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We present a scalable architecture for fault-tolerant topological quantum computation using networks of
voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color
codes have a set of transversal gates which coincides with the set of topologically protected gates in
Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a
natural setting in which advantages offered by topological hardware can be combined with those arising
from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a
complete description of our architecture, including the underlying physical ingredients. We start by
showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical
qubits for universal quantum computation, and we present protocols for realizing topologically protected
Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes
with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we
describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes,
and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by
nanowire-based networks of topological superconductors, but it could also be realized in alternative
settings such as quantum-Hall–superconductor hybrids.
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I. INTRODUCTION

Physical realizations of large-scale quantum computers
remain a paramount experimental challenge because
of the unavoidable presence of environmental decoherence.
Topological quantum computing is generally seen as
paving the way towards a solution to this problem [1–3]
in more than one sense: In the mindset of condensed-matter
physics, excitations of topological phases of matter have
been identified as candidates for physical qubits that are
robust to local perturbations and on which a certain set of
quantum gate operations can be performed largely noise-
free. In the context of quantum information theory, topo-
logical quantum error-correcting codes have been devised
as codes featuring high error tolerance which only require
the measurement of local stabilizer operators. While clearly
related, these predominantly hardware-based and software-
based approaches constitute two distinctly different read-
ings of topological quantum computing.
On the hardware side, the interplay of superconductivity,

spin-orbit coupling, and single spin-polarized conducting

channels has inspired various proposals for experimental
realizations of Majorana zero modes [4–9], subsequently
simply referred to as Majoranas. Quantum information can
be encoded using spatially separated pairs of Majoranas
[10] whose parity state is unaffected by local perturbations.
We refer to qubits encoded using this parity state as
physical qubits arising from topological hardware.
Furthermore, the exchange of pairs of Majoranas consti-
tutes a nontrivial braiding operation that can be used for the
implementation of robust quantum gates. Recent experi-
ments have provided increasing evidence for the emergence
of Majorana zero modes in semiconducting nanowires with
mesoscopic superconducting islands [11–15]. In such
setups, the state of the Majorana pair depends on the
fermion parity of the mesoscopic island. Therefore, elec-
trons tunneling onto the island can change the parity state
and thus spoil any quantum information encoded by the
Majoranas. This process is called quasiparticle poisoning.
Among other error sources, its rate defines a finite lifetime
for Majorana-based qubits.
If one aims at storing and manipulating quantum

information beyond the quasiparticle poisoning time—in
principle, for arbitrary times—errors need to be actively
corrected. This can be achieved by making use of topo-
logical error-correcting codes. The basic principle of such
codes is to fight local errors with entanglement so that local
noise cannot affect the logical information [16]. This is
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done by using multiple physical qubits to encode a single
logical qubit, which we refer to as topological software.
Recent proposals [17–21] have taken key steps in the

direction of combining topological hardware with software.
Importantly, the combination of Majorana-based qubits
with topological surface codes has been studied. However,
while the replacement of physical qubits with logical qubits
enhances resilience against noise, one must be aware that
physical gates are also substituted with logical gates.
Topological protection of gates on the physical level does
not necessarily translate to logical gates since, in general,
physical and logical gates are unrelated. Any error-cor-
recting code is, in principle, allowed to have a (nonuni-
versal [22]) set of transversal gates—i.e., logical gates that
correspond to the simultaneous application of the same
physical gate to all physical qubits [23]—but the trans-
versal gates of surface codes are limited to the CNOT and
Pauli gates.
In this work, we go a significant step further and

establish two-dimensional topological color codes as a
natural fit to enhance the fault tolerance of Majorana-based
quantum computers. They seamlessly combine the fer-
mion-parity-protected topological order of topological
superconductors [24] with the long-range topological order
of the toric code [25] in a way that allows one to exploit the
topological protection of both. Compared to surface codes,
color codes not only have a richer set of transversal gates,
but this set also coincides with the gates that are accessible
by braiding of Majoranas, namely, the Clifford gates
[26,27]. We hence further contribute to identifying the
precise advantages offered by topological protection, both
as far as the underlying condensed-matter physics is
concerned and on the level of logical encoding.
In the following sections, we describe our design for a

scalable fault-tolerant topological quantum computer from

the ground up, discussing the microscopic details of the
Majorana-based physical qubits, their encoding in topo-
logical superconductor networks, and the arrangement and
manipulation of logical qubits for quantum computing (see
Fig. 1). We begin in Sec. II by describing how networks of
topological superconducting islands can be used for uni-
versal quantum computation with topologically protected
Clifford gates. We require that topological superconductor
networks are capable of three operations: moving
Majoranas through the network by coupling neighboring
islands, measuring 2n-Majorana parity operators on con-
nected islands, and lifting the degeneracy of the parity
states on an island. We show that in such networks,
physical qubits can be arranged in hexagonal cells with
six nearest neighbors such that the qubits form a triangular
lattice [gray hexagons in Fig. 1(b)]. Here, each hexagonal
cell is associated with four Majoranas that are used for
quantum computation. Universal quantum computation
requires the implementation of a universal set of quantum
gates. One such set consists of the Clifford gates
(Hadamard, π=4, and CNOT gates) and the T gate (or
π=8 gate). We present protocols for single-qubit Clifford
gates via braiding inside a hexagonal cell and CNOT gates
between any pair of cells via braiding and parity measure-
ments. The addition of an unprotected T gate—which is not
accessible via braiding of Majoranas—by controlled split-
ting of the degeneracy completes the universal gate set.
While the Clifford gates of these Majorana-based qubits

are topologically protected, the T gate requires fine-tuning
of the device control parameters, which can easily lead to
errors in the T gate. Instead of attempting to implement a
robust T gate on the level of physical qubits [28,29], we
address this problem using magic-state distillation. This is a
common proposal for a fault-tolerant implementation of the
T gate on the level of logical qubits, the precision of which

(a) (b) (c) (d)

CNOT

Magic-state distillery

Data qubits

bypass

FIG. 1. Overview of the design for a scalable fault-tolerant topological quantum computer. The basic building block is the Majorana
Cooper pair box (a) consisting of a topological superconducting island with charging energy EC and Josephson energy EJ hosting a pair
of Majoranas γ1 and γ2. Parity measurements of the island are controlled by a gate voltage Vg. Multiple connected Majorana Cooper pair
boxes form a topological superconductor network through which Majoranas can be moved and which allows for the measurement
of 2n-Majorana parity operators. A triangular lattice of hexagonal-cell qubits (b) allows for universal quantum computation with
topologically protected Clifford gates. Fault tolerance is added by encoding hexagonal-cell qubits in diamond color codes (c) with
transversal Clifford gates. These form a square lattice of logical qubits. Arranging qubits on a line (d) with a magic-state distillery and a
CNOT bypass completes the universal gate set with a logical T gate and allows for CNOT gates between any pair of data qubits with
constant-time overhead.
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scales with the protocol length [30]. These protocols
typically include many multitarget CNOT gates (i.e., multi-
ple CNOT gates with the same control but different target
qubits). We show how parity measurements in topological
superconductor networks can be used for fast multitarget
CNOT gates, replacing multiple CNOT gates by a protocol
that is as fast as a single CNOT.
Another advantage of Majorana-based qubits is ancilla-

free syndrome read-out. Quantum error-correcting codes
typically require the measurement of stabilizer operators of
the form σ⊗n

z , where σz is a Pauli matrix and n is the
number of qubits involved in the measurement. In conven-
tional setups for quantum computing, such n-qubit parity
operators are typically not directly measurable but require a
lengthy protocol involving an ancilla qubit and n CNOT

gates. Since in topological superconductor networks the
parity of 2n Majoranas can be measured directly if the
Majoranas are moved onto a single connected supercon-
ducting island, n-qubit parity operators can be measured
without the use of ancilla qubits. In preparation for the
color code, we demonstrate how hexagonal-cell qubits can
be used to measure the required six-qubit parity operators.
The triangular lattice of physical qubits allows for a direct

implementation of triangular color codes with transversal
Clifford gates. In contrast to fermionic codes [18,31–33]
where each lattice site corresponds to a Majorana fermion,
we use a bosonic code where each lattice site is a bosonic
degree of freedom (d.o.f.) since our physical qubits are
comprised of fourMajorana fermions each and are therefore
bosonic qubits. In our encoding scheme, the logical qubits
are arranged on a square lattice, where each logical qubit has
four nearest neighbors. As this leaves some unused hex-
agonal cells, we extend the triangular color codes to
diamond-shaped color codes [see Fig. 1(c)], which have
the same code distance as their triangular counterparts but a
lower logical error rate. In Sec. III, we show that a square
arrangement of diamond color-code qubits [see Fig. 1(d)]
can be used for universal fault-tolerant quantum computing
with topologically protected Clifford gates, constant-time
CNOT gates between any pair of logical qubits, and logical T
gates with arbitrary precision. We discuss various protocols
for logical CNOT and multitarget CNOT gates, based on
transversal gates and lattice surgery [34].
In order to show a possible scalable realization of topo-

logical superconductor networks, we review Majorana
Cooper pair boxes [18,35–40] in Sec. IV as basic building
blocks of the physical architecture. In our description of
Majorana Cooper pair boxes [see Fig. 1(a)], we revisit how
topological superconducting islands combined with capaci-
tive coupling via a top gate and Josephson coupling
to a bulk superconductor can be used for parity-to-charge
conversion [35]. We demonstrate that networks of
Majorana Cooper pair boxes are capable of performing
the aforementioned required operations. These can be
implemented using proximitized semiconductor nanowires,

on which recent experiments have focused, but possibly
also in other platforms such as hybrid structures based on
quantum Hall, quantum spin Hall, or quantum anomalous
Hall edge states.
Finally, in Sec. V, we consider the main error sources in

our physical architecture and give a feasibility estimate.
There are three time scales that characterize networks of
Majorana Cooper pair boxes: the time required to move
Majoranas, the duration of parity measurements, and the
quasiparticle poisoning time. We identify constraints that
physical setups need to satisfy in order to operate below the
error threshold of color codes. Using a Monte Carlo
simulation, we study the improved performance of dia-
mond color codes over triangular color codes and give an
estimate of the space overhead—i.e., the number of
physical qubits per logical qubit—required for the logical
qubits to reach sufficiently long survival times for quantum
computation on the basis of experimental measurements of
quasiparticle poisoning times [41–43].
It should be clear that this article is aimed at both the

condensed-matter and quantum information communities.
Therefore, we have made an effort to include basic
introductions to the relevant concepts. Still, this article is
by no means a review, but it is meant to lay the groundwork
for color-code quantum computing with Majoranas in order
to fully exploit the topological protection of Majorana-
based qubits.

II. TOPOLOGICAL HARDWARE:
HEXAGONAL-CELL QUBITS

In a topological superconductor network, each super-
conducting island can host a pair of Majoranas γ1 and γ2
with degenerate even jei and odd joi eigenstates of the
fermion-parity operator iγ1γ2. We require the network to be
capable of three basic operations:
(1) Majoranas can be moved from island to island by

connecting neighboring superconducting islands
(see Fig. 2).

(2) For 2n Majoranas on a single connected island, the
total parity operator in

Q
2n
j¼1 γj of 2n Majoranas can

be measured projectively.
(3) The degeneracy between jei and joi can be split

temporarily and restored again.
We now show that such networks can be used to realize a

universal quantum computer. Even though a pair of
Majoranas is a two-level system, no superposition of jei
and joi can exist because of fermion-parity superselection,
and therefore, a pair of Majoranas cannot be used as a qubit.
Instead, qubits are encoded using two islands hosting four
Majoranas with fixed total fermion parity (see Fig. 2),
either in the even-parity sector,

j0i ¼ je; ei; j1i ¼ jo; oi; ð1Þ

or in the odd-parity sector,
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j0i ¼ je; oi; j1i ¼ jo; ei: ð2Þ

To initialize a qubit in one of these states, the two-Majorana
fermion parity of both islands is measured. Both encodings
can be used interchangeably, as in both cases, the qubit is
measured in the computational basis by measuring the
parity on the first island.
Furthermore, in both encodings, the exchange of γ1 and

γ2, and of γ2 and γ3 performs the same braiding operations
B1;2 and B2;3, respectively. Since the braiding operator [8]

Bi;j ¼
1þ γiγjffiffiffi

2
p ð3Þ

describes the clockwise exchange of Majoranas γi and γj,
the braiding operators describe the qubit operations

B1;2 ¼ e−iðπ=4Þσz ; B2;3 ¼ e−iðπ=4Þσx : ð4Þ

Here, σz and σx are Pauli operators in the computational
basis fj0i; j1ig. In terms of Majorana operators, σz ¼ iγ1γ2
and σx ¼ iγ2γ3.
Universal quantum computation requires a universal set

of quantum gates, i.e., a set of unitary operations on the
qubits, such that any n-qubit unitary operation can be
constructed as a product of unitaries from the universal set.
One such universal gate set is the standard set
fH; T; S;CNOTg [44], in which S ¼ expð−iπσz=4Þ and
T ¼ expð−iπσz=8Þ are the S and T gates (equivalently π=4
and π=8 gates), and H and CNOT are the Hadamard and
controlled-NOT gate,

H¼ 1ffiffiffi
2

p
�
1 1

1 −1

�
; CNOT¼

0
BBB@
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

1
CCCA: ð5Þ

The gates generated by the nonuniversal set fH; S;CNOTg
form the set of so-called Clifford gates, which are those
gates that map multiqubit Pauli operators to Pauli operators
under conjugation.

A. Clifford gates in hexagonal-cell qubits

From Eq. (4), it is evident that the single-qubit Clifford
gates can be implemented by braiding since S ¼ B1;2 and
H ¼ iB1;2B2;3B1;2 ¼ iB2;3B1;2B2;3. A topological super-
conductor network that allows for both exchanges is the
double T junction [35,45]. In this five-island geometry, the
upper and right superconducting islands host four
Majoranas encoding a qubit. Figure 2 shows protocols
for the braiding operations B1;2 via a three-point turn in the
left T junction and for B2;3 using the right T junction.
In the remainder of this section, we show that arrays of

hexagonal-cell qubits depicted in Fig. 3 can be used for
universal quantum computation, where qubits are arranged

FIG. 2. Protocols for braiding operations in a double T junction,
where red dots denote Majoranas and red lines connect the
coupled superconducting islands (orange). Left diagrams: Braid-
ing of γ1 and γ2 is achieved via a three-point turn in the left T
junction. Right diagrams: To braid γ2 and γ3, first γ3 is moved
from the right island to the bottom right island. Then, γ2 is moved
to the right island by first connecting all three islands in the right
T junction and then disconnecting the right island. Finally, γ3 is
moved to the center island.

FIG. 3. Left diagram: Hexagonal cell hosting four Majoranas
encoding one qubit. The single-qubit Clifford gates can be
performed by braiding in the double T junction in the lower
part of the cell. In a network of such cells, each cell has up to six
neighbors. Right diagram: Such a hexagonal lattice can also be
realized with only two different wire orientations using a brick-
wall geometry of superconducting islands.
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on a triangular lattice with up to six nearest neighbors for
each qubit. Since the lower part of the hexagonal cell is a
double T junction, it can be used for single-qubit Clifford
gates by braiding. Note that if the physical implementation
only allows for two orientations of the wires, as opposed to
three, such hexagonal cells can also be embedded into a
lattice with a brick-wall geometry, where hexagonal cells
are equivalent to nine-island rectangular cells.
Braiding of Majoranas does not allow for a CNOT gate.

However, qubit parity measurements and single-qubit
Clifford gates can be used to construct a CNOT gate using
an ancilla qubit [46]. Consider the quantum circuit shown
in Fig. 4. The action of a CNOT gate is to flip the target qubit
jti if the control qubit jci is in the j1i state and to apply the
identity if it is in the j0i state. Using an ancilla qubit
initialized in the state jþi ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

, a CNOT gate
can be implemented by a series of qubit parity measure-
ments and some corrective operations. In the first step of
the quantum circuit, the two-qubit parity operator σz ⊗ σz

between the control and ancilla qubit is measured, yielding
a measurement outcome m1 ¼ 0 for even and m1 ¼ 1 for
odd parity. Next, the rotated parity operator σx ⊗ σx
between the ancilla and target qubit is measured with
outcomem2, which is equivalent to a σz ⊗ σz measurement
with basis-rotating Hadamard gates applied before and after
the measurement. Finally, the ancilla qubit is measured in
the computational (σz) basis with outcome m3. The
three measurement outcomes are used to determine the
correctional operation on the control and target qubit
σm2
z ⊗ σm1þm3

x . This procedure can be seen as a topological
version of the nonlocal CNOT gates considered in Ref. [47].
Since the correctional operation consists of Pauli gates,

and Pauli gates can be commuted past Clifford gates
generating only other Pauli gates, it is not necessary to
physically perform the actual gate corresponding to the
correction. Therefore, as long as the gate circuit consists
only of Clifford operations, Pauli gates only need to be
tracked by a classical computer by updating the so-called
Pauli frame, using a procedure known as Pauli tracking
[48]. This is, strictly speaking, no longer the case when T
gates are involved since σxT ¼ T†σx. In this case, gate
synthesis at later steps needs to replace T by T† when
commuting σx past a T gate.
This parity-measurement-based protocol for a CNOT gate

can be readily implemented in hexagonal-cell qubits (see
Fig. 5). First, the ancilla qubit is initialized in the hexagonal
cell occupied by the control qubit. After the application of
Hadamard gates on the ancilla and target qubit (a), the two-
qubit parity operator σz ⊗ σz of the control and ancilla
qubit is measured by moving the first two Majoranas of
each qubit onto three connected superconducting islands
(b). Since the total fermion parity of the connected islands
ðic1c2Þðia1a2Þ is precisely the qubit parity operator, the

FIG. 4. Quantum circuit for a CNOT gate using parity measure-
ments and an ancilla qubit initialized in the jþi state. First, the
parity operator σz ⊗ σz of the control and ancilla is measured,
with outcome m1. Next, the parity operator σx ⊗ σx of the ancilla
and target is measured, with outcome m2. Finally, the ancilla is
measured in the computational basis σz with outcome m3. The
three outcomes determine the final correctional operation σm2

z ⊗
σm1þm3
x on the control and target, which can also be done by

updating the Pauli frame.

(a) (c)

(d) (e) (f)

(b)

FIG. 5. Protocol for a CNOT between two adjacent hexagonal-cell qubits using the quantum circuit in Fig. 4. In the cell occupied by the
control qubit (red), an ancilla (blue) is initialized in the j0i state and moved to the double T junction of the cell. (a) The ancilla and target
(green) are rotated via a Hadamard gate. (b) The first two Majoranas of the control, c1 and c2 and ancilla a1 and a2 are moved onto a
connected island, and the four-Majorana fermion parity −a1a2c1c2 is measured, corresponding to a two-qubit parity measurement
σz ⊗ σz with outcomem1. (c) The ancilla is moved back to the double T junction for anotherH gate. (d) The ancilla and target paritym2

is measured via a four-Majorana parity measurement in the right cell. (e) An H gate is applied to the ancilla and target qubits in their
respective double T junctions. (f) Finally, all qubits return to their initial positions, and the ancilla qubit is measured by measuring the
two-Majorana fermion parity ia1a2 with outcome m3.
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measurement of the four-Majorana fermion parity yields
the two-qubit parity. After another H gate (c), the same
parity measurement is repeated for the ancilla and target
qubit (d). After the final set of H gates, all Majoranas are
returned to their initial positions, and the ancilla qubit is
read out by measuring the two-Majorana parity ia1a2. The
ancilla qubit may be discarded after the protocol. This
concludes the protocol for a CNOT gate between adjacent
hexagonal-cell qubits. In Appendix A, we demonstrate that
this scheme can also be used for CNOT gates between
arbitrary hexagonal-cell qubits. Moreover, we show that
multiple CNOT gates can be applied simultaneously in a
transversal fashion.
This parity measurement-based protocol for a CNOT gate

can be extended to multitarget CNOT gates. A multitarget
CNOT gate corresponds to the application of n CNOT gates
with one control qubit jci and n different target qubits jtii.
Such multitarget CNOT gates are part of magic-state dis-
tillation protocols, which are used for the implementation
of a robust logical T gate. Using the protocol in Fig. 4, a
multitarget CNOT with n targets would require n ancilla
qubits and 3n parity measurements. A faster alternative
uses only one ancilla qubit and a parity measurement
involving the ancilla and all n target qubits (see Fig. 6).
This multitarget CNOT protocol replaces 3n measurements
for n CNOTs by just three measurements for an n-qubit
multitarget CNOT. A proof of the circuit identity in Fig. 6 is
given in Appendix B. The application of this (transversal)
multitarget CNOT gate to distillation protocols in topologi-
cal superconductor networks is discussed in Sec. III.

B. T gates and stabilizer measurements

So far, we have only shown the implementation of the
nonuniversal set of Clifford gates in topological super-
conductor networks. In fact, by virtue of the Gottesman-
Knill theorem, Clifford quantum computers are no more

powerful than classical computers [49]. Unfortunately, the
T gate, which completes the universal gate set, cannot be
done using a combination of braiding of Majoranas and
parity measurements. An unprotected, error-prone T gate
can be achieved by splitting the degeneracy of the parity
states on the island hosting the first two Majoranas, such
that the energy splitting between j0i and j1i is ΔE. After a
time τ ¼ π=4 · ℏ=ΔE, the dynamic phase accumulated by
time evolution will correspond to the T gate, and the
degeneracy is restored again. In contrast to the Clifford
gates, this protocol requires fine-tuning of the device
control parameters and does not protect the T gate against
errors. There exist more sophisticated protocols for physi-
cal T gates in Majorana-based setups [28,29], but for our
purposes, any implementation of physical T gates is
sufficient, as these gates can be used to implement T gates
with arbitrary precision using the magic-state distillation
procedure outlined in Sec. III.
In preparation for error correction using color codes, we

also demonstrate the measurement of six-qubit parity
operators σ⊗6

z without the need for ancilla qubits.
Consider the six hexagonal-cell qubits in Fig. 7 arranged
around an empty hexagonal cell. If the first two Majoranas
of each surrounding qubit are moved onto 12 connected
islands, the total parity of this island will be the 12-
Majorana operator

Q
6
j¼1 iγj;1γj;2, which is precisely the six-

qubit parity operator σ⊗6
z . This allows for the direct read-out

FIG. 6. Quantum circuit for a multitarget CNOT gate using parity
measurements and an ancilla qubit initialized in the jþi state.
First, the parity operator σz ⊗ σz of the control and ancilla is
measured, with outcome m1. Next, the parity operator σx ⊗ σ⊗n

x
of the ancilla and n targets is measured, with outcomem2. Finally,
the ancilla is measured in the computational basis σz, with
outcome m3. The three outcomes determine the final correctional
operation σm2

z ⊗ ðσm1þm3
x Þ⊗n on the control and targets, which

can also be done by updating the Pauli frame.

Meas. cell

FIG. 7. Six-qubit parity measurement in a triangular lattice of
hexagonal-cell qubits. Six hexagonal-cell qubits, Q1–Q6, are
arranged around an empty cell that is used for the measurement of
the parity operator σ⊗6

z . For clarity, the Majoranas of each qubit
are colored red and blue in an alternating fashion. The first two
Majoranas of each qubit are moved to this cell, such that 12
connected superconductors host 12 Majoranas. The total 12-
Majorana parity of this island is precisely the six-qubit parity
operator.
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of the parity, circumventing the usual procedure [50]
involving an ancilla qubit and six CNOTs between the
ancilla and each qubit. The measurement of such n-qubit
parity operators is required for quantum error correction,
where they are the stabilizers of the code.
In summary, we have shown that topological super-

conductor networks, which allow for the movement of
Majoranas, 2n-Majorana parity measurements, and tuning
of the energy splitting between parity states, constitute
universal quantum computers. In particular, triangular
lattices of hexagonal-cell qubits feature topologically
protected Clifford gates and a T gate requiring fine-tuning.
Furthermore, n-qubit parity operators σ⊗n

z can be measured
without the need for ancilla qubits, and multitarget CNOT

gates require only three parity measurements, regardless of
the number of target qubits.

III. TOPOLOGICAL SOFTWARE:
DIAMOND COLOR CODES

Unless the topological hardware is perfect, qubit errors
will occur after a certain number of gate operations. These
errors change the outcome of the quantum computation and
therefore need to be actively corrected. In quantum error
correction, multiple physical qubits are used to encode a
single error-resilient logical qubit. In so-called stabilizer
codes [3,51], the logical qubit is encoded in the degenerate
ground-state space of a Hamiltonian,

HS ¼ −
X
i

Oi; ½Oi;Oj� ¼ 0: ð6Þ

Here, Oi are operators with eigenvalues �1, which are
called stabilizers and are products of Pauli operators. Since
all stabilizers commute, the ground-state space is spanned
by the simultaneous þ1 eigenstates of all stabilizers, under
the condition that the operator −1 is not part of the
stabilizer group. Logical information can be stored in this
degenerate ground-state space, also referred to as code
space. For the logical qubits discussed in this work, the
ground-state space is doubly degenerate, where the eigen-
states define the logical qubit states j0Li and j1Li. Note that
the Hamiltonian HS does not necessarily describe the
physical system used for quantum computation. Instead,
HS merely defines the code space, into which the physical
system is projected by measuring all stabilizer operators.
Errors occurring on physical qubits will change the

eigenvalue of certain stabilizers. The so-called code dis-
tance is the minimum number of qubits that need to be
affected by errors in order to change the logical subspace,
i.e., map j0Li onto j1Li and vice versa. In order to prevent
this from happening, all stabilizer operators are measured
periodically before physical errors can affect the encoded
information. These measurements reveal the so-called error
syndrome, which is a list of all stabilizer measurement
outcomes �1. This information is used to correct the errors

that have occurred. The practical problem that has to be
overcome is that only the syndrome is available, while the
actual errors are unknown. Moreover, different error
configurations can lead to the same error syndrome. The
classical algorithm that finds a suitable error configuration
belonging to a given syndrome is called a decoder
[25,52–58].
Typically, quantum error-correcting codes operate in

code cycles. In every code cycle, logical operations are
performed, the syndrome is read out by making use of
stabilizer measurements, and the errors on physical qubits
are actively corrected. But even logical qubits only have a
finite survival time, as quantum error-correcting codes
merely replace a physical error rate by a (preferably lower)
logical error rate. The minimum number of physical qubits
that need to be affected by errors within a code cycle, such
that the errors are no longer correctable, scales with the
code distance. There are two prescriptions for how a
higher-distance code can be obtained from a low-distance
code: code concatenation [51] and topological codes. Code
concatenation has the drawback that it requires the meas-
urement of increasingly nonlocal stabilizer operators with
increasing code distance. In contrast, the stabilizers of
topological codes remain spatially local as the code
distance is increased. Moreover, in topological codes, the
encoded logical quantum information is protected from
local perturbations because virtual transitions require an
order in perturbation proportional to the system size. In the
case of surface and color codes, errors generate and
propagate anyons—excitations of the system with non-
trivial braiding statistics—that are manifested in a changed
stabilizer measurement outcome. This implies that for
surface and color codes defined on a lattice, anyons need
to propagate through the entire lattice in order to affect the
logical subspace, i.e., errors need to form along a nontrivial
line through the lattice. The locality of stabilizers and high
error resilience are the two key advantages that distinguish
topological from nontopological codes.
In fault-tolerant quantum computing, it is desirable to

perform all gate operations on the level of encoded logical
qubits without the need to decode them back to error-prone
physical qubits [16]. However, the physical operations that
constitute a logical gate UL are typically entirely different
from the known physical gates U. An exception are so-
called transversal gates, which, for our purposes, are logical
gates that are precisely the application of the corresponding
physical gate (or its Hermitian conjugate) on each qubit,
i.e., UL ¼ Uð†Þ⊗n. This has the advantage that errors due to
faulty implementations of single physical gates do not
spread to other physical qubits. Moreover, transversal gates
directly employ physical gates to implement logical gates,
enabling us to carry over the topological protection of
physical gates to the level of logical gates. However, the
Eastin-Knill theorem states that no code can have a set of
transversal gates that is also a universal gate set [22].
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One family of topological codes with transversal gates
are topological color codes [26]. Their set of transversal
gates are the Clifford gates. Since this set coincides with the
set of topologically protected operations of topological
superconductor networks, color codes are a natural fit to
Majorana-based hardware. In comparison to the closely
related [59] surface codes, which cannot implement braid-
ing transversally, color codes also feature a higher error
threshold. The error threshold is the maximum physical
error rate below which logical errors are suppressed by
increasing the code size, allowing for quantum computation
of arbitrary duration. We note that in circuit models where
Clifford gates are error prone and stabilizers are measured
using ancilla qubits and CNOT gates, surface codes indeed
feature a higher threshold than color codes [60]. However,
in the limit of topological hardware where Clifford oper-
ations have a vanishing error rate and stabilizer read-out
does not require ancilla qubits, color codes outperform
surface codes even in the presence of measurement errors
during syndrome read-out [61,62]. In addition, since the
Clifford gates are transversal for color codes, their imple-
mentation only requires one code cycle. This reduces time
overhead compared to surface codes, where their imple-
mentation requires multiple code cycles [50].

A. Triangular and diamond color codes

Color codes are stabilizer codes that are defined on
lattices with three colorable faces. Physical qubits sit on the
vertices, and the stabilizers are operators acting on all
qubits surrounding a face. Figure 8 shows a family of color
codes that is defined on a hexagonal lattice of physical
qubits, namely, the triangular 6.6.6 color codes. Here, all
stabilizers involve either four or six qubits. There are two
stabilizers per face f, an X-type stabilizer OX ¼⊗i∈f σx
and a Z-type stabilizer OZ ¼⊗i∈f σz. Thus, the logical
qubits in the color code are encoded in the ground-state
space of the Hamiltonian,

Hcolor code ¼ −
X
faces

OX −
X
faces

OZ: ð7Þ

To initialize a color-code qubit in the logical j0Li state, all
physical qubits are initialized in the j0i state, the stabilizers
are measured, and the errors are corrected.
Every physical qubit is part of up to three different-

colored X-type and Z-type stabilizers. At the boundaries,
qubits are only part of one or two stabilizers, but if one
assigns colors to the boundaries (see Fig. 8), every qubit is
part of three different-colored stabilizers or boundaries.
A σz-type Pauli error on a physical qubit will flip the
three surrounding red, green, and blue X-type stabilizers.
Conversely, a σx-type error will flip three Z-type
stabilizers. In the language of topological codes, flipped
stabilizers with eigenvalue −1 host an anyon. Thus, errors
generate and propagate strings with red, green, and blue
anyons at their endpoints. Each edge can absorb anyons of
its respective color. A logical error occurs when physical
errors propagate a red, a green, and a blue anyon to the red,
green, and blue edges, respectively. Thus, a logical ðσzÞL
operator is given by any string of physical σz operators that
propagates anyons in this way. In particular, physical σz
operators on all physical qubits sitting on any one of the
three edges propagate anyons accordingly and therefore
correspond to logical ðσzÞL operators. Similarly, logical
ðσxÞL operators correspond to strings of physical σx
operators.
Each code cycle consists of three steps. First, logical

operations are performed on the encoded qubits. Next, the
error syndrome is extracted by measuring all stabilizers.
The syndrome is then given to the decoder. Finally, the
corrections proposed by the decoder are applied. Note that
it is not necessary to physically correct the errors, as they
can be handled classically by Pauli tracking [48], under the
assumptions discussed in Sec. II.
In the triangular lattice formed by hexagonal-cell qubits,

the cell in the center of each stabilizer is not occupied by a

Physical qubit

Measurement cell

Qubit

Qubit Qubit

Qubit

QubitQubit

FIG. 8. First three topological triangular color codes with code distances 3, 5, and 7 (where the smallest one is equivalent to the Steane
code [63]). These 6.6.6 color codes are defined on a hexagonal lattice, where each vertex is a physical qubit and each face is an X-type
and a Z-type stabilizer involving the surrounding qubits. Physical errors on a qubit affect the three different-colored stabilizers and edges
surrounding the qubit. In the triangular lattice of hexagonal-cell qubits, the empty cell in the center of each face can be used for stabilizer
measurement.
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physical qubit. Instead, these cells can be used for stabilizer
measurements, as shown in Fig. 7 for Z-type stabilizers.
Note that X-type stabilizers can be measured by applying a
Hadamard gate to all qubits before and after the measure-
ment. Color codes fall into the class of CSS codes [63,64];
i.e., all stabilizers are products of only σz operators or only
σx operators. CSS codes have a transversal implementation
of the CNOT gate, where the logical CNOT gate corresponds
to the application of physical CNOTs between all corre-
sponding physical qubits of two codes [see Fig. 9(a)].
Moreover, color codes are strong CSS codes because the
support of Z-type and X-type stabilizers coincides. This
implies that Hadamard gates are transversal, and the logical
Hadamard gate HL ¼ H⊗n maps stabilizer states onto
other stabilizer states. In general, this is not true for the
application of physical S gates on all qubits. Therefore, the
transversal SL gate requires greater care, as some physical S
gates need to be replaced by S† gates. One general
prescription is to bicolor the vertices of the color-code
graph, such that neighboring qubits have different colors. In
Fig. 9(a), we color the sublattice containing the corner
qubits blue, and we color the other sublattice orange. The
logical SL gate then corresponds to physical S gates on blue
qubits and physical S† gates on orange qubits [65].
All physical operations required for single-qubit trans-

versal gates can be applied simultaneously since they only
require braiding within each hexagonal-cell qubit. As we
show in Appendix A, also for transversal CNOTs, all
physical CNOTs can be performed simultaneously in a
hexagonal-cell qubit geometry. However, this requires
the triangles encoding the control and target qubit to be
oriented the same way. Thus, the densest packing of
triangular color codes along one line is not practical.
Instead, we choose to extend the upward-pointing

triangular codes into the unused space on their right,
forming diamonds, as shown in Fig. 9(b). Since all
stabilizers of one type and color can be measured simulta-
neously, this happens at no increase in space or time
overhead. Moreover, our Monte Carlo simulation in Sec. V
shows that diamond codes even feature a lower logical error
rate compared to triangular codes with the same code
distance. Note that when extending triangles to diamonds,
only one of the edges becomes longer compared to the
triangular code. As the code distance is given by the length
of the shortest edge, the extension to diamond color codes
lowers the logical error rate despite leaving the code
distance unchanged.
Universal fault-tolerant quantum computation with log-

ical diamond color-code qubits requires the implementation
of a universal gate set fHL; SL;CNOTL; TLg. The first two
gates are implemented directly in a transversal fashion. The
CNOTL gate requires special care. Even though it can be
done transversally, CNOTs in hexagonal-cell qubits use
physical ancilla qubits, which are not protected against
noise. In the remainder of this section, we show that a one-
dimensional arrangement of data qubits with a magic-state
distillery above and a CNOT bypass below [see Fig. 9(c)]
implements the remaining two logical gates in a fault-
tolerant fashion. A magic-state distillery is an array of
qubits used for magic-state distillation, whereas data qubits
are qubits used for quantum computation but not for
distillation. We present protocols that use the CNOT bypass
to implement a fault-tolerant CNOTL gate with an overhead
that scales with neither the code distance nor the distance
between the control and target qubits. Furthermore, we
demonstrate how the magic-state distillery can be used to
produce and store magic states, which allow for a fault-
tolerant implementation of the TL gate.

(b) (c)(a)

CNOT

Magic-state

Data qubits

Transversal CNOT

Physical CNOT

Transversal

FIG. 9. (a) Color codes feature transversal Clifford gates. While the logical Hadamard gate is simply HL ¼ H⊗n, the logical S gate SL
is a mixture of physical S and S† gates. Using a bicoloration of the physical qubits, such that the sublattice involving the corner qubits is
blue and the other one is orange, SL requires physical S gates on blue qubits and an S† gate on orange qubits. The logical CNOT gate
corresponds to n physical CNOTs between pairs of qubits from two triangles. (b) Since this requires the movement of ancilla qubits from
one triangle to the other, this leaves some unused space in between, which can be used for the diamond color codes. These form a square
lattice of logical qubits. (c) Universal fault-tolerant quantum computation can be achieved on a line of data qubits with a magic-state
distillery and a CNOT bypass.
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B. Logical CNOT gates

We present three protocols for logical CNOT gates between
data qubits. In the first protocol, the control qubit is moved to
the target qubit through theCNOTbypass, and theCNOTgate is
performed transversally [see Fig. 9(a)]. However, the ancilla
qubits in this protocol are physical qubits and therefore
susceptible to errors. Moreover, since measurements are part
of the CNOT protocol, a physical CNOT gate may introduce
additional errors if measurements are not perfect. Both
factors increase the noise level for logical CNOT gates. The
noise level can be decreased by substituting physical ancilla
qubits by a logical ancilla qubit.
An implementation of the circuit in Fig. 4 with logical

qubits requires parity measurements between logical
qubits. Since the logical σz operator is a nontrivial string
of physical σz operators through the code, the two-qubit
ZZ-parity operator of two distance d codes is a product of
at least 2d σz operators. One method of fault tolerantly and
projectively measuring the two-qubit parities of logical
qubits is called lattice surgery [34]. Here, new stabilizers
are temporarily introduced on the boundary between two
logical qubits. In Fig. 10(a), we show a lattice surgery
protocol along the green boundaries of two diamond

color-code qubits, although any two boundaries can be
used regardless of color as long as they have equal lengths.
In this protocol, the red four-term X stabilizers at the
boundaries are merged to form eight-term stabilizers. The
corresponding Z stabilizers remain unchanged (see Fig. 21
in Appendix C). Green three- and four-term stabilizers are
introduced which commute with all other stabilizers and
involve each boundary qubit exactly once. Therefore, these
stabilizers are only measured in the Z basis, as the product
of all green boundary stabilizers is precisely the ZZ parity.
If these stabilizers are measured along with the other
stabilizers, qubit errors can be corrected and the parity
measurement is fault tolerant. The error due to faulty
measurements can be reduced by repeating sufficiently
many rounds of syndrome extraction. After the product of
the green boundary stabilizers is determined—and there-
fore the two-qubit parity—the stabilizers are reverted to the
initial configuration. Similarly, the XX parity can be
obtained by swapping X and Z stabilizers in the afore-
mentioned protocol. We stress that the lattice surgery
protocol projectively measures the logical two-qubit parity
without revealing any additional information, as we discuss
in greater detail in Appendix C.

(a)

(b)

(c)

CNOT

Control Data Data Data Data Target

Control

Control

Data Data Data Data Target

Target

AncillaAncilla

Ancilla

Ancilla Ancilla

Move

CNOT

For

Only Only

FIG. 10. (a) Fault-tolerant ZZ-parity (XX-parity) measurement between two diamond color-code qubits by lattice surgery [34],
denoted by black lines crossing the neighboring boundaries. First, new three- and four-qubit green stabilizers are introduced, and new
eight-qubit stabilizers are obtained by merging red plaquettes along the boundary. These stabilizers are measured along with all other
stabilizers in order to obtain the ZZ parity (XX parity), where the new green boundary stabilizers are only measured in the Z basis
(X basis) and the red eight-qubit stabilizers only in the X basis (Z basis). (All stabilizers are explicitly shown in Fig. 21 in Appendix C.)
The product of the green boundary stabilizers is precisely the two-qubit parity. Finally, the stabilizers are returned to their initial
configuration before the lattice surgery. (b) Protocol for a fault-tolerant CNOT using lattice surgery. A logical ancilla is initialized in the
jþi state. The ZZ parity between the control and ancilla is measured, and the ancilla is moved through the CNOT bypass to the target.
Finally, the XX parity between the ancilla and target is measured, and the ancilla is read out. The length of this protocol scales linearly
with the distance between the control and target. (c) Lattice-surgery-based CNOT protocol with constant-time overhead. The ZZ parities
between the control and three ancilla qubits in the jþi state are measured simultaneously using the three lattice surgeries indicated in the
figure. Next, the XX parity between ancilla 3 and the target is measured. Finally, ancilla 3 is read out in the Z basis, while ancillas 1 and 2
are measured in the X basis. In the presence of measurement errors during syndrome read-out, this protocol scales logarithmically with
the distance between the control and target.
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Thus, the second protocol is a CNOTwith a logical ancilla
shown in Fig. 10(b). A logical jþi ancilla is initialized in
the CNOT bypass next to the control qubit. The ZZ parity
between the ancilla and control is measured by lattice
surgery, and the ancilla is moved to the target qubit. Finally,
the XX parity between the ancilla and target is measured,
and the ancilla is measured in the σz basis. Although this
protocol yields a logical CNOT gate with arbitrary precision,
it still has one major drawback: The protocol length
increases linearly with the distance between the control
and target qubit.
This can be alleviated by using two additional ancilla

qubits with long edges, which replaces the movement of the
ancilla qubit by a number of simultaneous stabilizer
measurements at the long edge. The third protocol is a
CNOT with constant-time overhead [see Fig. 10(c)]. Three
jþi ancillas are arranged such that ancillas 1 and 2 both
have a short and a long edge and cover the entire distance
between the control and target qubit. Using lattice surgery,
the ZZ parities between the control and ancilla 1, between
ancillas 1 and 2, and between ancillas 2 and 3 can be
measured simultaneously. This is equivalent to measuring
the two-qubit parities between the control qubit and each of
the ancilla qubits. Therefore, ancilla 3 can be directly used
as the CNOT ancilla. Its XX parity with the target qubit is
measured, and it is read out in the σz basis. Ancillas 1 and 2
cannot be discarded right away, as they are still entangled
with the control qubit. They can be disentangled by
measuring the ancillas in the σx basis with measurement
outcomes m1 and m2, and by applying a σm1þm2

z correction
to the control qubit. An explanation of the quantum circuit
corresponding to this protocol is found in Appendix E.
In the absence of measurement errors, this protocol has a

constant-time overhead. This is no longer true if syndrome
measurements are faulty. Such a measurement can be
described by a perfect measurement, followed by the
identity map with probability p and a flipped outcome
with probability 1 − p. Since more boundary stabilizers are
involved in the parity measurement comprising ancillas 1
and 2, they need to be measured more often to achieve the
same accuracy as the other parity measurements. However,
because the measurement error probability decreases expo-
nentially with each repetition, whereas the number of
boundary stabilizers only increases linearly with the dis-
tance between the control and target, the time overhead of
this CNOTonly scales logarithmically with the control-target
distance.
We have presented three protocols for logical CNOT

gates. The transversal protocol between nearest neighbors
is fast but has a fixed accuracy and a time overhead that
scales linearly with the control-target separation. The
second protocol uses a logical ancilla and can therefore
achieve arbitrary accuracy, but it is slower than the first
protocol as it requires multiple code cycles. The third
protocol eliminates the time overhead or replaces it by a

time overhead that scales favorably as the logarithm of the
distance between the control and target. By adding rows to
the CNOT bypass, multiple spatially intertwined CNOT gates
can be performed simultaneously. Note that due to the
overhead in quantum wires in a hexagonal-cell qubit,
logical diamond color-code qubits do not block each
other’s paths when moving, as they can be moved through
one another, similar to how ancilla qubits can be moved
past other qubits in the transversal CNOT protocols of
Figs. 5 and 20.

C. Magic-state distillation

The only gate remaining for a universal fault-tolerant
quantum computer is the logical TL gate. We point out that
even if the physical hardware had a topologically protected
physical T gate, there would be no way of directly using
this for a TL gate as the T gate cannot be transversal in a
code with transversal Clifford gates due to the Eastin-Knill
theorem [22], which states that the ability of a quantum
code to detect arbitrary errors on any single physical
subsystem is incompatible with the existence of a universal,
transversal encoded gate set for the code. There exist code-
switching methods that allow us to switch the logical qubit
from one code to another code with a different set of
nonuniversal transversal gates. However, in order for this
set to include the T gate and for the stabilizers to still
remain local, the qubits need to be arranged in three
dimensions instead of two [66].
One possibility to implement a logical low-error T gate

using logical Clifford gates and a physical T gate is magic-
state distillation. Consider the state injection circuit
shown in Fig. 11, which is equivalent to a T gate on the
qubit jψi. Using an ancilla magic state jmi ¼ Tjþi ¼
ðj0i þ eiπ=4j1iÞ= ffiffiffi

2
p

, a CNOT between the qubit and one
prepared in a magic state, followed by the measurement of
the magic state with outcome mz, corresponds to a T gate
up to a correctional Smz operation. Such a procedure of
effectively generating a quantum gate by making use of
suitable quantum state resources is referred to as gate
teleportation.
In order for this state injection algorithm to yield a

logical T gate, the magic state jmi needs to be an encoded
logical qubit. However, since the physical T gate is not
topologically protected and physical qubits are not pro-
tected against errors during the encoding process, we
can only generate faulty magic states that are well

FIG. 11. State injection algorithm: A CNOT between a qubit jψi
and a magic state jmi ¼ ðj0i þ eiπ=4j1iÞ= ffiffiffi

2
p

, followed by a
measurement of jmiwith outcomemz and a correctional Smz gate,
is equivalent to a T gate on the qubit.
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approximated by j ~mi ¼ ðj0i þ eiðπ=4þεÞj1iÞ= ffiffiffi
2

p
, even

though further errors are expected and allowed for.
Magic-state distillation is an algorithm deeply related to
quantum error correction that generates low-error magic
states using many faulty magic states j ~mi with angle
deviations ε of up to 17.3% [30]. Many such algorithms
exists, such as a 15-to-1 protocol [30], a 10-to-2 protocol
[67], or, more generally for an integer k, a 3kþ 8-to-k
protocol [68,69]. These protocols only require (transversal)
Clifford gates, in particular, multitarget CNOT gates.
Combinations of these protocols [68] can be used to generate
magic states—and therefore effectively T gates—with the
desired precision.
Logical magic states can be encoded from physical

magic states using a variant of the code injection procedure
described in Ref. [34]. In Fig. 12, we depict this procedure
for a diamond color code. A detailed explanation of the
presented protocol is given in Appendix D. The protocol
can correct errors on any pair of physical qubits, but certain
errors with support on three qubits cause the injection of a
faulty state, regardless of the code distance of the diamond
code used. This further substantiates the need for magic-
state distillation.
In principle, the multitarget CNOTs in the distillation

protocols can be done using many iterations of the logical
CNOT gates that we discussed previously. However, for
logical CNOTs between data qubits, we focused on the
operations having a low error rate. Since distillation
protocols are only performed once, and afterwards
magic-state qubits are merely stored until their use, the
priority of their multitarget CNOTs should be speed over
accuracy of individual gates, such that magic states can be
distilled fast.
Majorana-based qubits offer the possibility of a fast

multitarget CNOT gate using the protocol in Fig. 6. Even
though this gate is transversal for color-code qubits, the
parity measurements involve physical qubits that are
spatially separated—i.e., every first physical qubit of each
involved logical qubit, every second physical qubit, and so
on. One method to bring them closer together is by

rearranging the physical qubits using the inflation protocol
shown in Fig. 13 for the example of four logical qubits
arranged on a 2 × 2 grid. The protocol effectively rear-
ranges the physical qubits of four logical qubits, such that
they form blocks of four physical qubits that are part of
multitarget CNOT gates. The analogous protocol with 15
qubits arranged on a 4 × 4 grid can be used for the
transversal multitarget CNOTs required for 15-to-1 distil-
lation. After sufficiently many rounds of magic-state
distillation, the magic state is ready for state injection
via a CNOT gate using any of the protocols outlined in the
previous subsection.
Clifford gates and magic-state distillation operate inde-

pendently from each other. In other words, during the
application of Clifford gates on the data qubits in the
quantum computation, magic states can be distilled in
parallel and stored for later use in the magic-state distillery.
Magic states can even be prepared offline and stored for
future quantum computations. Since magic-state distilla-
tion is the part of the quantum computation that requires the
greatest effort, magic states are resource states for quantum
computation. With predistilled magic states, any quantum
computation reduces to the application of (constant-time
overhead) logical Clifford gates.
In conclusion, we have constructed logical diamond-

shaped color-code qubits with transversal Clifford gates.
Arranged on a line with a CNOT bypass and a magic-state
distillery, they feature a robust T gate and a CNOT gate with
constant-time overhead. The single-qubit Clifford gates are
topologically protected because of the protection of the
topological superconductor network. We note that apart
from transversal CNOTs and fast multitarget CNOTs, the
remaining protocols make no use of the diamond shape. In
fact, if for data qubits one abandons the fast transversal
CNOT protocol, each diamond-shaped data qubit can be
replaced by two triangular color-code qubits with a
straightforward generalization of the lattice surgery proto-
cols. This reduces the spatial overhead for data qubits by a
factor of 2, but it also slightly increases the logical error

FIG. 12. Code injection procedure which encodes an unknown
physical state jψi (gray qubit) into a logical state jψLi. First, the
stabilizer state in the left panel is prepared by measuring all the
stabilizers shown. Finally, we cease measuring the green stabi-
lizers at the bottom boundary and start measuring the red
stabilizers.

FIG. 13. Inflation protocol for transversal multitarget CNOT

gates with four logical qubits. This protocol rearranges the
physical qubits such that the qubits involved in transversal
multitarget CNOT gates are now close to each other, i.e., every
first physical qubit of each of the four logical qubits, every
second, etc. This protocol can be used for the multitarget CNOTs
required for magic-state distillation, e.g., using inflation of 15
qubits arranged on a 4 × 4 grid for 15-to-1 distillation.
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rate. The same is not true for magic-state distillery qubits,
as the inflation protocol for fast distillation still benefits
from diamond color codes.

IV. PHYSICAL ARCHITECTURE:
MAJORANA COOPER PAIR BOXES

In the previous sections, we have demonstrated that we
can construct a fault-tolerant universal topological quantum
computer on the basis of a topological superconductor
network. Our construction requires that Majoranas can be
moved, their parities measured, and the degeneracy of their
parity states lifted. In this section, we review how this can
be achieved using Majorana Cooper pair boxes following
the scheme suggested in Ref. [35] (see also Refs. [18,
38–40]). While here we follow Ref. [35], other implemen-
tations of Majorana qubits can also be combined with a
color code as discussed in this paper, as long as these
architectures are capable of the three required operations.
For instance, this scheme can, in principle, also be realized
in Majorana box qubits [70] and related setups [71], where
Majoranas are not moved directly by coupling neighboring
islands but via braiding by measurement [72,73].
Pairs of Majorana zero modes can emerge at the ends of

one-dimensional spinless p-wave superconductors [10].
Even though there are candidates for p-wave supercon-
ductors such as Sr2RuO4 [74], ordinary superconductors
exhibit s-wave pairing. To effectively obtain the required
p-wave pairing from s-wave pairing—and thereby
Majorana zero modes—three essential ingredients are
required (see Fig. 14): an s-wave superconductor, spin-
orbit coupling, and one-dimensional spin-polarized con-
ducting channels [4–9]. Experiments have focused on
realizing this by using nanowires [11–14] or by appropriate
patterning of two-dimensional electron gases [15,75], but
in principle, this could also be achieved in edge states of
quantum Hall, quantum spin Hall, or quantum anomalous
Hall systems [4,76–79].
Unlike in ordinary s-wave superconductors, where the

minimal excitation energy is given by the pairing gapΔ, the
Majoranas have zero excitation energy. Each pair of
Majoranas combines into a complex fermion that can be
empty or occupied. Unpaired electrons can occupy these
fermionic states at zero energy cost. When the island has
one Majorana at each end, there is one complex zero-
energy fermion. The occupation of this energy level is
associated with the fermion parity of the mesoscopic island;
i.e., the level is unoccupied for even and occupied for odd
fermion parity. These statements hold true when the
Majorana wire is proximity coupled to a grounded s-wave
superconductor. If the superconductor is floating, the
combined system of wire and proximity-coupled super-
conductor has a finite charging energy, which will, in
general, lift the degeneracy between the even and odd-
parity states [80–82].

A powerful scheme to manipulate Majorana zero modes
exploits Majorana Cooper pair boxes (see Fig. 14) [35]. A
gated wire coated by a superconducting island is coupled to
a bulk superconductor through a tunable Josephson junc-
tion. Opening the Josephson junction effectively grounds
the island, which will then support a Majorana degeneracy.
This degeneracy will be progressively lifted by Coulomb
charging effects as the Josephson coupling is reduced.
The low-energy Hamiltonian of the Majorana Cooper

pair box [35] is given by the sum H ¼ HC þHJ of a
charging term

HC ¼ ECðN̂ − N0Þ2 ð8Þ

with charging energy EC, and a Josephson term

HJ ¼ −EJ cos φ̂; ð9Þ

with Josephson energy EJ. Here, N̂ is the operator that
counts the electrons on the island and N0 ¼ eVg=ð2ECÞ is

B

FIG. 14. A Majorana Cooper pair box as a basic building block
of the topological hardware. Top diagram: A pair of Majorana
zero modes γ1 and γ2 at the ends of a p-wave superconductor can
be effectively obtained by depositing an s-wave superconductor
with strong spin-orbit coupling on top of a material with a single
spin-polarized conducting channel, such as a semiconducting
nanowire in a magnetic field, a quantum anomalous Hall
insulator, or a 2DEG in a strong magnetic field. Bottom diagram:
A Majorana Cooper box requires the addition of charging energy
EC and Josephson energy EJ on the mesoscopic superconducting
island. A top gate that is capacitively coupled to the super-
conducting island imposes a certain total charge on the island
governed by the gate voltage Vg and the (fixed) charging energy.
Furthermore, a bulk superconductor is Josephson coupled to the
mesoscopic island through a gate-tunable Josephson junction,
which tunes the Josephson energy and imposes a certain phase on
the island.
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the background charge controlled by the gate voltage Vg

applied to the capacitively coupled gate. The operator
φ̂ is the phase of the superconducting island, obeying
the commutation relation ½φ̂; N̂� ¼ 2i. Even and odd-parity
states obey periodic and antiperiodic boundary conditions
when writing the wave function in the phase represen-
tation [80].
Figure 15 shows the spectrum ofH in three characteristic

regimes [35]. In the Majorana regime EC ≪ EJ, the phase
φ̂ is fixed by the bulk superconductor, and the spectrum is
almost Vg independent. In this regime, there are two nearly
degenerate ground states whose splitting ΔE is exponen-
tially small in EJ=EC. These ground states are separated
from excited states by an energy ∼

ffiffiffiffiffiffiffiffiffiffiffi
EJEC

p
. In the opposite

Coulomb regime EC ≫ EJ, the eigenstates are well-defined
charge states. The two lowest charge states with even and
odd parity are split for all values of Vg, except at the charge
degeneracy points where N0 is half integer. Depending on
whether N0 is closer to an even or odd integer, the ground
state has either even or odd fermion parity. Thus, one can
impose a desired fermion parity on the state of the
Majorana Cooper pair box by tuning it to the Coulomb
regime and relaxing to the ground state. The intermediate
regime with EC ∼ EJ can be understood starting from the
Majorana regime as the result of Coulomb charging lifting
the ground-state degeneracy or from the Coulomb regime
as a result of forming avoided crossings between states of
equal fermion parity by Cooper pair tunneling in and out of
the island.

Using these three regimes of the Majorana Cooper pair
box, all operations required for color-code quantum com-
puting with a topological superconductor network can be
implemented. In a network, islands hosting Majoranas that
encode a qubit are tuned to the Majorana regime, such that
the parity states—and therefore the encoded qubits—are
degenerate. All other (empty) islands are tuned to the
Coulomb regime. The remainder of this section is devoted
to showing how to use these two regimes to move
Majoranas through the network and how to employ the
intermediate regime for parity measurements [35]. This is
complemented by degeneracy splitting, which is straight-
forwardly implemented by decreasing EJ on an island.

A. Moving Majoranas

Neighboring Majorana Cooper pair boxes with individu-
ally controllable gate voltage and Josephson energy are
connected via tunnel coupling (see Fig. 16). The interisland
transmission probability τ can be controlled by a pincher
gate located between the islands. Following Ref. [35], this
junction can be used to move Majoranas between islands.
Starting with two decoupled islands (τ ¼ 0) in the
Majorana (left island) and Coulomb (right island) regime
(see Fig. 17), γ2 is moved to the right island by increasing
the interisland coupling and then tuning the right island to
the Majorana regime by increasing its Josephson coupling
to the bulk superconductor. This places the system into an
eigenstate of the total parity iγ1γ2 of both islands. One
should ensure that at the beginning of the protocol, the right
island is initialized into the even-parity sector by tuning Vg

FIG. 15. Parity-to-charge conversion in the Majorana Cooper pair box, as described in Ref. [35], and energy levels of the Majorana
Cooper pair box HC þHJ as a function of gate voltage Vg and for different ratios EJ=EC. In the Majorana regime EJ ≫ EC, charging
energy is negligible, and the spectrum is insensitive to Vg. The ground state is given by nearly degenerate states of opposite parity (blue
and orange), where the maximum separation ΔE vanishes exponentially in EJ=EC, whereas the distance to the first excited states
increases with

ffiffiffiffiffiffiffiffiffiffiffi
EJEC

p
. As EJ is decreased by decreasing the coupling to the bulk superconductor, the ground-state degeneracy is lifted

in the intermediate regime. Here, varying the gate voltage distinguishes the parity states through their differential capacitance
C ¼ ∂hN̂i=∂Vg, which is larger for the orange parity than for the blue parity. Finally, in the Coulomb regime EJ ≪ EC, the spectrum is
given by parabolas with well-defined charge number N. If Vg is tuned to a minimum of a charge parabola, the two lowest-energy parity
states are separated by EC, which can be used to impose a certain parity on the island. The intermediate regime can also be understood
from the emergence of avoided crossings between charge states of equal parity as EJ is increased.
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accordingly, so moving the Majorana will not flip the parity
state. Finally, γ1 can be moved to the right island by tuning
the left island into the Coulomb regime and then decou-
pling the two islands.
Majorana Cooper pair boxes arranged in a T junction

geometry with three pincher gates between three islands
(see Fig. 18) form the basic building block of our proposed
network and implement all required moving operations.
Opening any pair of pincher gates couples the respective
islands. For instance, opening the right and bottom pincher
gates in the left configuration of Fig. 18 moves γ3 from the

right island to the bottom island. Opening the remaining
pincher gate connects the left island to the other two
superconductors, such that γ2 becomes a Majorana shared
by all three islands.

B. Fermion-parity measurements

The set of required operations is completed by mea-
surements of the fermion parity of 2n Majoranas. The
fermion parity iγ1γ2 of an island can be measured by tuning
to the Coulomb regime and measuring the charge on the
island (parity-to-charge conversion). In an alternative
scheme, the superconducting island is tuned into the
intermediate regime EJ ∼ EC with the gate voltage set such
that N0 is, say, an even number. Then, the even-parity state
is at the minimum of a charge parabola, while the odd-
parity state sits at an avoided crossing between two charge
parabolas. Consequently, the charge on the island is
insensitive against variations of the gate voltage in the
even-parity state, but it is susceptible in the odd state; i.e.,
the two parity states differ in the differential capacitance

C ¼ ∂hN̂i
∂Vg

: ð10Þ

When incorporating the island into a resonant circuit,
the resonant frequency depends on the differential capaci-
tance. Thus, a measurement of the resonance frequency
constitutes a parity measurement, referred to as dispersive
read-out [83–86].
This dispersive read-out scheme can be generalized to

measuring the fermion parity of 2nMajoranas. Moving the
2n Majoranas onto one connected superconducting island
that is tuned away from the Majorana regime with suitably
chosen gate voltage, the parity can be read-out by incor-
porating this island into a resonant circuit and proceeding

P

FIG. 16. Two Majorana Cooper pair boxes connected to the
same bulk superconductor with Josephson energies EJ;1 and EJ;2,
and top gate voltages Vg;1 and Vg;2, respectively. The islands are
connected through the spin-polarized conducting channel, in
which the interisland transmission probability τ can be tuned by a
pincher gate.

FIG. 17. Two-step protocol for moving Majoranas γ1 and γ2
from the left island, initially tuned to the Majorana regime, to the
right island, initially tuned to the Coulomb regime with even
parity. First, the two islands are coupled by increasing the
transmission to τ ¼ 1 and tuning the right island to the Majorana
regime, shuttling γ2 to the right island. The two islands now form
a single connected superconducting island with Majoranas γ1 and
γ2. In order to move γ1 to the right island, the transmission is
reduced back to τ ¼ 0, and the left island is tuned to the Coulomb
regime.

FIG. 18. T-junction geometry consisting of three mesoscopic
superconducting islands coupled through a three-terminal junc-
tion involving three pincher gates. Left diagram: If all three
pincher gates are closed, the islands are decoupled and host a pair
of Majoranas each. In dispersive read-out, tuning Vg;1 and Vg;2 is
used to measure the parities iγ1γ2 and iγ3γ4, respectively. Right
diagram: Opening the right and bottom pincher gate while tuning
the bottom island into the Majorana regime moves γ3 to the
bottom island. Subsequently, opening the left pincher gate
connects all three islands, where γ2 is shared by all islands in
the three-terminal junction. Connecting any of the top gates to a
resonant circuit allows for dispersive read-out of the total
parity −γ1γ2γ3γ4.
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as before. An experimental limitation is set by the decrease
of the charging energy with increasing island size.
Typically, for nanowire networks, the charging energy
decreases linearly with the system size. Therefore, the
required precision in the gate voltage control increases
linearly with the size of the island. This scheme can, for
instance, be applied to measure the four-Majorana parity
operator −γ1γ2γ3γ4. In the right configuration of the T
junction in Fig. 18, all pincher gates are opened and the
three islands form one connected mesoscopic supercon-
ductor hosting four Majorana zero modes. The spectrum of
this effective Majorana Cooper pair box will be the same as
in Fig. 15, but with a correspondingly lower charging
energy and states differing in total parity ðiγ1γ2Þðiγ3γ4Þ.
Thus, dispersive read-out now measures this four-Majorana
parity operator.
In this manner, the 2n-Majorana parity operator of an

island hosting 2n Majoranas can be measured via dis-
persive read-out by connecting any of the top gates to a
resonant circuit and measuring the quantum capacitance
[83]. Since at least one top gate in each hexagonal cell
needs to be connected to its own read-out circuit, incor-
porating the read-out hardware in a two-dimensional
architecture is an experimental challenge. Similar to super-
conducting qubit platforms, few-qubit quantum computers
may allow for an on-chip implementation of both qubit and
read-out hardware. However, as each gate in the two-
dimensional platform needs to be addressed individually,
large-scale quantum computing will require the gates to be
contacted to the control hardware via the third dimension,
i.e., out of plane. In fact, the integration of the control and
measurement hardware in a three-dimensional architecture
is the subject of current experimental efforts [87–89] to
scale up superconducting qubit platforms.
Alternative schemes that were proposed for the parity

read-out of Majorana-based qubits [35,70,71] include
charge reflectometry, where a resonator is used to probe
the island’s energy levels as opposed to the differential
capacitance, and charge sensing, which employs the
Coulomb regime to read out the average charge on the
island. The implementation and benchmarking of different
parity read-out techniques is the subject of ongoing
experimental efforts.
Having discussed the implementation of the operations

required of topological superconductor networks, we now
investigate error sources of Majorana Cooper pair boxes
and how well they can be corrected by diamond color codes
in the following section.

V. FEASIBILITY ESTIMATE

The performance of diamond color-code qubits in
topological superconductor networks depends on the error
sources of Majorana Cooper pair boxes. Even though the
parity states are degenerate in the Majorana regime for
EJ ≫ EC, a finite overlap between Majorana wave

functions on one island will split the degeneracy. Still,
this splitting is exponentially suppressed in the island size.
Overlap between Majoranas of neighboring islands can
also lead to errors, but the overlap is proportional to the
controlled tunneling amplitude between neighboring
islands and is thus also exponentially small.
An error that is not necessarily exponentially suppressed

occurs when an outside electron tunnels onto an island.
This process is called quasiparticle poisoning, which is
presumably the dominant error source in Majorana-based
qubits. In the following, we model poisoning on any of the
two islands encoding a physical qubit by the application of
one of the four Majorana operators. This not only changes
the total parity sector of the qubit, but it also leads to a
logical Pauli error depending on the Majorana involved in
the process. The change of the parity sector is incon-
sequential to the qubit since, in the encodings of both parity
sectors in Eqs. (1) and (2), the physical qubit operators are
σz ¼ iγ1γ2 and σx ¼ iγ2γ3. Therefore, merely switching the
parity sector leaves both the logical information and the
logical braid operations B1;2 and B2;3 unchanged. However,
γ1 anticommutes with σz, γ2 anticommutes with σz and σx,
and γ3 anticommutes with σx. Therefore, poisoning of γ1
leads to a σx error, of γ2 to a σy error, of γ3 to a σz error, and
of γ4 to no error. We discuss this in further detail in
Appendix F. Moreover, we discuss more general error
sources that are not described by a single Majorana
operator.
Since σy errors correspond to both a σx and a σz error, the

quasiparticle poisoning time defines a time scale on which
σx-type and σz-type errors occur at equal rates. Current
experiments suggest that the quasiparticle poisoning time
of mesoscopic superconducting islands might be of the
order of milliseconds [41–43], although we point out that
these experiments were performed in a regime where the
superconducting islands were not floating but connected to
a pair of normal-metal leads. We note that even though the
regime of equally likely σx- and σz-type errors is the one
considered in the following discussion, this is actually the
worst-case scenario for error correction. If one error type is
known to occur more often, these errors have been shown
to be correctable with fewer resources [90], albeit by
changing the code and therefore giving up on transversal
gates. But even without abandoning color codes, a biased
error source can be taken into account by measuring the
corresponding syndrome type more frequently than the
other, thereby reducing the code cycle duration and hence
the error rate.
In nontopological architectures, random Pauli errors are

usually not a realistic error model since relaxation proc-
esses from excited states to ground states are not described
by unitary operations. For topological hardware, on the
other hand, there are no transitions between different parity
states that would allow for relaxation from one qubit state
to the other. Therefore, we believe that random Pauli errors
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should be a reasonable error model for topological physical
qubits. With this error model, the physical error threshold
for color codes is about 11% [57,62], where the physical
error rate is the probability for a physical error
on one physical qubit after one code cycle. For our
physical hardware, this physical error rate is pphys ¼
1 − e−τc=τp ≈ τc=τp, where τp is given by the quasiparticle
poisoning time and τc is the duration of a code cycle. As
moving Majoranas can be done at nanosecond time scales
[91] without introducing significant diabatic errors, the
code cycle duration is mainly determined by the time
required for parity measurement. Dispersive read-out on
superconducting qubits suggests that this can be done on
microsecond time scales [83,84] or faster. For quasiparticle
poisoning times of the order of milliseconds, the physical
error rate would be pphys ≈ 10−3, which is well below
threshold.
In order to estimate the survival time of logical qubits

and the performance gain of diamond color codes over
triangular color codes, we use a Monte Carlo simulation of
the quantum error-correcting code for the aforementioned
error model using a lookup table decoder. We note that our
decoder does not take correlations between σx and σz errors
into account, which could further enhance the correction
procedure with a suitable decoder. A detailed discussion of
the simulation is found in Appendix G. In Fig. 19, we show
the logical error rate as a function of physical error rate
for the first three lowest-distance triangular color codes and
the first two diamond color codes. The simulation repro-
duces the error threshold of about 11% and shows that the
logical error rate of diamond color codes is indeed lower
compared to a triangular color code of the same code
distance. Furthermore, we find that, already for the d ¼ 5

diamond color code of Fig. 9(b) with pphys ¼ 10−3, the
survival time of logical qubits is approximately 35 000
code cycles until the probability for a logical error reaches
1%. In order to determine the survival time for larger code
distances, a more efficient decoder needs to be used, such
as an iterative decoder [56] or a color clustering decoder
[57]. Both slightly lower the error threshold to 7.8% and
9.75%, respectively. Furthermore, a decoder may keep
track of multiple rounds of syndrome extraction in order to
take measurement errors into account. While it is not
known how read-out errors affect the logical error rate,
their effect on the error threshold has been studied [62]. As
a concrete example, a 95% read-out fidelity lowers the error
threshold from about 11% to 2.5%. A numerical study of
the corresponding logical error rate would help quantify the
performance of color codes, but it goes beyond the scope of
this work.
Still, we may extrapolate our results to at least estimate

the survival time for higher-distance codes. Details on this
are found in Appendix G. The extrapolation suggests that
for pphys ¼ 10−3, τc ¼ 1 μs, and the more stringent require-
ment that the logical error probability stays below 10−6, the
d ¼ 19 diamond color code has a survival time of several
years, implying that, with an overhead of roughly 500
physical qubits per logical qubit, quantum computations
may run for reasonably long durations. We note that
diamond color-code qubits are not resource efficient in
the number of physical qubits but only a useful construction
for transversal CNOTs and multitarget CNOTs, as discussed
in Sec. III. Since equal-distance triangular color codes do
not have a substantially higher logical error rate, the
number of physical qubits per logical qubit can be reduced
by a factor of 2, if data qubits are encoded using triangles
instead of diamonds.

VI. CONCLUSION

In this work, we have studied the interplay of topological
hardware and topological error-correcting software. Using
topological superconductor networks, we have devised a
scalable architecture for universal fault-tolerant topological
quantum computation, which can be realized with voltage-
controlled Majorana Cooper pair boxes as basic building
blocks. The underlying physical qubits are hexagonal-cell
qubits, which allow for universal quantum computing with
topologically protected Clifford gates, fast multitarget
CNOT gates, and ancilla-free syndrome read-out. For
quantum error correction, we employ topological color
codes. Their set of transversal gates coincides with the
topologically protected Clifford gates, which enables
the logical gates to retain their topological protection
due to the topological hardware. This makes color codes
a natural fit to Majorana-based hardware, as they seam-
lessly combine topological hardware with topological
software while still benefiting from the topological pro-
tection of both. Moreover, color codes also feature a
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FIG. 19. Logical error rate as a function of physical error rate
obtained from Monte Carlo simulation with a lookup table
decoder for triangular (solid line) and diamond (dashed line)
color codes with code distances d ¼ 3 and d ¼ 5, and for the
triangular color code with d ¼ 7. The sample size is between 107

and 1010 trials for data point corresponding to high and low
logical error rates, respectively. The upper line show the logical
error rate without quantum error correction. The inset zooms into
the crossover region around pphys ∼ 11%.
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reduced time overhead for gate operations and a higher
error threshold compared to surface codes, even in the
presence of measurement errors during stabilizer read-out.
In a qubit arrangement consisting of a row of data qubits, a
magic-state distillery, and a CNOT bypass, logical single-
qubit Clifford gates have a fast transversal implementation,
CNOTs between any pair of data qubits have a constant-time
overhead, and magic states can be distilled faster using
transversal multitarget CNOT gates. Our architecture is not
restricted to implementations using Majorana Cooper pair
boxes, but it can be applied to any realization of a
topological superconductor network, provided that
Majoranas can be moved, that their parities can be
measured, and that some implementation of a physical
T gate is available.
Considering the particular geometry of a Majorana-

based color-code quantum computer presented in this work,
i.e., hexagonal-cell qubits and 6.6.6 diamond color codes,
we make no claim of this geometry being optimal in terms
of space and time overhead. Studies of different network
layouts and color-code schemes may reduce the overhead.
Still, it is not clear how different code layouts and decoders
affect the logical error rate. In particular, 4.8.8 color codes
require fewer physical qubits compared to 6.6.6 codes
with the same code distance. However, as we show in
Appendix H, they also feature a higher logical error rate,
even though they have the same code distance and error
threshold. Similarly, for the comparison of triangular and
diamond codes, neither code distance nor error threshold is
a predictive figure of merit for logical error rates. We
therefore encourage studies of the logical error rate of
topological codes, in order to quantify the performance of
codes beyond the already well-studied error thresholds and
code distances. Moreover, in order to further quantify the
performance of a topological color-code quantum com-
puter, it would be interesting to estimate the number of code
cycles required for actual computational tasks in an
arrangement of data qubits and magic-state distilleries.
On the hardware side, the past years have shown

considerable experimental progress towards the realization
of Majorana zero modes through the interplay of super-
conductivity, spin-orbit coupling, and one-dimensional
spin-polarized channels. This work is expected to provide
further motivation for ongoing efforts to achieve braiding of
Majoranas in these systems. On a more general note,
aiming at merging ideas of both hardware- and software-
based topological protection, we hope that our work further
stimulates research efforts bringing the fields of condensed-
matter physics and quantum information theory closer
together.
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APPENDIX A: PROTOCOL FOR
A TRANSVERSAL CNOT GATE

In Fig. 20, we show that in hexagonal-cell qubits, CNOT
gates between control and target qubits arranged on a line can
be performed simultaneously. This is a generalization of the
protocol introduced in Fig. 5 using the quantum circuit in
Fig. 4. Since in diamond color codes, control and target
qubits are also arranged on a line, all transversal CNOT gates
in color codes can be performed simultaneously.

APPENDIX B: MULTITARGET CNOT

BY PARITY MEASUREMENT

Here, we show that a multitarget CNOT gate can be
realized using Clifford gates and qubit parity measurements
(see Fig. 6). The multitarget CNOT operator

CNOTn ¼ j0ih0j ⊗ 1⊗n þ j1ih1j ⊗ σ⊗n
x ðB1Þ

flips all n target qubits if the control qubit is in the j1i state.
An n-qubit parity measurement with outcome m ¼ 0 for
even and m ¼ 1 for odd parity is equivalent to an operation

Pz ¼
1

2
½1⊗n þ ð−1Þmσ⊗n

z �: ðB2Þ

Similarly, an n-qubit parity measurement in the σx basis is

Px ¼ H⊗nPzH⊗n ¼ 1

2
½1⊗n þ ð−1Þmσ⊗n

x �: ðB3Þ

Thus, the circuit in Fig. 6 in the basis jci ⊗ jai ⊗ jti⊗n,
where c, a, and t denote the control, ancilla, and the n target
qubits, respectively, is

U ¼
�
1 ⊗

1

2
½1þ ð−1Þm3σz� ⊗ 1⊗n

�

×

�
1 ⊗

1

2
½1⊗nþ1 þ ð−1Þm2σ⊗nþ1

x �
�

×

�
1

2
½1⊗2 þ ð−1Þm1σ⊗2

z � ⊗ 1⊗n

�

× ð1 ⊗ jþihþj ⊗ 1⊗nÞ; ðB4Þ

where the final correction is not yet applied. Tracing out the
ancilla qubit yields

U ¼ 1

2
ð1þ ð−1Þm1þm3σzÞ ⊗ 1⊗n

þ 1

2
ð−1Þm2ð1 − ð−1Þm1þm3σzÞ ⊗ σ⊗n

x : ðB5Þ
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Depending on the measurement outcomesm1 þm3 andm2,
there are four possible uncorrected operationsUm1þm3;m2

(see
Table I). Thus, after the correction σm2

z ⊗ ðσm1þm3
x Þ⊗n, the

circuit in Fig. 6 precisely yields the multitarget CNOT gate
CNOTn using only three measurements, as opposed to 3n
measurements for n individual CNOTs.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

FIG. 20. Protocol for three simultaneous CNOTs between three control qubits Qc1−c3 and three target qubits Qt1−t3 using the quantum
circuit in Fig. 4. In the cell occupied by the control qubits (red), ancillas (blue) are initialized in the j0i state (a) and moved to the double
T junction of the cell for a Hadamard gate (b). The first two Majoranas of the control and ancilla qubits are moved onto a connected
island, and the four-Majorana parity is measured (c), corresponding to a two-qubit parity measurement with outcome m1. The ancillas
are moved back to the double T junction for anotherH gate (d). The third and fourth Majoranas a3 and a4 of each ancilla qubit are moved
into the lower leg of their hexagonal cell, such that the remaining ancilla Majoranas can move to the target qubit cells for a four-
Majorana parity measurement (e). The ancilla Majoranas are then moved back to the control cells for an H gate (f). Finally, all qubits
return to their initial positions (g), and the ancilla qubits are measured by measuring the two-Majorana parity m3.
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APPENDIX C: DETAILS ON LATTICE SURGERY

The stabilizers that are measured during lattice surgery
[34] are shown in Fig. 21. In the following, we describe the
protocol for ZZ-parity measurement, but this can be
straightforwardly used for XX-parity measurement by
simply swapping Z ↔ X in the protocol. As one can verify
by direct inspection, in this ZZ-parity measurement
between two distance d codes, ⌈d=2⌉ new Z stabilizers
are introduced and 2⌊d=2⌋ X stabilizers are replaced by
⌊d=2⌋ octagon stabilizers. Since d is always odd, exactly
one new stabilizer is introduced. This reduces the number
of logically encoded qubits by one, implying that in this
process, one bit of information is measured. In the
following, we would like to make the case that the
measured bit is precisely the ZZ parity.
First, notice that in the absence of errors, the extended

octagon stabilizers will not detect anyons (i.e., have a
measurement outcome þ1) since they are products of
preexisting stabilizers. In this error-free setting, the only
stabilizers that give a nontrivial measurement outcome are
the 2⌊d=2⌋ newly created Z stabilizers. The product of
these stabilizers is exactly the logical two-qubit parity
ðσzσzÞL. Another way to understand this process is in terms
of anyons. If in the error-free setting an anyon is detected

on one of the new Z stabilizers (depicted as green in
Fig. 21), this means that the number of strings from the
upper code terminating on said plaquette differs in parity
from the number of strings coming from the lower code.
Thus, the total parity of all newly created plaquettes
measures exactly the difference of strings from the upper
and lower codes, which is precisely the two-qubit parity.
Lastly, in order to convince oneself of the fault tolerance

of the above process, it is sufficient to check that strings
corresponding to logical operations in the new settings still
involve at least d physical qubits. In Fig. 21, this has to be
fulfilled for logical ðσxÞL, ðσzÞL, and ðσxσxÞL operations but
not for ðσzσzÞL since this commutes with the parity
measurement.

APPENDIX D: DETAILS OF COLOR-CODE
STATE INJECTION

Figure 12 shows the protocol for the injection of a single
qubit state jψi into a logical state jψLi encoded in a
diamond color code. This is a direct adaptation of the
protocol in Ref. [34], where this protocol was introduced
for the specific case of triangular 4.8.8 color codes. Here,
we explain how this protocol achieves the state injection
adapted to our situation.
The left panel of Fig. 12 depicts the stabilizers measured

before state injection. The number of stabilizers is exactly
the same as the number of physical qubits, and thus no
logical qubits can be encoded. Since all stabilizers are
measured and errors are corrected for, no anyonic excita-
tions are present initially. The fact that there are only two
boundaries implies that an even number of strings has to
leave each boundary. This is a consequence of errors
always creating pairs of anyons of the same color or triples
of all three colors (and combinations thereof), and of the
fact that boundaries can only host anyons of their respec-
tive color.
In the concrete example shown in Fig. 12, the Z parity of

all qubits along the blue boundary is even, σ⊗n
z ¼ þ1. The

same holds for the X parity and equivalent measurements
along the red boundary. Importantly, this statement general-
izes and holds for all color codes with two boundaries,
regardless of code distance, geometry, and tiling.
To inject the state of the single physical qubit into the

color code, the stabilizers shown in the right panel of
Fig. 12 are measured. Even if no errors on physical qubits
occur, the new red plaquettes might still host anyons.
Importantly, they are not corrected according to the most
likely error configuration producing this syndrome; instead,
they are moved over the red boundary. If errors occur, they
will manifest themselves in the syndrome read-out and can
be corrected.
The blue boundary after state injection differs only by

the addition of the new physical qubit. Thus, measurements
of the logical state along this boundary are given by the
state of the new physical qubit alone. The way in which

TABLE I. Uncorrected gate Um1þm3;m2
and necessary correc-

tion based on measurement outcomes m1, m2, and m3.

m1 þm3 m2 Um1þm3;m2
Correction

0 0 j0ih0j ⊗ 1⊗n þ j1ih1j ⊗ σ⊗n
x 1 ⊗ 1⊗n

0 1 j0ih0j ⊗ 1⊗n − j1ih1j ⊗ σ⊗n
x σz ⊗ 1⊗n

1 0 j1ih1j ⊗ 1⊗n þ j0ih0j ⊗ σ⊗n
x 1 ⊗ σ⊗n

x
1 1 j1ih1j ⊗ 1⊗n − j0ih0j ⊗ σ⊗n

x σz ⊗ σ⊗n
x

FIG. 21. Stabilizers that are measured to obtain the ZZ parity
between two logical qubits using lattice surgery. In contrast to
usual color-code stabilizer measurements, lattice surgery requires
measurements where the support of X and Z stabilizers does not
coincide. The left panel shows the required Z stabilizers, and the
right panel the X stabilizers, which differ along the shared
boundary. To obtain the XX parity between two qubits, one
simply has to swap Z ↔ X in the protocol.
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anyons on the new red plaquettes are corrected ensures that
the same holds for all other measurements of logical
operations as well. This proves that the protocol success-
fully injects the state of the single physical qubit jψi into
the logical state jψLi encoded in the color code.

APPENDIX E: CONSTANT-TIME
OVERHEAD CNOT

The quantum circuit in Fig. 22 describes the constant-
time overhead CNOT protocol in Fig. 10(c). The protocol
involves a control qubit jci, a target qubit jti, and three jþi
ancillas, where the third ancilla may be thought of as the
ancilla that is part of the CNOT protocol of Fig. 4. The ZZ
parity between this third ancilla and the control qubit is not
measured directly but as the sum of the first three parity
measurements in the circuit m1 þm2 þm3. The XX parity
between the third ancilla and the target is measured with
outcome m4, and the third ancilla is read-out with outcome
m7. This is the reason for the σm1þm2þm3þm7

x correctional
operation on the target and the σm4

z correction on the control
qubit. However, these operations alone leave the first two
ancilla qubits entangled with the control qubit in a state of
the type jψi ¼ αj0; 0; 0i þ βj1; 1; 1i. In order to safely
discard the two ancilla qubits without affecting the control
qubit, they are measured in the X basis with outcomes m5

andm6, leading to a σ
m5þm6
z correction on the control qubit.

APPENDIX F: QUASIPARTICLE POISONING

In the following, we discuss qubit errors due to quasi-
particle poisoning. We find that merely changing the parity
sector of an island pair is inconsequential to the qubit, and
we consider more general error sources that are not
described by the processes discussed in the main text.
We define the three Pauli operators in the space of even and
odd-parity states fjei; joig of a topological superconduct-
ing island,

τx ¼
�
0 1

1 0

�
; τy ¼

�
0 −i
i 0

�
; τz¼

�
1 0

0 −1

�
: ðF1Þ

The four Majorana operators γ1;…; γ4 of an island pair can
be represented in terms of these Pauli operators as

γ1 ¼ τx ⊗ 1; γ2 ¼ −τy ⊗ 1;

γ3 ¼ τz ⊗ τx; γ4 ¼ −τz ⊗ τy; ðF2Þ

upon choosing a specific order of modes and by invoking
the Jordan-Wigner transformation. These operators are
Hermitian γi ¼ γ†i and fulfill the anticommutation relations
fγi; γjg ¼ 2δi;j. Our two qubit encodings are

j0ei ¼ jei ⊗ jei; j1ei ¼ joi ⊗ joi ðF3Þ

in the even-parity sector and

j0oi ¼ jei ⊗ joi; j1oi ¼ joi ⊗ jei ðF4Þ

in the odd-parity sector. Therefore, in both parity sectors,
the logical qubit operators are σz ¼ iγ1γ2 and σx ¼ iγ2γ3.
Consider a quasiparticle poisoning event described by the
application of γ1. The operator γ1 maps j0ei ↔ j1oi and
j1ei ↔ j0oi; i.e., it switches the parity sector and applies a
logical σx operation. Similarly, Eq. (F2) implies that γ2
applies a logical σy operation and γ3 a logical σz operation.
The operator γ4 only switches the parity sector without
changing the logical information. This is not surprising
since it is the only Majorana operator that is not part of
either σz or σx. What is more, invoking the fermion-parity
superselection rule, it is clear that the specific order of
modes used in this argument is not relevant, i.e., that the
specific Jordan-Wigner string plays no role.
To further demonstrate that, in general, the information

about the parity sector is irrelevant for quantum compu-
tation, we write the state of an island pair as a product of the
qubit state and the parity state. An island pair is a four-level
system with the four basis states in Eqs. (F3) and (F4).
Instead of describing these states in terms of the fermion
parities of the first and second islands, we can transform the
basis to a product of an eigenstate fj0i; j1ig of the qubit
operator σz ¼ iγ1γ2 (qubit state) and an eigenstate
fjpei; jpoig of the total parity operator p ¼ −γ1γ2γ3γ4
(parity state). In this basis, the four states are

j0ei ¼ j0i ⊗ jpei; j1ei ¼ j1i ⊗ jpei;
j0oi ¼ j0i ⊗ jpoi; j1oi ¼ j1i ⊗ jpoi: ðF5Þ

Incidentally, the transformation matrix that maps from
Eqs. (F3) and (F4) to Eq. (F5) is a CNOT. Braiding
operations and measurements of the qubit only affect the
qubit state but not the parity state since they are comprised
of operators that are products of γ1γ2 or γ2γ3 and therefore
commute with the parity operator p. After this mapping, the
poisoning processes that we considered previously (i.e., the
application of a Majorana operator) can be written as a

FIG. 22. Quantum circuit corresponding to the constant-time
overhead CNOT gate in Fig. 10(c).
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product of operations on the qubit state and on the parity
state,

γ1 ¼ ~σx ⊗ ~τx; γ2 ¼ − ~σy ⊗ ~τx;

γ3 ¼ ~σz ⊗ ~τx; γ4 ¼ −1 ⊗ ~τy; ðF6Þ

where ~σi and ~τi are Pauli operators acting on the qubit and
parity spaces, respectively. Therefore, these operations do
not entangle the qubit with the parity d.o.f. Furthermore,
any Jordan-Wigner string τz ⊗ τz associated with the
operators in Eq. (F2) is mapped onto 1 ⊗ ~τz, which acts
trivially on the qubit state. However, a general operation
can, in principle, generate such an entangled state. Thus,
the most general description of the entire state of the system
is a sum over all 2n possible 2n-island parity sectors,

jψi ¼
X

parity sectorsp

jψpi ⊗ jpi; ðF7Þ

where jpi contains all fermion parities of the n island pairs,
and jψpi is an n-qubit state. But in our encoding, jpi carries
no information relevant to quantum computation. Tracing
out the parity state leaves the qubit state in a statistical
ensemble. Therefore, the parity d.o.f. acts like an environ-
ment to which error sources can couple. Moreover, in the
absence of logical errors, different qubit states yield
different syndromes after stabilizer read-out. Thus, meas-
uring the syndrome breaks the entanglement between the
qubit state and parity state.
Error sources that entangle the qubit with the parity state

are not described by products of Majorana operators but by
sums of products. Such errors are, in principle, allowed and
lead to a nonunitary evolution of the qubit state. These
errors are still correctable but are not necessarily described
by the error model of random Pauli errors. One example for
such an effectively nonunitary process is swapping the
parities of two islands that belong to two different qubits, as
this entangles the qubit and parity degrees of freedom.

APPENDIX G: MONTE CARLO SIMULATION
OF THE DIAMOND COLOR CODE

In order to study the performance gain of low-distance
diamond color codes over triangular color codes and
estimate the logical error rate for higher-distance codes,
we sample the logical error rate in a Monte Carlo simu-
lation. The physical error rate is the probability for at least
one error event in a code cycle,

pphys ¼ 1 − lim
N→∞

�
1 −

1

N
τc
τp

�
N
¼ 1 − e−τc=τp ; ðG1Þ

where τc is the duration of a code cycle and τp is the
characteristic time scale on which bit flips and phase flips
occur. A physical bit flip or phase flip only occurs at the

end of a code cycle if the bit is flipped an odd number of
times within a cycle. The probability of a physical bit flip or
phase flip can be calculated from the probability of an odd
number of successes in n discrete trials with success
probability p, which is

podd ¼
1 − ð1 − 2pÞn

2
: ðG2Þ

Thus, the physical bit-flip (and phase-flip) probability is

pflip ¼ lim
N→∞

1

2

�
1 −

�
1 −

2

N
τc
τp

�
N
�

¼ 1

2
ð1 − e−2τc=τpÞ ¼ pphys −

1

2
p2
phys: ðG3Þ

We define the logical error rate plog as the probability for a
logical bit flip (or phase flip). Without quantum error
correction, plog ≠ pphys since the absence of a logical error
requires the absence of both σx and σz errors. Thus, the
physical qubit needs to pass two trials, and the logical error
rate is

plog ¼ 1 − ð1 − pflipÞ2: ðG4Þ

To calculate plog with error correction, we sample through
error configurations with a bit-flip probability pflip on each
physical qubit, attempt to correct the error using a decoder,
and count the number of failure events. The logical error
rate is

plog ¼ 1 −
�
1 −

fails
trials

�
2

: ðG5Þ

Our decoder is a pregenerated lookup table, which, given
an error syndrome, returns the most likely corresponding
error configuration. Since this is not efficient for higher-
distance codes, we only simulate the triangular color codes
with distances d ¼ 3, d ¼ 5, and d ¼ 7, and diamond color
codes with distances d ¼ 3 and d ¼ 5. On a log-log plot,
the logical error rate is linear for low physical error rates
(see Fig. 19). The slopes and offsets of these linear
functions both grow approximately linearly with increasing
code distance, allowing for a rough estimate of the
low-error behavior of higher-distance codes through
extrapolation.
The survival time of a logical qubit until the probability

of a logical error perr reaches a target accuracy ptarget is

τsurvival ¼
lnð1 − ptargetÞ
lnð1 − plogÞ

; ðG6Þ

where τsurvival is the survival time as a number of code cycles.
In Fig. 23, we plot the survival time for ptarget ¼ 10−6

for triangular and diamond color codes obtained from
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numerical data and extrapolation thereof. The extrapolation
indicates that for pphys ¼ 10−3 and a code cycle duration
τc ¼ 1 μs, the survival time of a d ¼ 19 diamond color code
is of the order of several years.

APPENDIX H: 4.8.8 VS 6.6.6 COLOR CODES

Quantum error-correcting codes are usually classified
using their code distances and error thresholds. For
triangular and diamond color codes, we have seen that
two 6.6.6 color codes with equal code distances can exhibit
different logical error rates. Here, we show that neither the
code distance nor the error threshold is a predictive figure

of merit for the logical error rate, which determines the
performance of a code.
In this work, we considered color codes that are defined

on lattices with 6.6.6 tiling. A different tiling that allows for
color codes is the 4.8.8 tiling, with two types of eight-qubit
stabilizers and one type of four-qubit stabilizers. These
4.8.8 codes are considered to be more efficient since
triangular 4.8.8 codes require fewer physical qubits per
logical qubit compared to the triangular 6.6.6 code with the
same code distance.
Figure 24 shows the logical error rate of 4.8.8 and 6.6.6

codes obtained from the previously described Monte Carlo
simulation. It shows that the lower physical overhead of
4.8.8 codes comes at the price of a higher logical error rate.
Therefore, for a target logical error rate, it is difficult to
estimate which code one should use to minimize the
physical overhead. To our knowledge, even though code
distances and error thresholds of codes are well studied,
logical error rates have attracted less attention so far and
require further research.
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