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Unconventional topological phase transitions in helical Shiba chains
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Chains of magnetic impurities placed on a superconducting substrate and forming helical spin order provide
a promising venue for realizing a topological superconducting phase. An effective tight-binding description of
such helical Shiba chains involves long-range (power-law) hopping and pairing amplitudes which induce an
unconventional topological critical point. At the critical point, we find exponentially localized Majorana bound
states with a short localization length unrelated to a topological gap. Away from the critical point, this exponential
decay develops a power-law tail. Our analytical results have encouraging implications for experiment.
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Introduction. Currently, there is much excitement about
topological superconducting phases [1,2]. There has been
particular interest in one-dimensional topological supercon-
ducting phases with p-wave symmetry, engineered in hybrid
systems based on conventional s-wave superconductors, and
their Majorana end states [3–9]. A promising recent proposal
involves a chain of magnetic impurities placed on an s-wave
superconductor and corresponding experiments are under way
[10–16] (see also [17–19]). It is envisioned that the magnetic
impurities form a spin helix due to the Ruderman-Kittel-
Kasuya-Yosida (RKKY) interaction and induce Shiba bound
states [20–23] in the superconducting host. These Shiba states
hybridize to form bands, one each for the positive- and
negative-energy Shiba states. Once the hybridization becomes
strong enough for these two bands to overlap, the system can
enter a topological superconducting phase.

The formation of Shiba bands can be modeled within a
tight-binding Bogoliubov–de Gennes Hamiltonian [15]. The
model Hamiltonian closely resembles Kitaev’s toy model
[3] of spinless p-wave superconductors, with the important
distinction that the hopping and the pairing are long range
[15]. In fact, Shiba states are known to exhibit a slow 1/r

decay away from the impurity for r � ξ0 which crosses over
into an exponential decay for r � ξ0. For typical Shiba chains,
the coherence length ξ0 of the host superconductor is much
larger than the impurity spacing a which is comparable to
the lattice spacing of the host superconductor. In numbers,
one has ξ0/a ∼ 102–103 making a model with a pure 1/r

decay of hopping and pairing an excellent starting point. In the
context of topological phases, this long-range coupling poses
interesting questions. Most importantly, it is usually assumed
[24] that the boundary modes of topological phases, such as
Majorana end states, fall off exponentially into the bulk which
seems incompatible with long-range coupling.

In this Rapid Communication, we provide an analytical the-
ory for the surprising localization properties of the Majorana
end states in helical Shiba chains, with important implications
for experiment. A crucial property of helical Shiba chains is
that as a consequence of long-range coupling, it displays an
unconventional topological critical point as a function of the
helix and Fermi wave vectors kh and kF [15]. The critical point
is located exactly at kh = kF in the limit ξ0 → ∞ and remains
close to it for finite ξ0. Thus right at or near the critical point,
the spin helix satisfies the condition for Bragg reflection which

induces a strong tendency towards localizing the Majorana
end states, competing with the delocalizing tendency of the
long-range coupling. This may result in a localization length
of the order of a few impurity sites, making isolated Majoranas
accessible in experimentally feasible chains containing only a
few dozen atoms.

Model. We consider a linear chain of magnetic impurities
which are located at positions xj = ja and form a planar spin
helix Sj ,

(Sj )x = S cos 2khxj , (Sj )y = S sin 2khxj , (Sj )z = 0.

(1)

In the limit that the Shiba states of the individual impurities
are deep, i.e., that their energy ε0 is close to the center of the
gap, the system can be effectively described by a tight-binding
Bogoliubov–de Gennes (BdG) Hamiltonian H = hτz + �τx

[15], where τi denotes Pauli matrices in particle-hole space,
and h as well as � are matrices in site space:

hij = ε0δij − �0(1 − δij )
sin kF rij

kF rij

e−rij /ξ0 cos khxij (2)

and

�ij = i�0(1 − δij )
cos kF rij

kF rij

e−rij /ξ0 sin khxij . (3)

Here, �0 denotes the pairing strength in the host super-
conductor and rij = |xij | with xij = xi − xj . Note that both
the hopping and pairing matrices are Hermitian, h = h† and
� = �†. Since the Shiba states are spin polarized, the pairing
is effectively of p-wave nature, i.e., the pairing matrix is
antisymmetric, �ij = −�ji . As explained above, this makes
the Hamiltonian closely related to Kitaev’s toy model [3]
except for the long-range nature of the hopping and pairing
amplitudes. In view of the large ratio ξ0/a, we consider the
limit ξ0 → ∞ in the following unless otherwise stated.

This model has been discussed in detail in Ref. [15] and
we briefly review its topological properties before deriving the
unusual localization properties of the Majorana states near the
Bragg point. Figure 1(a) reproduces the corresponding phase
diagram as a function of Shiba bound state energy ε0 and
Fermi wave vector kF [15]. The topological phase boundaries
which appear in the phase diagram as diagonal lines occur
when the chemical potential leaves the Shiba bands. These
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FIG. 1. (Color online) (a) Phase diagram for kh = 0.1π/a and ξ0 = ∞ (black phase boundaries) or ξ0 = 15a (gray lines), with topological
(T) and nontopological (N) phases. (Energies are given in units of �0.) The yellow dashed line indicates the Bragg point kF = kh with
exponentially localized Majorana states [|β| < 1 in Eq. (6)]. For ξ0 = ∞, this coincides with the phase transition between the two- and
single-channel phases. (b), (c) Winding of the unit vector B̂k = Bk/Bk as k is tuned across the Brillouin zone for (b) the single-channel and
(c) the two-channel phase (partially shifted radially for visibility). While in the single-channel phase B̂k winds once around the origin; the
winding is trivial in the two-channel phase, reflecting the topological phase transition. Insets: Dispersion hk and pairing �k in the two phases.
The two-channel dispersion has a second pair of Fermi points.

transitions are equivalent to those of the Kitaev chain and
reflect a continuous gap closing and reopening. A different
type of topological phase transition which emerges from the
long-range coupling and has no analog in the Kitaev chain,
occurs at the Bragg point kh = kF (vertical lines) [25]. This is
a discontinuous transition associated with the (dis)appearance
of an additional pair of Fermi points near k = 0 [see insets of
Figs. 1(b) and 1(c)] modifying the system between effective
single-channel and two-channel phases. In the nontopological
two-channel phase, the cumulative hopping strength is finite
across an even number of sites but vanishes across an odd
number so that one can roughly think of the even and odd sites
as two channels [26]. This happens for kF < kh, while even and
odd sites are strongly coupled in the topological single-channel
phase kF > kh. In some specific implementations, the RKKY
interaction between the impurities is maximal at the wave
vector 2kF , so that the helix wave vector realizes the Bragg
point kh = kF [12,27,28]. This would put the Shiba chain
right at (for ξ0 → ∞) or near (for large but finite ξ0) an
unconventional topological critical point.

For a planar spin helix, the Shiba chain obeys chiral
symmetry, {H,τy} = 0, which puts it in class BDI and in
principle allows for a topological Z index [29]. To explore
the discontinuous transition at the Bragg point more closely,
we analyze the topological index of the two adjacent phases.
To this end, we rewrite the Hamiltonian in momentum space,
Hk = hkτz + �kτx , and determine the winding number of
the two-component vector Bk = (�k,hk) in the xz plane
as k traverses the Brillouin zone from −π/a to π/a [see
Figs. 1(b) and 1(c)]. This confirms the identification of
the topologically trivial (kF < kh) and nontrivial (kF > kh)
phases [30].

The transition between these phases at the Bragg point
is reflected in the subgap states of long but finite chains.
Their energies near kF = kh are shown in Fig. 2(a). In the
two-channel phase, one finds two subgap states for each end.
These can be thought of as the hybridized Majorana states
of the two channels. As kF → kh, one subgap state merges
with the quasiparticle continuum due to coupling with the
opposite end of the chain, while the other approaches zero
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FIG. 2. (Color online) (a) Energy of the two positive-energy subgap states (in units of �0) in the nontopological two-channel phase (δk < 0)
near the Bragg point, for ξ0 = ∞ and various chain lengths L. As L → ∞, the two states become degenerate with energy ∼√|δk| near the phase
transition. At the critical point, one subgap state merges discontinuously with the quasiparticle continuum. For finite L, the discontinuity is
smeared and the degeneracy is lifted on the scale 1/L. (b) Majorana wave function vj at the Bragg point kF = kh. The exact numerical solution
of the BdG Hamiltonian (green crosses) agrees with the analytical solution (black line) in Eq. (6). Inset: Localization length ξeff = a/ ln |β−1|
along the yellow line in the phase diagram in Fig. 1(a). The localization length is of order a and decreases with increasing coherence length ξ0.
(c) Majorana wave function vj for kF = kh + δk with δk = 0.003/a. The numerical solution of the BdG Hamiltonian (orange crosses) agrees
with the analytical solution (blue line) as obtained by numerical evaluation of the inverse Laplace transform in Eq. (9). Inset: Blowup near the
end of the chain emphasizing the initial exponential decay. Parameters: ε0 = 0.03�0, kh = 0.1π/a, and kF = 4.1π/a + δk.
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energy and connects smoothly with the Majorana end state in
the topological phase. Thus, right at the Bragg point, there is
exactly one zero-energy state for each end of the chain. We
now turn to an analytical theory of the Majorana bound state
and the subgap spectrum both at and near the Bragg point.

Majorana bound state at the Bragg point kF = kh. We
exploit the chiral symmetry of the Hamiltonian and rotate
it into the Majorana basis in which H becomes purely
off-diagonal in particle-hole space [31]. This is effected by
a π/2 rotation about the x axis which transforms τz → −τy

and keeps τx unchanged so that H = −hτy + �τx . Now, the
equations for the zero-energy Majorana states with BdG spinor
(u,v) take the simple form

u = 0 and (ih + �)v = 0 (4)

for the Majorana localized at the left end of the chain, and v =
0 and (−ih + �)u = 0 for the Majorana localized at the right
end. (Note that this consistently neglects finite-size effects).
Specifying to the left-end states for definiteness, one readily
finds for H12 = ih + �, from Eqs. (2) and (3), that (H12)jj =
iε0 and

(H12)ij = − i�

kF rij

e−rij /ξ0 sin(kF rij − khxij ) (5)

for i �= j . Since rij = |xij |, the Bragg point kh = kF has the
remarkable property that H12 is a triangular matrix. This
property immediately allows us to solve Eq. (4) by the ansatz
vj = βj . Here, j enumerates the sites starting with the left
end of the chain. Indeed, with this ansatz, all components of
the equation H12v = 0 reduce to the same condition for β.
Solving this condition, we find

β = ea/ξ0 sin(kF aε0/�)

sin[2kF a + kF aε0/�]
. (6)

Obviously, this provides an exponentially localized Majorana
solution as long as |β| < 1. One can convince oneself that
this condition is satisfied wherever the line kF = kh is inside
the topological phase for finite ξ0. This region is marked by
a yellow dashed line in Fig. 1(a). As shown in Fig. 2(b), this
exact analytical result is in excellent agreement with numerical
simulations.

This constitutes the central result of this work with
remarkable implications: (i) Helical Shiba chains display an
unconventional topological critical point at or in the immediate
vicinity of the Bragg point kF = kh. (ii) At the Bragg point,
they have Majonana end states which are exponentially
localized even though the Hamiltonian allows for long-range
hopping and pairing along the chain. (iii) The localization
length ξeff = a/ ln |β−1| of the Majorana states is set by the
spacing a between the magnetic impurities and thus much
shorter than the coherence length ξ0 of the superconducting
host. (iv) The Majorana end states at the Bragg point remain
well defined and exponentially localized even in the limit
ξ0 → ∞ where the Bragg point coincides with the topological
critical point. (v) We will see below that away from the Bragg
point, the Majorana wave functions develop a power-law tail
in addition to the initial exponential decay.

Physically, the strong localization for kh = kF can be
traced back to Bragg reflection. Similar to a Bragg mirror,
the resonance between the oscillations of the Shiba states

and the spin helix leads to destructive interference in one
direction which neutralizes the long-range coupling. This
explains that the localization length becomes of the order of
the lattice spacing. More explicitly, the hopping and pairing
terms are generically of the same order, but their relative
magnitude depends sensitively on the wave vectors kF and
kh. At the resonance kF = kh, hopping and pairing between
two arbitrary sites have equal magnitude but differ in parity.
Hopping to left and right has the same sign and is thus
even, whereas pairing is odd with opposite signs for the two
directions.

Topological phase. When tuning away from the Bragg
point, Bragg reflection is no longer perfect and the long-range
character of the model is partially recovered. As a result, the
wave function acquires a tail with a slow power-law decay
as we will now show for the immediate vicinity of the Bragg
point (in agreement with earlier numerical results [15]). Here
we first focus on the topological phase (kF = kh + δk with
δk small and positive) and return to the nontopological phase
(kF = kh + δk with δk small and negative) further below.

For δk small and positive, the matrices H12 and H21 are no
longer triangular, but we still expect a localized Majorana state
in a semi-infinite chain. We expand the eigenvalue problem
to linear order in δk and show that it reduces to an integral
equation in a suitably taken limit when setting ξ0 → ∞. The
integral equation can then be solved by standard methods. To
first order in δk, we rewrite H12v = 0 as

(M + δM)(v0 + δkδv) = 0 (7)

(see [26] for numerical support of this expansion). Here,
M is the upper triangular part of H12 with Mii = iε0,
Mij = (−i�/kF ) sin(Krij )/rij for i < j in terms of K =
kF + kh, and δM is the lower triangular part with δMij =
(−i�/kF ) sin(δkrij )/rij for i > j . To zeroth order in δk, we
obtain Mv0 = 0 and thus v0 coincides with the exponentially
decaying solution at the Bragg point.

Next, we rewrite δM as δMi+j,i = (−i�/kF )δk sin yj/yj

with yj = δkaj . Thus δMij varies only on large scales rij ∼
1/δk and we can take a continuum limit by considering δk → 0
while keeping yj fixed. In this limit, δM converges to a contin-
uous matrix as a function of yj → y and correspondingly, δv

should also have a well-defined continuum limit δv → δv(y)
as a function of the scaled variable yj . The existence of this
continuum limit is readily confirmed by numerics and to linear
order in δk, Eq. (7) yields an integral equation for δv(y) [26],

Aδv(y) +
∫ y

0
dz

sin(y − z)

y − z
δv(z) = −B

sin y

y
. (8)

Here we defined A = F (kF + kh) − kF aε0
�

, B =
a sgn β[(1 + β)/(1 − β)]1/2, and F (x) = arctan cot(x/2).
This integral equation can be solved in a standard manner by
Laplace transform L which yields [26]

δv(y) = −L−1

[
B arccot s

A + arccot s

]
∼

y→∞ −4AB
sin y

y ln2 y
. (9)

Corrections to the asymptote are suppressed by factors of
1/ ln y. Although our analytical analysis focuses on the vicin-
ity of the Bragg point, the asymptotic decay is characteristic
of the Majorana states in the entire topological phase when
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ξ0 = ∞ as previously established numerically [15].
Figure 2(c) shows that the analytical solution (9) is in excellent
agreement with numerical results.

Nontopological phase. When the Bragg point kF = kh falls
into the topological phase for finite ξ0 [i.e., along the yellow
line in Fig. 1(a)], the nontopological side of the phase transition
(δk < 0) can be understood as an effective two-channel wire
[15]. Thus, this phase exhibits two subgap states for each end.
In long chains, L → ∞, their wave function and energy can
be obtained analytically by an extension of the technique used
for δk > 0. Here, we sketch the results and defer details to the
Supplemental Material [26].

The two positive-energy subgap states become degenerate
for large L, and to leading order in |δk| we find that their energy
scales as ε ∼ |δk|1/2, consistent with Fig. 2(a). Similarly, the
Nambu wave function (u,v) for the state at the left end [32] has
ui ∼ |δk|1/2 exp(− cot A|δk|ai) and v ∼ v0 + |δk|δv, with v0

the exponential solution at the critical point and δv a power-law
tail ∼1/y ln2 y as for δk > 0. The electron component u

decays exponentially with a decay length which diverges
for δk = 0, reflecting the phase transition and the disappear-
ance of one subgap state. The hole component v smoothly
evolves into the Majorana bound state on the topological
side.

Conclusions. As a consequence of the long-range coupling,
helical Shiba chains display an unconventional topological

critical point at the Bragg point kF = kh. We show that
for finite chains, the Majorana end states persist at the
critical point and display remarkable localization properties.
By the competition between Bragg reflection and long-range
coupling, the Majorana end states are exponentially localized
at the critical point but develop a power-law tail in the
topological phase. This contrasts in an interesting way with
the decay of correlations around conventional critical points.

This is also an encouraging prediction for experiment, as
the exponential localization at the critical point is on the scale
of the lattice spacing and entirely unrelated to a topological
gap. Thus, the Majorana end states may remain well localized
even in chains whose length is comparable to the coherence
length of the host superconductor. At the same time, the power-
law localization within the topological phase raises interesting
questions with regard to its stability against perturbations such
as disorder.
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