫ W

0
dz e(ikz−1/δ)z cos pzz cos qzz, I2 =

∫ W

0
dz e(ikz−1/δ)z sin pzz sin qzz, (E11a)

I3 =
∫ W

0
dz e(ikz−1/δ)z cos pzz sin qzz, I4 =

∫ W

0
dz e(ikz−1/δ)z sin pzz cos qzz. (E11b)

These lead to conservation of “momentum” perpendicular to the boundary if W or δ become large. It will prove convenient to
also define the combinations

I± = pzI3 ± qzI4 = P(I3 ± I4) + Q(I3 ∓ I4), (E12)

To leading order in k‖, this gives

pzqI3 ± pqzI4 = 1

2

[
I± − (4PQ + 2k‖ · p‖

)
I∓
]
. (E13)
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1. Thick slab W � δ

In this limit, dominant corrections are of order 1/δ. They stem from the light penetration depth δ = 1 and the finite light
momentum k with k ∼ 1/δ. Ignoring the quantization of pz, qz, which give corrections of order 1/W � 1/δ we replace∑

pzqz

→
∫ ∞

0
d pz

∫ ∞

0
dqz → 2W 2

π2

∫ ∞

0
dP
∫ P

−P
dQ. (E14)

We expand the bulk-bulk current in orders of 1/δ and ki.

a. Leading order bulk-bulk contributions (�bb,thick)

For the leading-order contributions we set k‖ = 0 (i.e., p‖ = q‖) and analyze integrals of the type∫ 1/2

0
dP
∫ P

−P
dQ IiI

∗
j f (P, Q), (E15)

which enter the current formula with a smooth kernel f (P, Q) ∼ ∂P,Q f (P, Q) ∼ 1 ( f does not depend on the small parameter).
Considering i = j = 1, we find

|I1|2  4
(
δ−2 + k2

z

)
(P2 + Q2)2

(δ−2 + (kz − 2P)2)(δ−2 + (kz + 2P)2)(δ−2 + (kz − 2Q)2)(δ−2 + (kz + 2Q)2)
. (E16)

The leading contribution after integration is the term proportional to P4. Next, we use that∫ ∞

−∞
dQ

4
(
k2

z + δ−2
)

(δ−2 + (kz − 2Q)2)(δ−2 + (kz + 2Q)2)
= πδ, (E17)

so that to leading order in kz and 1/δ we can simplify

4(k2
z + δ−2)(

δ−2 + (kz − 2Q)2
)
(δ−2 + (kz + 2Q)2)

→ (πδ)δ(Q). (E18)

|I2|2 and I1I∗
2 are similar to |I1|2 with (P2 + Q2)2 replaced by (P2 − Q2)2 or (P4 − Q4), respectively. They clearly give the same

leading order behavior. For P � v/c we have to leading order

|I1|2  |I2|2  I1I∗
2  πδ

16
δ(Q). (E19)

Since f (P, Q) is smooth, corrections from small P ∼ v/c are of higher order in v/c.
Consider next |I±|2 and the corresponding cross-term. It is

|I+|2  4
(
δ−2 + k2

z

)2
(P2 + Q2)2

(δ−2 + (kz − 2P)2)(δ−2 + (kz + 2P)2)(δ−2 + (kz − 2Q)2)(δ−2 + (kz + 2Q)2)
 π

(
δ−2 + k2

z

)
δ

16
δ(Q). (E20)

Due to the extra factor of δ−2 + k2
z this may safely be ignored. However,

|I−|2  64P2Q2(P2 − Q2)2

(δ−2 + (kz − 2P)2)(δ−2 + (kz + 2P)2)(δ−2 + (kz − 2Q)2)(δ−2 + (kz + 2Q)2)
(E21)

does not come with a small factor in the numerator at all. Naively one might expect a contribution of order δ3. The factor of
Q2 reduces this to a contribution of order δ. The leading order contribution stems from the lowest power in Q, i.e., the term
proportional to P6Q2. Then, integrating by parts∫ P

−P
dQ

64Q2 f (P, Q)

(δ−2 + (kz − 2Q)2)(δ−2 + (kz + 2Q)2)
= −4δ

kz

∫ P

−P
dQ Q f (P, Q)∂Q

[
π

2
− arctan

(
δ−2 − k2

z + 4Q2

2kz/δ

)]

= 4πδ

{
P[ f (P,−P) − f (P, P)]δ(P) +

∫ P

−P
dQ [ f (P, Q) + Q∂Q f (P, Q)]δ(Q)

}

= 4πδ f (P, 0) (E22)

Here, we used

1

kz

∫ ∞

−∞
dQ

[
π

2
− arctan

(
δ−2 − k2

z + 4Q2

2kz/δ

)]
= π,

so that the integrand is again a delta function for kz, 1/δ → 0. Hence, for P � v/c

|I−|2  πδ

4
P2δ(Q). (E23)
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For the cross term we find by a similar argument

I+I∗
−  −π (kz + i/δ)2

16
δP∂Qδ(Q), (E24)

which is again negligible.
Finally, consider cross terms of the type I1I∗

+, I2I∗
+, I1I∗

−, I2I∗
−. The former two read to leading order

IiI
∗
+  4

(
k2

z + δ−2
)
(δ−1 + ikz )P4

(δ−2 + (kz − 2P)2)(δ−2 + (kz + 2P)2)(δ−2 + (kz − 2Q)2)(δ−2 + (kz + 2Q)2)
 π (δ−1 + ikz )

16
δ δ(Q). (E25)

The latter two read

IiI
∗
−  −16(1/δ − ikz )P5Q

(δ−2 + (kz − 2P)2) (δ−2 + (kz + 2P)2)(δ−2 + (kz − 2Q)2)(δ−2 + (kz + 2Q)2)
 π (kzδ − i)

16
P∂Qδ(Q). (E26)

With this we can now easily calculate the bulk-bulk current in the thick-slab limit at leading order. We drop all combinations
IiI∗

j with i, j ∈ {1, 2,+,−}, which do not give a order-δ contribution. The remaining combinations all give a delta function

δ(Q), corresponding to conservation of perpendicular momentum, pz = qz, and hence p = q = 1/2 and p‖ = √
1 − 4P2/2 =√

1 − p2
z/2. Identifying the combinations IiI∗

j giving rise to order-δ terms motivates the following definition:

M  �0I0 + �1I1, (E27)

where I0  2p2I1  2p2I2 and I1 = p2I−/P. Here �0 is (up to normalization) the matrix element at fixed momentum,

�0 ≡ (1 − sin2 θ cos2 φ
)
α1 − sin2 θ cos φ sin φ α2 + iχ sin θ sin φ ẑ ∝ 〈+, p|σ|−, p〉, (E28)

in terms of the spherical coordinates pz = p cos θ , p‖ = p sin θ , while

�1 ≡ χ cos θ α2 − i cos θ sin θ cos φ ẑ.

This term in the matrix element only arises if one allows for pz �= qz. It arises because I3,4 may become large if pz − qz ∼ 1/δ

even though they vanish for pz = qz (or pz − qz ∼ 1/W if the integral is cut off by the thickness of the slab, see below). The
normalization factor evaluates to

1

Np+Np−
= 1

p4(1 − sin2 θ cos2 φ)
. (E29)

Altogether, after transforming P = (cos θ )/2, we have

�bb,thick
0,i j = ητδ

W

∫
d�

�(cos θ )

(
cos φ

sin φ

)
sin θ

1 − sin2 θ cos2 φ

{
�0,i�

∗
0, j + �1,i�

∗
1, j

}
. (E30)

The angular integrals may be evaluated straightforwardly. This gives Eq. (40). Note that the result is symmetric under rotations
in the x, y plane and thus independent of the direction of the boundary conditions.

b. Subleading order bulk-bulk contributions (δ�bb,thick)

We now consider the leading corrections δJbb to Jbb. From the above calculations, one can expect a correction of order

δ�bb

�bb
∼ v

c
� 1. (E31)

stemming from two different sources: First, from an in-plane momentum shift due to the finite light momentum k‖, and second,
from the corrections to the integrals IiI∗

j of order (1/δ)0, k0
z . Consider first corrections due to finite light momentum. Since

these are already of the same magnitude as the corrections due to finite-size as well as the arc-bulk current, one may ignore the
slab geometry here. It is straightforward to verify that for a bulk Weyl cone these corrections vanish. We thus expect that the
relevant corrections due to a finite k vanish also in the slab. We first consider finite k‖. The products IiI∗

j do not involve k‖ and
are thus approximated as in the leading-order calculation above. In M we can thus again separate out I0  2p2I1  2p2I2 and
I1 = p2I−/P and expand the prefactors up to leading order in k‖,

M  �′
0I0 + �′

1I1, where �′
i = �i + k‖δ�i + O

(
k2
‖
)
, (E32)

where, introducing the shorthand notation cx = cos x, sx = sin x,

δ�0 = 1

2

[(
χs2

θc2
φ + 2sθcφs2

φ − χ
)
cγ + cφsφ

(
χs2

θ − 2sθcφ

)
sγ

]
α1

+1

2

[
cφsφ

(
χs2

θ − 2sθcφ

)
cγ + (χs2

θ s2
φ − 2sθcφs2

φ − χ
)
sγ + sθ sφ+γ

]
α2 − i

2
sγ−φ[sθ − χcφ]ẑ, (E33a)
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TABLE III. Estimated inaccuracy of numerical results for the subleading bulk-bulk response tensor δ�bb. The error corresponds to the
statistical relative standard error of a fit with first-order polynomial in 1/δ and δ ∈ {102.8, 103.0, ..., 103.4} (for larger values of δ the integration
is no longer stable due to the sharply peaked nature of the integrals Ii). Use of higher-order polynomials or inclusion of smaller δ points gives
comparable results and deviations.

δ�bb
xxy δ�bb

xyz δ�bb
yxx δ�bb

yyy δ�bb
yzz δ�bb

yzx

Error 5 × 10−4 3 × 10−3 5 × 10−5 5 × 10−3 1 × 10−3 1 × 10−5

δ�1 = 1

2

{
sγ α1 − cγ α2 + i

[−(s2
φ + χsθcφ

)
cγ + (sφcφ − χsθ sφ )sγ

]
ẑ
}
. (E33b)

Other terms entering the current formula expand as

p‖
|g′(p‖)| (v̂p+ + v̂q−) = sθ

2

(
cφ

sφ

)
+ k‖

2

(
cγ−2φ

−sγ−2φ

)
+ O

(
k2
‖
)
, (E34a)

Np+Np− = 1

16

(
1 − s2

θc2
φ

)+ k‖
8

[(sθcφ − χ )cγ + (χsθ − cφ )sθcφcγ−φ] + O
(
k2
‖
)
. (E34b)

We now specify to the basis of the thick slab, x̂ = α1, ŷ = α2. For γ = 0 (i.e., k‖ = k‖x̂) this combines to the total correction
of the response tensor

δ�
bb,k‖
x ∝

∫ π
2

0
dθ

∫ 2π

0
dφ

⎛
⎜⎜⎝

c2
θ − 4s2

θ s4
φ + (5s2

θ − 2)s2
φ 2s2

θcφsφ

(
2s2

φ − 1
)

isθ sφ

(
3s2

φ − 2
)

2s2
θcφsφ

(
2s2

φ − 1
)

1 + 4s2
θ s4

φ + (3c2
θ − 5)s2

φ icφsθ

(
1 − 3s2

φ

)
−isφsθ

(
3s2

φ − 2
) −icφsθ

(
1 − 3s2

φ

) −s2
θ

(
2s2

φ − 1
)
⎞
⎟⎟⎠, (E35a)

δ�
bb,k‖
y ∝

∫ π
2

0
dθ

∫ 2π

0
dφ

⎛
⎜⎜⎝

cφsφ

(
2c2

θ + 4s2
θ s2

φ

)
s2
θ s2

φ

(
4s2

φ − 3
) −3icφsθ s2

φ

s2
θ s2

φ

(
4s2

φ − 3
)

cφsφ

(
2 − 4s2

θ s2
φ

)
isθ sφ

(
2 − 3s2

φ

)
3icφsθ s2

φ isθ sφ

(
3s2

φ − 2
)

2s2
θcφsφ

⎞
⎟⎟⎠. (E35b)

It is straightforward to confirm that these expressions vanish upon integration over φ. Similar expressions for γ = π/2 (i.e.,
k‖ = k‖ŷ) also vanish.

The remaining corrections are corrections to the products IiI j , which have been discussed above, of order (kz ± i/δ)0. We
verified numerically, that the correction due to a finite kz vanishes as expected. Fitting the numerically evaluated response tensor
(for δ ∈ {102, 2 × 102, ..., 103}) to an expansion up to second order in 1/δ we find (rounding to the second decimal)

δ�bb,thick
x = ητ

W̃

⎛
⎝ 0 4.19 0

4.19 0 −16.75iχ
0 16.75iχ 0

⎞
⎠, (E36a)

δ�bb,thick
y = ητ

W̃

⎛
⎝ −4.19 0 9.87iχ

0 −4.20 0
−9.87iχ 0 −8.40

⎞
⎠. (E36b)

To estimate the accuracy of these results we compare the numerical values given here to those obtained by fitting expansions
to higher order in 1/δ as well as by adding/removing data points corresponding to the smallest values of δ. These changes in the
fitting procedure lead to changes in the numerical coefficients of � 0.5%. The error analysis is summarized in Table III.

2. Thin slab δ � W � �

In this limit, the leading finite-size corrections are ∼1/W , as discussed in the main text. Corrections due to the spatial variation
of the external field, which we found to give corrections of order ∼1/δ, are thus negligible and we can set k = 0, δ → ∞. We
now work in the basis of the thin slab.

a. Leading order (�bb,thin)

To calculate the leading-order response we disregard the quantization of pz, qz. Considering leading-order terms of the integral
products IiI j , the dominant contributions read

I2
1  I2

2  I1I2  πW̃

8
δ(Q), I2

−  πW̃ P2

2
δ(Q), (E37)

023021-18



SURFACE PHOTOGALVANIC EFFECT IN WEYL … PHYSICAL REVIEW RESEARCH 4, 023021 (2022)

all other combinations contribute only at higher order. Since the difference to the leading contribution of the thick-slab case is in
the constant prefactor, the leading-order bulk-bulk contribution in the thin-slab limit is given by the thick-slab result replacing
δ/2 → W . The final response tensor reads

�bb
i jk = iχ

4πητ

3
εi jk (1 − δi,z ). (E38)

b. Subleading order (δ�bb,thin)

The leading corrections to the bulk-bulk contribution in the thin-slab limit are of order 1/W . They can stem from the
quantization of pz, qz, the associated corrections to the velocity in Eq. (A11), and the corrections δNp± to the wave function
normalization. The current is given by Eq. (E7) with pz, qz solutions of

sin � = tan(pzW )

pz
[p‖ cos φ − χ p cos �], (E39a)

sin � = tan(qzW )

qz
[p‖ cos φ + χq cos �], (E39b)

where we defined the characteristic angle

� = β − α

2
∈ [−π, π ]. (E40)

These expressions as well as the tensors below are in the basis of the thin slab. Note that energy conservation makes p‖ and thus
also p and q depend on (pz, qz ). To evaluate the expression for the current for a given value of � we resort to numerics. We then
attempt to extract the functional dependence of the nonzero tensor components by fitting appropriate polynomials in sin � and
cos �.

We briefly outline the numerical strategy employed to extract the response tensor. For φ integration at fixed W we employ
standard numerical techniques relying on evaluation of the integrand for a discrete set of φ points. For each φ point we
numerically determine all solutions to Eqs. (E39) in the region pz + qz < 1. To determine δ�bb we evaluate Eq. (E7) at
W ∈ {100, 150, 200, 250} and subtract the leading-order term, Eq. (E38). We then fit to an expansion up to second order in
1/W and extract the coefficient of the 1/W term. In this way we determine all symmmetry-allowed elements of δ�bb for 30
values of � ∈ [0, π/2] (the intervals [−π, 0] and [π/2, π ] may be obtained from symmetry considerations, see Sec. C). Finally,
we fit the components of the symmetric part of the response tensor to each element to an appropriate expansion in Fourier modes,

nmax∑
n odd

as
n sin(n�),

where we exploit that they are odd under � → −� and � → � + π . Similarly, we fit the components of the antisymmetric
part to

aas
0 +

nmax∑
n even

aas
n cos(n�),

where we use that they are even under the above transformations. We found that nmax = 3 gives sufficiently good results with
higher-order coefficients satisfying an>3/(max an�3) � 10−3. Rounding to 10−2, the subleading order response tensor due to
bulk-bulk excitations in the thin-slab limit is

δ�bb,thin
x = ητ

W

⎛
⎜⎜⎝

−14.14 sin � + 4.71 sin 3� 0 0

0 −21.47 sin � − 4.71 sin 3� −iχ (26.71 + 6.88 cos 2�)

0 iχ (26.71 + 6.88 cos 2�) −23.04 sin �

⎞
⎟⎟⎠, (E41a)

δ�bb,thin
y = ητ

W

⎛
⎜⎜⎝

0 3.67 sin � − 4.71 sin 3� iχ (26.50 − 6.89 cos 2�)

3.67 sin � − 4.71 sin 3� 0 0

−iχ (26.50 − 6.89 cos 2�) 0 0

⎞
⎟⎟⎠. (E41b)

These results are accurate to the first decimal: the error estimates of the numerical integration scheme are on the order of 10−1

to 10−2. Similarly, altering the fitting procedure (e.g., by fitting to a first order expansion in 1/W or by removing data points in
W ) leads to changes in the numerical coefficients on the order of roughly 10−2 with the largest changes, at about 1%, observed
for the �-independent terms in the circular components. Note that averaging over � ∈ [−π, π ] restores rotational symmetry
around the z axis, which implies that the �-independent terms of �xyz and �yzx should actually be equal. Here, they differ by
roughly 0.5%, consistent with our error estimate.
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FIG. 8. Parallel-momentum (px, py ) resolved response tensor �̂(� =∑px ,py
�̂) at three widths W = 3, 6, 15 for v = 1 and � = 5 sites.

Left column indicates the dispersion at py = 0.

APPENDIX F: LATTICE SIMULATION OF A THIN SLAB

In this section we perform numerical calculations of the
PGE response tensor for a lattice model of the Weyl slab in the
thin-slab limit. It will extend the above semianalytical calcu-
lations, considered under the simplifying assumption W � 1
(the tilde is here still suppressed so that W is in units of �),
to the case of arbitrary W . In the ultrathin limit W ∼ 1 the
confinement-induced and bulk contributions are of the same
order.

We consider the ultrathin limit using the lattice Hamilto-
nian,

Hi j = v

2
[σx px + σy py + iσzδi, j+1 + σx(1 − δi, j+1)] + H.c.,

(F1)

where i, j denote the site index at fixed in-plane momenta
px, py. This lattice version of the original infinite-system Weyl
Hamiltonian (lattice constant set to one) has been constructed
replacing

σz pz �→ σz sin pz + σx(cos pz − 1), (F2)

such that the Hamiltonians coincide at small pz (the second
term removes a spurious Weyl cone at pz = ±π ). Transfor-

mation into the site basis replaces

sin pz �→ i 1
2 (δi, j+1 − δi, j−1), cos pz �→ 1

2 (δi, j+1 + δi, j−1),

(F3)

which leads to (F1). The Hamiltonian (F1) can be considered
for a finite site number. The choice of the Pauli matrix σx for
the second term in (F2) sets the direction of the Fermi arc
such that α2 = x̂ = −β2, corresponding to � = π/2 of the
thin-slab case considered above [62].

Numerical results for the PGE response tensor in Eq. (22)
are obtained via discretizing parallel momenta, numerically
diagonalizing the Hamiltonian (F1), and summing over all
pairs of states (one below and one above the Fermi level).
The numerical discretization spacing and numerical broad-
ening of the delta function expressing energy conservation
have been decreased until convergence of the results. Figure 6
shows the results for the response tensor as a function of
the width. Figure 8 shows the contributions resolved in the
in-plane momentum. One can clearly see the cusp-like lines
of the arc-bulk excitations and the circular lines of bulk-bulk
excitations, c.f. Fig. 3. The signs of the contributions and the
presence/absence of arc-bulk contributions is as discussed in
the main text.
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