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I. DERIVATION

A. Quantum geometric tensor

Inserting a complete set of states into Eq. (2) of the main text, one obtains the expression

g
(n)
αβ =

∑
m( 6=n)

〈∂αñ|m̃〉〈m̃|∂βñ〉 (S1)

for the quantum geometric tensor. Differentiating 〈m̃|H|ñ〉 = 0 and using H0|m〉 = Em|m〉 gives

En〈∂αm|n〉+ Em〈m|∂αn〉+ 〈m|∂αH|n〉 = 0, (S2)

where we specialized to x = y = 0. Finally using that 〈m̃|ñ〉 = 0 implies 〈∂αm|n〉+ 〈m|∂αn〉 = 0, one finds

〈m|∂αn〉 =
〈m|∂αH|n〉
En − Em

. (S3)

Inserting this into Eq. (S1) gives Eq. (4) of the main text.

B. Integrable systems

For integrable systems, the eigenvalues En can be taken as statistically independent and the spacings |En−Em| in
Eq. (4) obey a Poisson distribution. Thus, the distribution ps(s) of the spacings remains constant in the limit s→ 0.
A small spacing implies a large term in the sum in Eq. (4). Due to the constant ps(s) in the limit s → 0, the terms
x ∼ 1/s2 in the sum in Eq. (4) have a probability distribution px(x), which decays at large x as

px(x) = ps(s)

∣∣∣∣ dsdx
∣∣∣∣ ∼ 1

|x|3/2
. (S4)

For this asymptotic decay of px(x), both the average and the variance of x diverge. By consequence, in the limit of
large N , the distribution function of the entire sum in Eq. (4) converges to an appropriate Levy stable distribution
with the same asymptotic decay [1]. The stable distribution depends on whether the signs of the terms in the sum
are random (off-diagonal element of the quantum geometric tensor) or not (diagonal element). The characteristic
functions of the corresponding stable distributions are given in Eq. (5) in the main text.

We include a heuristic argument yielding Eq. (5) for the distribution of the diagonal elements of the quantum
geometric tensor. Assuming the existence of a stable distribution, we can choose a convenient distribution px(x) for
the individual terms in the sum in Eq. (4), with the only requirement that the distribution fall off as 1/|x|3/2 at
large |x|. Such a choice is a Gaussian distribution for the spacings s, with the numerators in Eq. (4) simply taken
as fixed. As we saw above, the fact that ps(s) ∼ exp

{
−γ0s

2/4N
}

remains nonzero in the limit s → 0 implies that

px(x) ∼ 1/|x|3/2. With this choice, we find

px(x) ∼
∫ ∞

0

ds e−
γ0
4N s

2

δ(x− 1

s2
). (S5)

Here, we focused on the diagonal element of the quantum geometric tensor, for which all terms in the sum in Eq. (4)
are positive. We also made the dependence on the matrix size N explicit, choosing the same scalings as for the GUE.
Using the Fourier representation of the δ-function, the corresponding characteristic function takes the form

p̃x(ξ) ∼
∫ ∞

0

ds exp

(
− γ0

4N
s2 − iξ

s2

)
. (S6)

Here, ξ should be taken to have an infinitesimal negative imaginary part. This integral can be performed and yields

p̃(ξ) = e−
√

γ0
2N |ξ|(1+isgnξ) (S7)

Due to statistical independence, the characteristic function P̃ (ξ) of the entire sum in Eq. (4) is simply given by

P̃ (ξ) = [p̃(ξ)]N = e−
√
Nγ0

2 |ξ|(1+isgnξ). (S8)
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This is just a rescaled version of the characteristic function for the distribution of an individual term in Eq. (4) [whose
distribution is thus already equal to the Levy stable distribution for our choice of ps(s)] and coincides with Eq. (5) in
the main text with the identification γ = Nγ0.

It is interesting to note that the characteristic function in Eq. (S8) can be readily Fourier tansformed to yield

P (g) =

√
γ/π

2g3/2
e−γ/4g (S9)

Similarly, the GUE distribution function of the trace of the quantum geometric tensor can actually be computed in
fully analytical form, see Sec. II below.

C. GUE average

Following Refs. [2] (see also [3, 4]), we perform the average in Eq. (14) of the main text using the joint eigenvalue
distribution for H0,

pN (E1, . . . , EN ) ∝
∏
i<j

(Ei − Ej)2e−
1
2N

∑
j E

2
j . (S10)

Writing the terms involving EN separately and using the large N limit, this is

pN (E1, . . . , EN ) ∝
N−1∏
i=1

(Ei − EN )2e−
1
2NE

2
N pN−1(E1, . . . , EN−1), (S11)

where pN−1 denotes the joint eigenvalue distribution of an (N − 1)× (N − 1)-dimensional random matrix drawn from
the GUE, denoted by H̃ in the following. Using that the δ-function in Eq. (14) allows us to set EN = 0, we find

P̃ (ξ0, ξ) ∝ EGUE

[
δ(EN )

N−1∏
m=1

E6
m

(E2
m + iξ0

2N )2 + |ξ|2
4N2

]
. (S12)

Here, we write the GUE average (denoted by 〈. . .〉H̃ in the main text) as EGUE [. . .].

Equation (S12) can be rewritten as a GUE average over determinants of H̃, as given in Eq. (15) in the main text.
Factorizing the denominator gives

P̃ (ξ0, ξ) ∝ lim
bj→0

EGUE

∏6
j=1 det

(
H̃ + ibj

)
∏4
j=1 det

(
H̃ + iaj

)
 . (S13)

Here, the aj with j = 1, . . . , 4 solve a2
j = i(ξ0 ± |ξ|)/2N . There are two roots with Re aj > 0, which we denote as

a1 and a3, and two roots with Re aj < 0, which we denote as a2 and a4. We also introduced parameters bj with
j = 1, . . . , 6. The bj need to be set to zero at the end, but it turns out to be convenient to retain them at intermediate
steps of the calculation.

The required averages in Eq. (S13) can be found from general results obtained in Refs. [5, 6]. Here we include a
dedicated calculation for completeness. We represent the determinants as Gaussian integrals. The determinants in
the denominator are written as integrals over complex variables z, z̄ (with Einstein’s summation convention in force)

det−1(H̃ + ia) =

∫
z,z̄

e±iz̄k(H̃+ia)klz
l

. (S14)

For convergence, we choose the upper sign when Re a > 0 and thus for the determinants involving a1 and a3, and the
lower sign when Re a < 0 and thus for a2 and a4. The determinants in the numerator are written as integrals over
Grassmann variables ζ, ζ̄,

det[i(H̃ + ib)] =

∫
ζ,ζ̄

e−iζ̄k(H̃+ib)klζ
l

, (S15)

where we note that
∏6
j=1 det(H̃ + ibj) = (−1)N

∏6
j=1 det[i(H̃ + ibj)].
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We now collect the random factors into

X ≡ exp
{

iH̃k
l

(
zl1z̄

1
k − zl2z̄2

k + zl3z̄
3
k − zl4z̄4

k + ζlf ζ̄
f
k

)}
, (S16)

where f = 1, . . . , 6, and introduce supervectors

{Ψl
µ} =

(
zl1 , z

l
2 , z

l
3 , z

l
4 , ζ

l
1 , ζ

l
2 , ζ

l
3 , ζ

l
4 , ζ

l
5 , ζ

l
6

)
(S17)

to abbreviate the notation. Then, we have

Ψl
µ(sΨ̄)µk = zl1z̄

1
k − zl2z̄2

k + zl3z̄
3
k − zl4z̄4

k + ζlf ζ̄
f
k (S18)

with

s = diag(1,−1, 1,−1, 1, 1, 1, 1, 1, 1). (S19)

Taking the GUE expectation value has now been reduced to a Gaussian integral, which yields

EGUE(X) = EGUE

(
eiH̃kl(ΨsΨ̄)l k

)
= e(−λ2/2N)(ΨsΨ̄)l k(ΨsΨ̄)kl . (S20)

Using the cyclicity of trace and supertrace, the exponent on the right hand side can be written as a supertrace,

EGUE(X) = e−(λ2/2N) tr(ΨsΨ̄)2 = e−(λ2/2N) STr(Ψ̄Ψs)2 . (S21)

Here, λ denotes the disorder strength parameter of the GUE, which was set to λ = 1 in the main text.

D. Superbosonization step

Consider the composite object (with k = 1, 2, . . . , N for N ×N GUE matrices)

Mµ
ν = N−1Ψ̄µ

kΨk
ν . (S22)

This is a supermatrix of dimension (4|6) × (4|6). The superbosonization method [7, 8] allows us to switch from the
original variables z, z̄ and ζ, ζ̄ of integration to supermatrices M as new integration variables. In the fermion-boson
block decomposition,

M =

(
MBB MBF

MFB MFF

)
, (S23)

the block MBB is a positive Hermitian 4× 4 matrix,

MBB = N−1

z̄
1
kz
k
1 . . . z̄1

kz
k
4

...
. . .

...
z̄4
kz
k
1 . . . z̄4

kz
k
4

 , (S24)

while MFF,

MFF = N−1

ζ̄
1
kζ
k
1 . . . ζ̄1

kζ
k
6

...
. . .

...
ζ̄6
kζ
k
1 . . . ζ̄6

kζ
k
6

 , (S25)

turns into a unitary 6× 6 matrix, and the entries of MBF and MFB are Grassmann variables. The change of variables
is carried out by using the superbosonization identity∫

z,z̄

∫
ζ,ζ̄

F
(
M(z̄, z, ζ̄, ζ)

)
=

∫
DM SDetN (M)F (M), (S26)

where a normalization constant is absorbed into the new integration measure, DM . The new measure is scale invariant
and, up to a constant, uniquely determined by the symmetries of the problem.
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E. Saddle-point approximation

After superbosonization, we have

P̃ (ξ0, ξ) =

∫
DM SDetN (M) e−(Nλ2/2) STr(Ms)2−NSTr(smM) (S27)

with m = diag(a1, a2, a3, a4, b1, . . . , b6) as defined in the main text. In the limit of large random matrices, N →∞, the
integral can now be performed by saddle-point integration. Since m ∼ N−1, the corresponding term can be neglected
in determining the saddle-point manifold, and the saddle-point equation becomes

M−1 − λ2sMs = 0 . (S28)

This has the supermanifold of dominant (for N →∞) solutions

Ms = λ−1Q, Q = TΣ3T
−1, (S29)

where

Σ3 = diag(1,−1, 1,−1, 1,−1, 1,−1, 1,−1), T ∈ U(2, 2|6). (S30)

Thus, saddle-point integration yields

P̃ (ξ0, ξ) =

∫
DQ e−(N/λ) STr(Qm), (S31)

where DQ is the invariant measure on U(2, 2|6)/U(2|3) × U(2|3). Up to a multiplicative constant, this measure is
again determined uniquely by symmetries.

F. Semiclassical exactness

Our integral representation for P̃ is semiclassically exact, c.f., [9], which significantly simplifies the calculation. The
principle of semiclassical exactness is easiest to apply if the critical points of the integrand are isolated. In the present
case, that is not the case once we set bj → 0. It is for this reason that we introduced the bj at all intermediate stages
of the calculation and take the limit bj → 0 only at the very end.

Now all critical points are isolated and using the semiclassical exactness, we can evaluate the integral (S31) semi-
classically. The isolated critical points are given by

Qcrit = diag(+1,−1,+1,−1, s1, s2, s3, s4, s5, s6) (S32)

where sf ∈ {±1} and
∑
f sf = 0. There exist 6!/(3!3!) = 20 critical points, namely Qcrit = Σ3 and 19 more.

Then, the value of the integral (S31) is a sum of 20 terms (one for each critical point) and each term contributes
by the value of the integral at the critical point times a factor originating from the corresponding fluctuation integral
in Gaussian approximation. The contribution from the critical point Qcrit = Σ3 takes the form

P̃ (ξ0, ξ)Σ3
=

λ

N
∆(ξ0, ξ) e−(N/λ) STr(Σ3m), (S33)

where ∆(ξ0, ξ) is given by

∆(ξ0, ξ) =

∏2
i=1

∏
j=2,4,6(ai − bj)

∏4
i=3

∏
j=1,3,5(ai − bj)∏2

i=1

∏4
j=3(ai − aj)

∏
i=1,3,5

∏
j=2,4,6(bi − bj)

. (S34)

The contributions from the other 19 critical points Qcrit are obtained by applying to [b1, b2, b3, b4, b5, b6] the same
permutation that turns Σ3 into the given Qcrit, and P̃ (ξ0, ξ) follows by summing over the contributions of all critical
points.

The denominator of Eq. (S34) is singular in the limit bj → 0. However, after summing over all critical points
one finds that there is a compensating factor in the numerator and the limit becomes well defined. Performing this
calculation [10] gives Eqs. (9) and (10) of the main text.
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Figure S1. Top panels: Distribution functions of matrix elements of the quantum geometric tensor (left: gxx; right: Regxy),
obtained by sampling 106 realizations of H0 in Eq. (3) with H0 drawn from the Gaussian Unitary Ensemble with N = 100.
The sampling is performed for fixed perturbation matrices Hx and Hy (chosen as matrices drawn independently from the

Gaussian Unitary Ensemble). The insets show a corresponding log-log plot, emphasizing the asymptotic 1/|g|5/2 decay. A plot

of f(g) ∝ 1/|g|5/2 is shown for comparison. Numerical data (blue) are compared to the analytical prediction (orange dots)
given in Eq. (9) in the main text with γ = sγGUE and s = 0.978 (left) and s = 1.018 (right). Bottom panels: Distribution of
scaling factors as defined in Eq. (S43). The scale factors describe the fits of the distributions of the quantum geometric tensor
to our analytical result in Eq. (9) and are obtained by sampling and fitting the distributions of gxx and Regxy for 600 sets of
random, but fixed perturbation matrices drawn from the GUE.

II. TRACE OF QUANTUM GEOMETRIC TENSOR

Berry and Shukla [11] give approximate results for the distribution of the trace G of the quantum geometric tensor.
This section collects corresponding analytical results based on the exact solution.

For one and two parameters, the characteristic function of the distribution of the trace of the quantum geometric
tensor can be directly obtained from our general result in Eq. (9). Similar to Eq. (S9) for the diagonal elements of the
quantum geometric tensor of integrable systems, the characteristic functions can be explicitly Fourier transformed to
obtain the corresponding distributions. For just one parameter, the quantum geometric tensor reduces to a number
(also known as fidelity susceptibility). In this case, the distribution function of the “trace” is equal to the distribution
function of a diagonal element of the quantum geometric tensor, which follows by setting ξ0 = ξ3 = ξ and ξ1 = ξ2 = 0.
This yields ξ+ = 2ξ and ξ− = 0, and thus X+ = 1

2 (1 + sgnξ)
√

2γξ and X− = 0, so that

P̃ (ξ) = r(X+, 0)e−X+ . (S35)

We can write this as

P̃ (ξ) = (1− ∂β +
1

3
∂2
β −

1

24
∂3
β)e−βX+

∣∣∣∣
β=1

. (S36)

The Fourier transform involves now just the same integral as in the integrable case. This yields (rescaling G such
that γ = 4) [12]

P (G) =
1 +G+ 3

4G
2

3
√
πG9/2

e−
1
G . (S37)
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Figure S2. Distribution functions of the trace of the quantum metric tensor. (a) Quantum metric tensor for one parameter
(also known as fidelity susceptibility; previously calculated in [12] by an orthogonal-polynomial method). The exact analytic

expression in Eq. (S37) exhibits nonanalytic small-G asymptotics ∝ G−3/2e−1/G. Simulations for GUE matrices with N = 100

using 106 realizations. (b) Comparison of the nonanalytic small-G asymptotics ∝ G−19/2e−4/G for two parameters (see the main
text for full distribution function of the trace and Eq. (S38) for the exact analytical result). Simulations for GUE matrices with

N = 100 using 106 realizations. (c) Comparison of the nonanalytic small-G asymptotics ∝ G−29/2e−9/G for three parameters
(see Eq. (S39) for the general expression for the asymptotics for any number of parameters). Simulations for GUE matrices
with N = 100 using 5× 105 realizations.

The distribution function exhibits an asymptotic 1/G5/2 dependence at large G. At small G, it falls off faster
than any power ∝ G−9/2e−1/G. Notice that this result falls off more slowly than the result for integrable systems,
∝ G−3/2e−1/G. A comparison to numerical results is shown in Fig. S2(a).

For two parameters, we obtain the distribution of the trace by setting ξ0 = ξ and ξ1 = ξ2 = ξ3 = 0. This yields

P (G) =
4096 + 18432G+ 42624G2 + 61728G3 + 58257G4 + 35505G5 + 13140G6 + 2700G7

8640G19/2

2√
π
e−4/G. (S38)

The distribution function again exhibits an asymptotic 1/G5/2 dependence at large G. At small G, it falls off
∝ G−19/2e−4/G.

For k parameters, we can obtain the asymptotic behavior by power counting. Generalizing the derivation to
include k parameters, we can readily determine the powers of determinants in the numerator and denominator in
the expression analogous to Eq. (15). By extracting the power of the polynomial resulting from the prefactor in the
analog of Eq. (9), we then find

P (G) ∝ G−(k2+2k+3/2)e−k
2/G. (S39)

at small G, which complements the G−5/2 dependence at large G. These asymptotics of the distribution of the trace
were previously considered for k = 3 within an approximate approach by Berry and Shukla [11]. While their result at
small G has the same overall structure, their preexponential factor has a different power. Numerical results comparing
the asymptotics in Eq. (S39) to numerical results are shown in Fig. S2(b) and (c) for k = 2 and k = 3.

III. AVERAGING OVER H0 ONLY

In the main text, we assume that the two parameters x and y couple to independent random matrices, i.e., we
average over both the unperturbed Hamiltonian H0 and the perturbations Hx and Hy. This assumption can be
relaxed. Averaging only over the unpertubed Hamiltonian H0, the matrix elements in the numerator of Eq. (4) are
still random variables as they involve the eigenvectors of the GUE matrix H0. In the limit N → ∞, the matrix
elements of the perturbation matrices in the eigenbasis of H0 become Gaussian random variables with zero mean and
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covariance

EGUE{〈n|Hα|m〉〈m|Hβ |n〉} =
1

N2
trHαHβ (S40)

EGUE{〈n|Hα|m〉〈n|Hβ |m〉} = 0. (m 6= n) (S41)

As long as we consider perturbations Hx and Hy such that, to leading order in the large-N limit, the covariance
matrix

Cαβ =
1

N2
trHαHβ (S42)

for Hα is proportional to the unit matrix, the calculations can now proceed exactly as in the case discussed in the
bulk of this paper, in which one averages over the perturbations Hx and Hy.

This situation occurs when the perturbations are drawn independently from a GUE, but then held fixed while
averaging over H0. The resulting distributions are in excellent agreement with our analytical result. A comparison
between the numerical results and the exact distribution of the quantum geometric tensor in Eq. (9) is shown in
Fig. S1 (top panels). The random fluctuations of the strength of the perturbation matrices across the GUE can be
accounted for by introducing a scale factor s through

γ = sγGUE, (S43)

relative to the GUE result γGUE = 4N . By fitting the numerical results to Eq. (9) for different GUE matrices Hx and
Hy, we can numerically obtain the corresponding distributions of scaling factors as shown in Fig. S1 (bottom panels).
In accordance with random-matrix estimates, the deviation of the scale factor from unity is of order 1/N .

We note that our approach to computing the joint distribution function for the quantum geometric tensor can also
be extended to the case of a general covariance matrix. Then, we first define new perturbations Hα and parameters
r = (x, y) through

r = Dr (S44)

Hα =
∑
β

DαβHβ , (S45)

where we choose the orthogonal matrix D such that the covariance matrix becomes diagonal. We then have to extend
the calculation to situations in which the effective averages over Hx and Hy are still GUE-like, albeit with different
disorder parameters λx and λy. Performing the average over the eigenvectors of the unperturbed Hamiltonian will
then result in Eq. (S13) with

a2
j =

i

4N
[ξ0(λx + λy) + ξ3(λx − λy)]± i

2N

√
1

4
[ξ0(λx − λy) + ξ3(λx + λy)]2 + λxλy(ξ2

1 + ξ2
2). (S46)

We first consider the distributions of the diagonal and off-diagonal elements of the quantum geometric tensor. To
obtain the distribution of the off-diagonal elements, we set ξ0 = ξ3 = 0. In this case, the product λxλy simply rescales
the otherwise unchanged distribution function. To obtain the distribution functions of the diagonal elements, we set
ξ0 = ±ξ3 = ξ and ξ1 = ξ2 = 0. Again, the distribution functions are merely rescaled, though differently for gxx and
gyy. Finally, the joint distribution function follows by setting

ξ± =
1

2
[ξ0(λx + λy) + ξ3(λx − λy)]±

√
1

4
[ξ0(λx − λy) + ξ3(λx + λy)]2 + λxλy(ξ2

1 + ξ2
2) (S47)

in the characteristic function in Eq. (9), Fourier transforming, and reverting to the quantum geometric tensor with
respect to the original parameters x and y.
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