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Abstract
Chains of magnetic adatoms on a conventional superconducting substrate constitute a promising
venue for realizing topological superconductivity and Majorana end states. Here, we give a brief
overview over recent attempts to describe these systems theoretically, emphasizing how the
topological phase emerges from the physics of individual magnetic impurities and their
associated Shiba states.
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1. Introduction

Perhaps the most promising route towards realizing Majorana
states in condensed matter systems relies on helical electron
systems in one dimension (1D), proximity coupled to a
conventional s-wave superconductor [1, 2]. This possibility
was first suggested for topological insulators by Fu and Kane
[3, 4] and subsequently extended to a number of other plat-
forms such as semiconductor quantum wires [5–7]. There has
been considerable progress towards implementing these
platforms experimentally, including possible evidence for
Majorana bound states in semiconductor quantum wires
[8–15].

These platforms realize a topological superconducting
phase which is adiabatically connected to a spinless p-wave
superconductor in 1D [16, 17]. This is achieved by three
essential ingredients, proximity coupling of the 1D system to
a conventional s-wave superconductor, a Zeeman field, and
spin–orbit coupling. This can be roughly understood as fol-
lows: inducing superconductivity by proximity ensures that
the superconducting correlations are inherited from a bulk
system and hence not subject to the Mermin–Wagner theorem
despite their 1D nature. The Zeeman field spin polarizes the
electrons, making the system akin to spinless fermions.
Rashba spin–orbit coupling is needed to enable proximity
coupling of a conventional s-wave superconductor to a spin-
polarized system in which superconducting order must

(typically) be of p-wave nature. Note that the spin–orbit
coupling can be located either in the 1D system [4–6] or in the
bulk superconductor [18, 19].

Here, we discuss an alternative platform that also relies
on these general ideas, namely a chain of magnetic adatoms
placed on a superconductor. This platform was recently
suggested in [20], building on previous related works [21–
23]. We focus on an analytical approach which describes the
physics of the adatom chain and its topological phases starting
with the physics of an individual magnetic adatom [24–26].

Recently, a first experiment which may have realized a
version of this scenario has appeared in the literature [27]. In
this experiment, a chain of Fe adatoms is placed on a
superconducting Pb (110) surface. Evidence for Majorana end
states is provided by scanning tunneling microscopy mea-
surements which can resolve possible end states both in real
space and in energy.

2. Shiba states

2.1. Individual magnetic impurity

We start by considering the physics of a single magnetic
impurity in a conventional superconductor. This is a classic
problem in the theory of superconductors [28–31]. For sim-
plicity, let us assume that the adatom is electronically inert
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and interacts with the electrons in the superconductor only by
exchange coupling with its spin S. If the spin is sufficiently
large, we can assume it to be classical. The effect of a single
magnetic impurity on the superconductor can be readily
analyzed by means of the Bogoliubov–deGennes (BdG)
Hamiltonian (see, e.g., [24] for a more detailed account)

H
p
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2
· ( ) . (1)z x

2

0
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Here, J denotes the strength of the exchange coupling
between impurity spin (located at the origin) and electron
spins in the superconductor, 0Δ the pairing strength of the
superconductor, and jσ ( jτ ) denotes Pauli matrices in spin
(particle–hole) space. It was already shown in the 60s that this
Hamiltonian has a subgap bound state localized at the
impurity spin, often referred to as Yu–Shiba–Rusinov state
[28–30]—or simply Shiba state for brevity. Its energy is
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where JS0α πν= is a dimensionless measure of the strength
of the exchange coupling with 0ν the normal-state density of
states of the superconductor. Note that the Shiba energy can
change sign when 1α = . This point signals a quantum phase
transition where the impurity effectively binds an electron and
the many-body ground state of the superconductor changes
from even to odd electron number parity.

For our purposes, Shiba bound states have two essential
properties which are encoded in their BdG wavefunctions
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where δ is a phase shift which depends on the strength of the
exchange coupling, tan 1δ α= − . First, the Shiba states are
linear combinations of spin-up electrons and spin-down holes
and are thus perfectly spin polarized along the direction of the
classical impurity spin S. Second, their wave function initially
decays as r1 away from the impurity which crosses over into
an exponential decay only for distances larger than
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Specifically, for deep Shiba states with energy E0 0Δ≪ , this
exponential decay becomes relevant only on the scale of the
superconducting coherence length v0 F 0ξ Δ=  .

2.2. Chain of magnetic impurities

An individual magnetic impurity provides a Shiba state within
the superconducting gap while the impurity d-levels are far
from the Fermi energy of the superconductor and thus elec-
tronically inert beyond the formation of the local moment.
Now, consider a chain of magnetic impurities. If the adatoms

are sufficiently dilute, direct hopping between the adatom d-
levels is weak and the resulting band of adatom d-levels
remains electronically inert. In this limit, each magnetic
impurity contributes a Shiba state. These Shiba states hybri-
dize and broaden out into a Shiba band. Below, we refer to
this situation as Shiba chain and analyze it in detail in
section 3. This section reviews work in [24, 25].

A different picture emerges when the adatoms are closely
spaced and the direct hopping between the adatom d-levels
becomes significant. In this case, the width of the adatom d-
band can become so large that it crosses the Fermi energy of
the substrate superconductor. In this case, the adatom d-levels
are no longer electronically inert but have to be included in a
low-energy description. Effectively, the adatom d-levels form
a 1D wire so that we refer to this situation below as wire limit.
This situation will be discussed in section 4 which reviews
work in [26].

3. Shiba chains

3.1. Simple model

When the adatom d-levels remain electronically inert, we can
focus attention on the Shiba states induced in the gap of the
superconducting substrate. If the Shiba states are sufficiently
deep and the broadening sufficiently small, we can focus
attention on the Shiba states only and project out the quasi-
particle continua at higher energies [24]. Then, we can write
an effective low-energy Hamiltonian in terms of the creation
operator cj

† associated with the Shiba state at site j. Neigh-
boring Shiba states hybridize with amplitude t (see below for
a more careful discussion). In this limit, it is tempting to
describe the Shiba chain by a Hamiltonian of the form

E c c t c c c c

c c c c . (5)
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As the Shiba chain is embedded into the host superconductor,
we include a pairing term of strength Δ into this Hamiltonian.
Importantly, the pairing term necessarily involves pairing
correlations between different sites due to the perfect spin
polarization.

While this Hamiltonian neglects essential physics of
Shiba chains as discussed in section 3.3 below, it is a useful
reference point due to its simplicity. In fact, equation (5) is
just the Kitaev-chain Hamiltonian of a spinless p-wave
superconductor, where the energy of the Shiba state plays the
role of the chemical potential. (For the Shiba chain, the
physical chemical potential is fixed to be in the center of the
gap of the host superconductor and is set to zero for simpli-
city.) As is well-known, the Kitaev chain has a topological
phase at finite Δ whenever the chemical potential is situated in
the normal-state band, i.e., for E t20∣ ∣ < in the present case.
The corresponding phase diagram as a function of E0 and Δ is
shown in figure 1.
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Thus, we find the following basic (though simplified—
see section 3.3 below) picture for the phase diagram of Shiba
chains [20, 24], see figure 2. When the magnetic adatoms are
far apart, each of them is associated with a Shiba state and
hybridization can be neglected. Clearly, in this case, the
system is nontopological with E t20∣ ∣ > . As the adatoms are
placed closer together, the hybridization increases and with
it the bandwidth of the Shiba bands. Initially, the Shiba
bands (including the BdG partner with an energy of opposite
sign) still do not cross the chemical potential at the center of
the gap. Thus, we still have E t20∣ ∣ > and the system
remains in the topologically trivial phase. Eventually, the
two Shiba bands will extend beyond the center of the gap.
Now, the pairing correlations Δ within the Shiba bands will
again open a gap at the Fermi energy, but this is a p-wave
gap, unlike the larger s-wave gap of the host super-
conductor! In this phase, the Shiba chain is in a topological
phase and will host zero-energy Majorana bound states at
its ends.

3.2. Induced pairing correlations

So far, we have simply assumed that the effective Kitaev-
chain Hamiltonian for the Shiba chain contains pairing terms,
but did not discuss their microscopic origin. This question is
actually closely related to the collective behavior of the
impurity spins. We noted that the Shiba states are spin
polarized along the direction of the corresponding impurity
spin, but ignored the question of how the impurity spins are
oriented with respect to one another. This question is of
obvious importance for the physics of the adatom chain.
Indeed, we expect that the impurity spins interact through the
familiar RKKY interaction mediated by the host super-
conductor and may thus order magnetically [32]. Two such
orderings have been predominantly discussed in the literature
[20, 24, 25, 33–35], which actually entail somewhat different
physics of the pairing terms

One plausible possibility is that the chain orders
ferromagnetically, with all impurity spins aligning along

a certain direction3. In that case, also all Shiba states along the
chain are spin polarized along the same direction. This cor-
responds to a perfectly spin-polarized system and conse-
quently, the spin-singlet Cooper pairs of a pure s-wave host
superconductor would not be able to proximity-couple to the
chain of Shiba states. To induce pairing correlation within the
chain of Shiba states in this case, we need to rely on (Rashba)
spin–orbit coupling in the superconducting substrate.

An interesting alternative is that the magnetic impurities
form a spin helix in which the impurity spins rotate along the
chain [20, 24, 25, 33–35]. In this case, neighboring impurity
spins are not aligned and the corresponding Shiba states are
polarized along different directions. The spin singlet Cooper
pairs of the host superconductor can effectively proximity-
couple to the chain as long as the spin-up electron and the
spin-down electron enter on different sites. Thus, the effective
pairing correlations which result from these processes are just
of the spinless p-wave type which are included in the Kitaev-
chain Hamiltonian (5).

These considerations suggest that that Rashba spin–orbit
coupling and helical spin ordering are closely related. This
can indeed be shown explicitly for the Hamiltonian of a 1D
semiconductor quantum wire with spin–orbit coupling of
strength α and subject to a Zeeman field B [22, 37],

H
m

p m B
1

2
( ) · . (6)z

2ασ σ= + −

The canonical transformation U m xexp(i )zα σ= , where x
denotes the coordinate along the wire, yields

H H
p

m
xB

2
( ) · . (7)

2

σ→ ′ = −

Here xB( ) is a helical Zeeman field which rotates along the
chain about the z-direction with wavevector m2 α. This
establishes an exact mapping between Rashba spin–orbit
coupling and a helical order of the adatom spins.

A similar unitary transformation can also be applied to
the helical Shiba chain. Consider the corresponding Hamil-
tonian

( )H
p

m
J S r R

2
· , (8)z

j

j j x

2

0

⎛
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⎞
⎠⎟ ∑μ τ σδ Δ τ= − + − +

where jaR x̂j = denotes the positions of the magnetic
adatoms and S j denotes a spin helix

( )S sin cos , sin sin , cos . (9)j j jθ ϕ θ ϕ θ=

The spin helix advances along the chain as k jaj hϕ = with
opening angle θ with respect to the z-axis. We can now
perform the unitary transformation U k xexp(i 2)zh σ= . This
rotates all spins such that the exchange coupling of the
electron spins involves the same impurity spin direction
S (sin , 0, cos )θ θ= for all sites. At the same time, it
introduces a spin–orbit-coupling-like term into the kinetic

Figure 1. The phase diagram of the simplified Shiba-chain
Hamiltonian (5) as function of p-wave pairing strength Δ and Shiba-
state energy E0. This Hamiltonian is just the Hamiltonian of a Kitaev
chain with the Shiba-state energy E0 playing the role of the chemical
potential. Thus, the Shiba-chain model has a topological super-
conducting phase (labeled by TP) as long as E t20∣ ∣ < , and a
nontopological phase (labeled as NT) otherwise. Note that this
Hamiltonian neglects the power-law decay of the Shiba bound states
which modifies the phase diagram as discussed below.

3 In the present context, this possibility was emphasized by Ali Yazdani at
the Nobel Symposium New Forms of Matter—Topological Insulators and
Superconductors; see also [36] for a subsequent calculation for a specific
model of a two-dimensional superconductor.
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energy,
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We would like to make two comments on this transformed
result: first, the spin–orbit field points along the z-direction
while the adatoms induce an effective Zeeman field along a
direction which is tilted by an angle θ away from the z-axis. It
is well-known that the optimal situation for topological
superconductivity requires orthogonal Zeeman and spin–orbit
fields. In the present context, this is realized for a planar spin
helix with 2θ π= . Conical spin helices with smaller opening
angles are less favorable. We find that this is indeed the case
from more detailed calculations, as discussed below. Second,
the effective spin–orbit coupling in equation (10) differs from
Rashba spin–orbit coupling in that it affects only the px-term
in the kinetic energy. With the surface of the superconductor
is the xy-plane, conventional Rashba coupling would involve
the combination p px y y xσ σ− 4. Apart from an inconsequential
rotation in spin space, this differs from equation (10) in that it
involves two Pauli matrices. However, the principal purpose
of the spin–orbit coupling is to allow for p-wave super-
conducting correlations in the chain which derives from the
term which involves the momentum along the chain. The
term in the Rashba spin–orbit coupling involving the
perpendicular direction modifies the physics merely quantita-
tively, but not qualitatively.

There is some experimental evidence for normal-metal
substrates that chains of magnetic adatoms (Fe on Ir sub-
strates) can indeed exhibit helical spin order [38]. More
generally, spin helix formation is expected to occur when the
adatom chain is embedded in a strictly 1D system [33–35]. In

this case, the RKKY interaction between the magnetic
moments of the adatoms becomes maximal at k2 F. In the
absence of fluctuations, this maximum at a finite wavevector
induces spin-helix formation at wavevector k2 F. For not too
strong thermal fluctuations, this order persists up to expo-
nentially large lengths due to the linear dispersion of the spin-
wave excitations of the spin helix [33]. These arguments
depend only mildly on whether the substrate is normal or
superconducting. The two cases differ only on length scales
beyond the superconducting coherence length which is typi-
cally large compared to the pitch of the spin helix. For higher-
dimensional substrates, the RKKY interaction typically favors
ferromagnetic spin arrangements unless spin–orbit coupling
induces a significant Dyaloshinski–Moriya-type interaction
between the adatom spins [39].

3.3. Kitaev chain with long-range hopping and pairing

3.3.1. Long-range hopping and pairing. So far, we have used
that the Shiba states are spin polarized but ignored the fact
that their wavefunctions initially decay as a power law away
from the impurity. This is justified as long as the spacing
between Shiba states is comparable to or larger than the
coherence length of the host superconductor. However,
typical experimental realizations will rather consist of
chains where the magnetic adatoms are spaced on the scale
of the lattice spacing of the host which is orders of
magnitudes smaller than the coherence length. In this limit,
we should take the power-law decay of the Shiba bound states
into account. In fact, it is even conceivable that the entire
length of the adatom chain remains smaller than or
comparable to the coherence length so that it may be a
good approximation to neglect the ultimate exponential decay
of the Shiba states altogether.

Unlike the Kitaev-chain Hamiltonian with nearest-
neighbor hopping and pairing, the effective low-energy
Hamiltonian of Shiba chains with closely spaced adatoms
should include longer-range hopping and pairing terms which
result from the slow power-law decay of the Shiba states.
Reflecting the decay of the Shiba wavefunctions, hopping and
pairing decays with distance also as r1 . This power-law

Figure 2. Excitation spectrum of Shiba chains as function of the distance between adatoms. (a) For dilute atoms, the Shiba states of the
individual adatoms broaden out into bands, but these do not cross the chemical potential in the center of the gap. In this case, the system is in
a nontopological phase. (b) For dense adatoms, the hybridization of the Shiba states becomes stronger and the Shiba band overlap at the
center of the gap. In this case, the pairing correlations Δ reopen a gap which is of p-wave nature due to the spin polarization of the Shiba
states. This is a topological superconducting phase which hosts Majorana bound states at its ends.

4 Strictly speaking, the Rashba spin–orbit term would take a form similar to
the transformed kinetic energy only for 2D superconductors. In 3D, the
physical Rashba spin–orbit coupling would be limited to the surface of the
superconductor. Again, this presumably affects the topological physics of the
Shiba chain only quantitatively.
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decay raises interesting questions which we want to address in
the remainder of this section:

• It is well-known from the theory of phase transitions that
long-range coupling can significantly modify the phase
diagram of a model, especially in low dimensions. Thus,
it is an interesting question to which degree the phase
diagrams differ between the conventional Kitaev chain
with nearest-neighbor hopping and pairing and the
Kitaev chain with long-range coupling. We will focus
on the case of a helical spin arrangement for which we
can consider the phase diagram as function of the energy
of the individual Shiba states (i.e., the strength of the
exchange coupling between impurity and electron spins)
and the helix wavevector (measured in units of the Fermi
wavevector of the superconducting substrate). The results
should also apply at least qualitatively to a ferromagnetic
spin arrangement, with the helix wavevector being
replaced by the strength of the Rashba spin–orbit
coupling. One may also be interested to which degree
the phase diagram differs for planar and conical spin
helices.

• A hallmark of topological phases are exponentially
localized end, edge, or surface states. Specifically, the
Majorana bound states of 1D superconductors are
localized exponentially near the end or at a domain wall.
It seems likely that generically, power-law hopping and
pairing is incompatible with such exponential localiza-
tion. What then is the localization behavior of Majorana
bound states and what is the nature of the topological
phase transition? One may also question whether
Hamiltonians with power-law couplings actually exhibit
true topological phases.

• The last question can also be given a more experimental
touch: are Majorana end states sufficiently localized in
the presence of long-range coupling given the finite
length of the chain? This is a relevant question because
the chain length in experiment can be smaller than or
comparable to the coherence length of the host super-
conductor [27]. Generically, the localization length of
Majorana end states is governed by the topological gap
which is smaller than the gap of the host superconductor.
Thus, unless the relevant velocity is much smaller than
the Fermi velocity of the superconductor (see section 4
below for a possible scenario in which this is actually the
case), the Majorana end states in Shiba chains should be
localized on scales larger than the coherence length 0ξ of
the host superconductor. This would imply that the
Majorana end states strongly overlap, precluding experi-
mental observation of reasonably separated Majorana
excitations.

To address these questions, we have derived a tight-binding
model starting from the Shiba states of the individual
impurities [24, 25]. This model assumes that we are dealing
with deep Shiba states with sufficiently weak hybridization
such that we can project out the quasiparticle continuum of
the host superconductor and focus on the Shiba states only.

As shown in detail in [24], this leads to a Kitaev-like model,

E c c t c c c c

c c c c . (11)

j

j j

ij

ij j i i j

ij

ij j i i j

0
† † †

† †

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

 ∑ ∑

∑Δ

= − +

+ +

For a planar spin helix of wavevector kh, we find the long-
range hopping amplitudes

t
k r

k r
k x

sin
e cos 2 (12)ij

ij

ij

r
ij0

F

F
h

ij 0Δ= ξ−

as well as the long-range pairing strengths

k r

k r
k xi

cos
e sin 2 (13)ij

ij

ij

r
ij0

F

F
h

ij 0Δ Δ= ξ−

for i j≠ . (Note that t 0ii iiΔ= = .) Here, 0Δ denotes the
pairing strength of the host superconductor, kF is its Fermi
wavevector, x i j a( )ij = − in terms of the lattice spacing a of
the chain, and r xij ij= ∣ ∣. Explicit results for conical spin
helices can be found in [24].

3.3.2. Phase diagram. For an infinite chain, the tight-
binding model can be diagonalized in momentum space. It
is then straightforward to obtain the phase diagram of the
model [24]. Focusing first on a planar spin helix of a certain
helix wavevector, the resulting phase diagram as function of
Shiba-state energy and Fermi wavevector of the
superconducting substrate is shown in figure 3. The phase
diagram exhibits both topological and nontopological regions.
The outer tilted phase boundaries just reflect the fact that the
model undergoes a transition from the topological to the
nontopological phase as the (absolute value of the) energy of
the Shiba state increases. Unlike the simplified model
Hamiltonian (5) with nearest-neighbor hopping and pairing,
these phase boundaries are tilted. This is a consequence of the
long-range hopping which makes the Shiba bands depend on

Figure 3. The phase diagram of a Shiba chain with planar spin helix
when including the long-range hopping and pairing. The system
exhibits topological (TP) and nontopological (NT) phases.
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the Fermi wavelength of the underlying superconducting
substrate.

Apart from these conventional (albeit modified) phase
boundaries, there are also phase boundaries that have no
analog in the model (5) without long-range coupling. First,
there is an intermediate line in the middle between the outer
two tilted phase boundaries. At this line, the gap merely
collapses but the system remains topological on both sides.
Second, there are nearly vertical phase boundaries which
connect the upper and lower tilted phase boundaries.

To understand these new phase boundaries, we analyze
the normal-state dispersion t t ek j ij

kxi ij∑= and the gap

function ek j ij
kxi ij∑Δ Δ= more closely. These Fourier

transforms can be readily performed explicitly [24]. For the
realistic case of a coherence length which is large compared
to the adatom spacing, the Fourier transform is dominated by
the r1 dependence of the hopping amplitudes and the pairing.
Accordingly, one finds that tk exhibits steplike behavior while

kΔ exhibits logarithmic singularities. The steps have a width
of order 1 0ξ and the bandwidth of the dispersion is of order

k a0 FΔ . Representative examples of these functions are
shown in figure 4.

These Fourier transforms explain the origin of the
additional phase boundaries. First consider the additional
vertical phase boundaries in figure 3. These phase boundaries
are associated with the fact that there are two distinct types of
dispersions depending on the Fermi wavevector kF and the

helix wavevector kh—termed type 1 and type 2 in figure 4.
The dispersion can have two or four Fermi points, with abrupt
transitions between these two cases in the limit 0ξ → ∞. For
two Fermi points, the Shiba chain has only a single right- and
a single left-moving channel and pairing induces a true
topological phase. In contrast, for four Fermi points, there are
two left-moving and two right-moving Fermi points and the
Shiba chain is effectively behaving like a two-channel wire.
At each end, there are Majorana end states associated with
both channels. These two Majorana end states hybridize and
thus, the Shiba chain is in a nontopological phase. The nature
of the dispersion depends on the relation between the Fermi
wavevector kF of the substrate and the helix wavevector kh,
and thus causes a vertical phase boundary in the phase
diagram in figure 3.

The additional tilted line where the gap collapses in
between two topological regions is a consequence of the
horizontal section of the dispersion tk. When the Fermi energy
just coincides with this horizontal section, there is always one
wavevector k on this horizontal section for which the gap
function kΔ vanishes, implying that the excitation gap
collapses. This can be seen from the plot of kΔ in figure 4.

We conclude this section by noting that the phase
diagram changes qualitatively for a conical spin helix.
Essentially, the conical spin helix breaks the symmetry of
the dispersion under k k→ − . This suppresses the resonance
underlying Cooper-pair formation and suppresses the topolo-
gical superconducting phase, yielding a sizable gapless phase
in the phase diagram. This case was analyzed more system-
atically in [24].

3.4. Majorana bound states

The vertical phase boundaries are actually rather unusual
topological phase boundaries [25]: in the limit 0ξ → ∞, they
constitute discontinuous topological phase transitions. Indeed,
in this limit the gap does not close as one approaches the
critical line from either side but rather discontinuously
changes sign. This is associated with the fact that the dis-
persion jumps discontinuously between type 1 and type 2 at
the transition. For a finite but large 0ξ , the transition becomes
continuous in principle but remains exceedingly sharp due to
the large parameter a0ξ .

The anomalous nature of the topological phase transition
is also reflected in the localization properties of the Majorana
bound states present in the topological phase [24, 25]. It was
first established numerically [24] that the Majorana bound
states are no longer exponentially localized in the presence of
power-law hopping and pairing. Instead, for 0ξ → ∞, the
Majorana wavefunction decays as r r1 ln2 . Interestingly,
while not being exponential, this decay is still faster than that
of the decay of the hopping and pairing matrix elements. For
finite 0ξ , this power-law decay of the Majorana wavefunction
eventually turns into an exponential decay for r 0ξ> . These
behaviors of the Majorana bound states can be deduced by
analyzing the bound-state wavefunctions but are also directly
reflected in the splitting of the zero-energy states in a finite
chain [24].

Figure 4. Normal-state dispersions tk an gap function kΔ for (a) type-
1 and (b) type-2 dispersions of the Shiba-chain Hamiltonian (11).
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The anomalous nature of the topological phase transition
becomes apparent when analyzing the localization properties
at or near the vertical phase transition lines in figure 3. It turns
out that this can actually be done analytically [25]. One finds
that for 0ξ → ∞, the Majorana end states exhibit an exact
exponential decay right at the phase transition line. Even
more remarkably, this exponential decay is entirely unrelated
to the topological gap. Instead, the localization length is on
the scale of the lattice spacing of the chain and thus much
smaller than any scale associated with the topological gap.
Physically, the lattice scale emerges because the underlying
physics of this exponential localization is Bragg reflection.
The vertical phase boundary occurs for k k2h F= (modulo
reciprocal lattice vectors of the chain) where the spin helix
essentially acts as a perfect Bragg mirror for the zero-energy
electrons in the superconductor.

4. Wire limit

4.1. Topological superconductivity

In the previous section, we assumed that the adatom d-levels
remain electronically inert. This is no longer adequate when
the hopping between the d-levels of adjacent adatoms
becomes large. Then, the resulting d-bands cross the Fermi
energy of the superconducting substrate. The essential phy-
sics becomes transparent in a simplified model of a chain of
spin-1/2 Anderson impurities on a superconductor. When a
local moment forms for an individual Anderson impurity, the
spin-up state is occupied and the spin-down state unoccupied.
In general, the energies of the spin-up and spin-down state are
asymmetric about the Fermi energy of the substrate. When
these states broaden out into bands by hopping between
neighboring adatoms, they will cross the substrate Fermi
energy at different hopping amplitudes. Consequently, there
is a significant parameter range over which only one of the
bands crosses the Fermi energy. In this case, the adatom d-
levels effectively form a 1D electron system which behaves as
a spin-polarized wire. This system will generically exhibit
topological superconductivity essentially by the same
mechanism which underlies previous proposals for topologi-
cal superconductivity in quantum wires [5, 6].

One specific aspect of the adatom chain in the wire limit
is the strong Zeeman splitting of the adatom d-levels. This
strong spin polarization implies that spin–orbit coupling of
the adatom d-levels is inefficient in inducing p-wave corre-
lations within the d-bands and can be neglected. Indeed, it is
well-known that in models with spin–orbit coupling in the
wire only, the induced p-wave gap is reduced by the ratio of
spin–orbit coupling and spin splitting. However, significant p-
wave pairing can still be induced in the adatom d-band when
there is significant (Rashba) spin–orbit coupling in the sub-
strate superconductor, as in the half-metal proposals [18, 19].

It is possible to solve a model for a chain of Anderson
impurities on a superconducting substrate essentially analy-
tically when treating the on-site interaction U of the Anderson
impurities in mean-field approximation [26]. A fully

analytical solution can be worked out in the limit of infinite U
when the d bands become fully spin polarized. This solution
confirms the formation of a topological phase. It also shows
that this topological phase is adiabatically connected to that in
the Shiba limit discussed in the previous section.

4.2. Majorana localization

An interesting aspect of the wire limit is that it provides a
generic scenario to understand the strong Majorana localiza-
tion observed in experiment. In general, one expects that the
Majorana localization length coincides with the coherence
length of the topological superconductor,

v
, (14)M

F

top
ξ

Δ
=


where vF denotes the Fermi velocity of the 1D electron system
and topΔ the topological gap of the induced superconducting
phase. For a strongly dispersing d-band as in the wire limit,
we expect that its bare Fermi velocity is of the order of that in
typical metals and comparable to the Fermi velocity of the
substrate superconductor. Similarly, the topological gap is
certainly no larger than the gap of the superconducting
substrate. Consequently, we would expect that the Majorana
localization length is comparable or larger than the coherence
length of the substrate superconductor. In contrast, the
experiment observes a localization length which is compar-
able to the interatomic distance of the adatoms and thus orders
of magnitudes smaller than the substrate coherence length.

A possible explanation of this surprising observation was
given in [26]. Explicit model calculations in the framework of
a chain of Anderson impurities are given in this reference.
Here, we emphasize the underlying physical picture.
Equation (14) can be made consistent with observation if we
interpret vF as an effective Fermi velocity ṽF which is strongly
renormalized downward.

In fact, such a renormalization of the Fermi velocity is a
feature of the conventional (s-wave) superconducting proxi-
mity effect. Consider a 1D (spin-degenerate) wire proximity
coupled to a bulk superconducting substrate by hybridization
between the wire and the superconducting substrate. An
excitation in the wire propagating at subgap energies will
virtually enter into the superconductor due to the hybridiza-
tion between wire and superconducting substrate. Loosely
speaking, the relevant time scale on which the excitation
leaves the wire is Γ, the decay rate of a quasiparticle in the
wire into the substrate in the normal state. The time that the
subgap excitation spends in the superconductor is controlled
by the characteristic energy scale of the superconductor,
namely the gap Δ. As a result, the fraction of time spent by the
excitation in the wire is of order Δ Γ . Thus, if the wire is
strongly coupled to the superconductor, Γ Δ≫ , the excitation
actually spends only a small fraction of time in the wire. It
turns out that the excitation effectively propagates along the
wire only when it is in the wire. Thus, the Fermi velocity gets
renormalized to v v˜ ( )F FΔ Γ≃ .

More formally, we can consider the Green function of the
wire and account for the coupling to the superconductor
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through a self energy [26]. This self energy is strongly energy
dependent on the scale Δ. When considering subgap excita-
tions, the self energy is purely real and leads to a renomali-
zation of the quasiparticle weight. For strong hybridization,
the quasiparticle weight is strongly suppressed, Z Δ Γ≃ ,
reflecting the fact that the excitations have most of their
spectral weight in the substrate superconductor. As is familiar
from Fermi-liquid theory, a renormalization of the quasi-
particle weight implies a corresponding renormalization of the
Fermi velocity, v Zv˜F F= , in agreement with the intuitive
picture sketched above. This calculation also explains why
the excitations effectively do not propagate in the super-
conductor. The excitations can enter the superconductor with
different momenta. To leading order, the summation over
these momenta makes the self energy independent of the
momentum along the wire and thus local in real space.

In [26], we confirm by explicit model calculations that
the same physics operates also for the p-wave proximity
effect underlying the formation of the topological super-
conducting phase in the adatom chain in the wire limit. It is
interesting to note that this renormalization is quite generic
and might also be relevant in other systems realizing Major-
ana bound states such as semiconductor quantum wires.

In the adatom chain, the hybridization between adatom d-
bands and superconducting substrates is governed by atomic
energy scales and thus of order 1 eV. This is much larger than
the superconducting gap which is of order 10 K. Thus, the
mechanism described above leads to a dramatic renormali-
zation of the Fermi velocity. Numerical estimates show that
the resulting Majorana localization length can be consistent
with the experimental observation.

5. Conclusions

Starting with the seminal suggestion by Fu and Kane that
topological superconducting phases with Majorana excita-
tions can be engineered based on conventional super-
conductors, numerous platforms for Majoranas have been
suggested. Among these, hybrid structures of conventional
superconductors with 2D topological insulators, semi-
conductor quantum wires, and chains of magnetic adatoms
are most advanced experimentally. Here, we briefly reviewed
some theoretical considerations on topological super-
conductivity and Majoranas in adatom chains. Specifically,
we desribed the system in two regimes which realize different
limits of the same topological phase. In the Shiba limit, we
assumed that the adatom d-levels are electronically inert and
started the Shiba bound states of the individual magnetic
adatoms. This leads to a tight-binding model of Shiba bound
states which is akin to the familiar Kitaev chain, but quali-
tatively distinct in that both hopping and pairing in this model
are essentially long ranged. We discussed the modifications of
the phase diagram and of the Majorana end states which are
brought about by this long-range hopping. In the wire limit,
the band width of the adatom d-levels becomes large and the
d-band crosses the Fermi energy of the substrate super-
conductor. In this case, the adatom d-bands effectively form a

1D wire. This situation is particularly prone to forming a
topological superconducting state when an odd number of the
d-levels crosses the Fermi energy. Specifically, we explained
how this situation can generically lead to very short Majorana
localization lengths as observed in experiment [27].

As emphasized by the experiment [27], chains of mag-
netic adatoms are a promising direction to search for Major-
ana excitations. Attractive features of this approach include
the variety of physical systems which are available in prin-
ciple by combining various adatom species with different
superconducting substrates, the direct accessibility of the
Majorana end states to scanning tunneling microscopy, as
well as the ability to manipulate adatoms on an atomic scale
by STM. The latter might be useful to realize more elaborate
structures which may allow for braiding [40] similar to
schemes proposed for some of the other platforms [7]. It will
be exciting to probe whether the experiment [27] did indeed
observe Majorana excitations, to which degree the experiment
is described by minimal models as discussed here, and if so,
to explore the Majorana physics in this setting.
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