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EXPERIMENTAL DETAILS AND ADDITIONAL DATA

Experimental details

The Pb(111) substrate was cleaned by sputtering with Ne+ ions at 0.9 kV under ultra-high vacuum conditions.
Annealing the sample at 430 K leads to atomically flat and clean terraces. FeTPyP-Cl molecules were deposited
from a Knudsen cell at 673 K while the Pb sample was kept at 313 K. The as-prepared sample was cooled down and
transferred into the Joule-Thomson STM (by Specs). All experiments were carried out at a temperature of 1.1 K.

We used Pb-covered tips for all data shown in the main manuscript and SM. These were prepared by indenting the
tip into the clean Pb substrate while applying a voltage of V = 100 V. Their spectroscopic properties were tested on the
bare Pb(111) substrate. The indentation procedure was repeated until the tip developed a bulk-like superconducting
Bardeen-Cooper-Schrieffer (BCS) energy gap of ∆tip = 1.35 meV. Such a tip is of amorphous nature and exhibits a
single gap, whereas the single-crystal substrate reveals the two-band superconducting properties pf Pb and exhibits
two distinct BCS gaps with ∆1 = 1.30 meV and ∆2 = 1.44 meV [1]. The sharp coherence peaks in the tip allow for
an effective energy resolution beyond the thermal Fermi-Dirac limit. In essence, the superconducting gap of the tip
leads to a shift of all sample features by ∆tip. As the tip’s quasi-particle density of states is symmetric in intensity
around the Fermi level, the tip does not modify any asymmetries in the spectral properties of the sample.

Differential conductance spectra were recorded using an external lock-in amplifier with a modulation frequency of
f = 911 Hz. The modulation amplitudes are given in the corresponding figure captions.

We use different feedback control methods for recording dI/dV maps. In the “constant-contour” mode, often
also referred to as “multi-pass”, we first record a constant-current image with certain feedback parameters. These
determine the height profile of the tip across the surface. This profile is subsequently used for scanning along the
same path with the desired bias voltage while recording the dI/dV signal. The data is exactly the same (but much
faster in its acquisition) as the dI/dV values extracted from a densely spaced grid of spectra recorded when opening
the feedback at the set contour value. Figs. 2d,e have been acquired with this method.

A bias voltage of 5 mV was chosen when opening the feedback loop for the acquisition of all spectra in Fig. 1.
A small bias voltage is ideal as it ensures that only a small range of electronic states contributes to the tunneling
current. However, in the case of FeTPyP on Pb(111), the highest occupied molecular orbital (HOMO) extends across
the Fermi level and we observe a non-negligible contribution to the tunneling current. Hence, the image is not only
of topographic origin, but convolved with these states. For this reason, the STM image (Fig. 1b) does not only show
the tilted pyridine legs, which are expected to be highest in topography [2], but also the three lobes of the HOMO
resonance along the pyrrole saddle.

To map the iso-density of a particular orbital, the method of choice is to use the dI/dV signal itself for feedback
control [3]. This procedure has been employed for the acquisition of the maps in Fig. 3b.

Evolution of Kondo and YSR asymmetry along an FeTPyP molecule

In the main text, we show three representative spectra of the Kondo resonance and the YSR states measured along
the pyrrole saddle of FeTPyP. In Fig. S1b,c, we show color plots of a series of densely spaced spectra, taken along the
same line, for the Kondo and YSR states, respectively. These spectra were used to extract the asymmetry shown in
Fig. 1e,f in the manuscript.
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Figure S1. (a) Topography image of one molecule (same as in Fig. 1b) with an arrow indicating the line along which a set of
Kondo and YSR spectra have been recorded (V = 5 mV, I = 100 pA). The colored arrows mark the positions of the spectra in
Fig. 1 and are also used as markers in (b,c). (b) Color plot of dI/dV spectra of the Kondo resonance measured in an external
magnetic field of B = 1.5 T to quench superconductivity in substrate and tip (feedback opened at V = 5 mV, I = 100 pA
and signal modulated with Vrms = 100µeV). These spectra have been used to extract the asymmetry shown in Fig. 1e. (c)
dI/dV spectra recorded with a superconducting tip and substrate in the absence of the B-field (feedback opened at V = 5 mV,
I = 100 pA and signal modulated with Vrms = 15µeV). The superconducting energy gap of the tip is indicated by dashed lines.
The YSR states appear as a pair of resonances symmetric in energy around the Fermi level, but asymmetric in intensity. These
spectra have been used to extract the asymmetry shown in Fig. 1f.

Magnetic field dependence of Kondo resonance

To quench the superconducting state of substrate and tip, we applied an external magnetic field of B = 1.5 T
perpendicular to the surface. The evolution of the Kondo resonance with increasing field strength is shown in Fig. S2.
At 3 T we observe a clear splitting of the Kondo resonance, which can be reproduced by two Fano-Frota functions
shifted by ±450µeV from the Fermi level. The observed splitting is larger than the ±350µeV energy splitting expected
for a spin S = 1/2. We attribute this behavior to an underscreened S = 1 Kondo system [4]. However, we note that
our temperature and modulation broadening of

√
(2V 2

rms) + (3.5kBT )2 = 390 µeV is of the same order of magnitude,
preventing a clear assignment of the splitting.

We also note that at a field strength of 1.5 T, we do not observe a splitting of the Kondo resonance, because the
thermal broadening is still much larger than the expected splitting. This justifies the fit with a single Fano-Frota
function.
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Figure S2. dI/dV spectra showing the evolution of the Kondo resonance with increasing magnetic field strength (feedback
opened at V = 5 mV, I = 100 pA, modulation voltage Vrms = 100 µeV). The spectra are offset for clarity. Red lines are fits
with one (at 1.5 T) and two (at 3 T) Fano-Frota functions.
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Identification of YSR coupling regime

The observation of a pair of YSR states reveals the exchange coupling to the substrate. However, this does not
allow for the identification of the many-body ground state, i.e., for the assignment of the screened or unscreened
spin state of the FeTPyP molecule (singlet and doublet many-body ground states, respectively). By approaching the
STM tip toward the molecule, the attractive potential of the tip lifts the molecule from the substrate. Hence, we can
investigate the shift of the YSR state with the associated decrease in the exchange coupling strength [5]. Figure S3
reveals that the YSR states move towards the superconducting gap edge upon tip approach. This behavior shows
that the molecule is in the unscreened regime. The narrow Kondo linewidth is in agreement with this assignment [6].
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Figure S3. Normalized dI/dV spectra upon tip approach on (a) the Fe center and (b) upper pyrrole (feedback opened at
V = 5 mV, I = 100 pA, and subsequent variation of tip height z, modulation voltage Vrms = 15 µeV. The superconducting
energy gap of the tip is indicated by dashed lines. The YSR states shift toward the superconducting gap edge upon tip approach,
indicating that the FeTPyP molecule lies in the unscreened spin regime.

THEORETICAL CONSIDERATIONS

Model

We start by considering the spin state of Fe in FeTPyP. With the central Cl ligand detached, the molecule presum-
ably is in oxidation state +2 and its square-planar ligand field splits the Fe d-shell into four sets. For an unoccupied
topmost dx2−y2 orbital, this results in a S = 1 spin state. In order of ascending energy, one expects a doubly-occupied
dxy orbital, degenerate dxz and dyz orbitals occupied by three electrons, and a singly-occupied dz2 orbital. The d
orbitals are hybridized with the orbitals of the organic ligand, resulting in an extended spin-carrying orbital. Due
to the largest overlap with the substrate, we expect the dz2-derived orbital to give rise to the Kondo effect, with
the two unpaired electrons being Hund coupled [7]. This picture is consistent with the observed spin splitting of the
Kondo resonance in a magnetic field (see Fig. S2) and with the observation of only a single Kondo temperature TK ,
irrespective of tip location. We also identify only a single Yu-Shiba-Rusinov (YSR) state. In particular, there is no
evidence for a second YSR state which splits off from the YSR peak or superconducting gap edge upon tip approach.
These observations are consistent with an underscreened Kondo effect, in which the S = 1 impurity spin is screened
by a single channel of substrate electrons.

The scanning-tunneling-microscopy (STM) data suggest that a second orbital (or even several orbitals) are involved
in determining the low-bias tunneling spectra, both with and without superconductivity. In particular, there may
be one or several resonances beginning at V = −360 mV which weakly overlap with the Fermi energy (see Fig. 3a
of the main text) and thus constitute a second tunneling channel. We refer to this (set of) resonance(s) as the
HOMO. Mapping out this molecular orbital structure reveals nodal planes (see Fig. 3b of the main text) where the
wavefunction changes sign. A central ingredient of our model is that tip-substrate tunneling via this second orbital
includes a substantial potential-scattering amplitude. To bring out the essential physics, we will discuss our model in
the following for the case that the HOMO is nonmagnetic in nature and contributes potential scattering only between
tip and substrate. It should be understood, however, that this is not a necessary assumption for our model to explain
the experimental results. If the HOMO is also magnetic, we merely have to assume that it does not develop strong
Kondo correlations (as indeed suggested by the data which exhibit only a single Kondo temperature). In the absence
of strong Kondo correlations, the exchange coupling has not yet flown to strong coupling at the relevant energy
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scales (as set by temperature and the superconducting gap) and tunneling between tip and substrate via the HOMO
can include a substantial potential scattering amplitude in addition to the exchange-scattering contribution. In this
situation, one finds qualitatively the same results as in the reduced model discussed below. In particular, we note
that the exchange scattering amplitude contributed by tunneling via a magnetic HOMO would also change sign at
the nodal plane so that the coincidence of symmetric Kondo and YSR peaks with the nodal plane is still be expected
from such a modified model.

As a minimal model, we thus consider two molecular orbitals: (i) a singly-occupied orbital which derives from the Fe
d orbitals (but has nonzero amplitude both on the Fe center and the ligand as a result of hybridization) and develops
a magnetic moment due to an onsite interaction U , and (ii) a doubly-occupied orbital which represents the HOMO
and has negligible onsite interaction. The annihilation operator for an electron of spin σ in the first, spin-carrying
orbital of energy εd is denoted by dσ. We perform a particle-hole transformation for the second (HOMO) orbital,
resulting in a hole orbital of energy εh and hole-annihilation operator hσ. (In the following, the hole nature of this
orbital will be left implicit.) Then, the Hamiltonian becomes

H =
∑
kσ

εLkψ
†
LkσψLkσ +

∑
kσ

εRkψ
†
RkσψRkσ +

∑
σ

εhh
†
σhσ +

∑
σ

εdd
†
σdσ + Ud†↑d

†
↓d↓d↑

+
∑
σ

[
tLhh

†
σψLσ(0) + tLdd

†
σψLσ(0) + tRhψ

†
Rσ(0)hσ + tRdψ

†
Rσ(0)dσ + h.c.

]
(S1)

Here, electrons of wavevector k in tip and substrate are annihilated by ψLkσ and ψRkσ, respectively. The operators

ψLσ(0) and ψRσ(0) annihilate electrons in tip and substrate at the location of the tunnel junction to the molecular
adsorbate. For the tip, the origin 0 is measured relative to a coordinate system attached to the tip.

The tunneling matrix elements tLh and tLd between tip and molecule depend on the position R of the tip relative
to the molecule, and reflect the wavefunctions of the molecular orbitals. In particular, tLh(R) changes sign at the
nodal planes of the HOMO. There is no evidence in the data for nodal planes in the spin-carrying orbitals, so that
we assume that tLd(R) has a fixed sign. The tunneling amplitudes tRh and tRd between molecule and substrate are
independent of tip position and fixed by the adsorption geometry of the molecule on the substrate. We finally note
that the tunneling amplitudes tLh, tLd, tRh, and tRd can be chosen as real by time reversal symmetry.

Kondo resonance

Fano lineshape of Kondo resonance

Fano lineshapes emerge from the interference of a resonant channel with a rapid dependence of the scattering
amplitude on energy and a nonresonant channel for which the energy dependence can be neglected on the scale of the
broadening of the resonance. In the context of adatom experiments, the nonresonant channel is frequently identified
with direct tunneling into the substrate which then interferes with a resonant scattering channel via the adatom which
results from the Kondo effect [8, 9]. For molecular adsorbates, tunneling between tip and substrate is presumably
mediated by molecular orbitals as long as the tip is positioned above the molecule [10]. In keeping with the model
Hamiltonian in Eq. (S1), we therefore neglect direct tunneling between tip and substrate and show that the Fano
lineshape is naturally explained by interference between tunneling paths associated with two molecular orbitals. A
recent study argued that similar processes are also relevant for Kondo resonances induced by magnetic adatoms [11].

Assuming weak tunneling between tip and molecular adsorbate, the differential conductance can be written as

dI

dV
=

2e2

h
2πνLρrr†(eV ), (S2)

where νL is the electronic density of states of the tip and ρrr†(ω) denotes the relevant spectral function of the substrate,

ρrr†(ω) = −2ImGrr†(ω + iη) (S3)

(η denotes a positive infinitesimal) with

r† = tLhh
† + tLdd

† (S4)

and Grr†(ω + iη) denoting the Fourier transform of the retarded Green function

Grr†(t, t′) = −iθ(t− t′)〈[r(t), r†(t′)]〉. (S5)
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Since the spectral function is proportional to a unit matrix in spin space, we have dropped spin indices. We can then
write

dI

dV
=

2e2

h
4π2νL

−1

π
Im {tLhGhh†(eV )tLh + tLhGhd†(eV )tLd + tLdGdh†(eV )tLh + tLdGdd†(eV )tLd} , (S6)

where the Green functions are defined by analogy with Eq. (S5) and the positive infinitesimal is left implicit.
As a consequence of the Kondo effect, the Green function Gdd†(ω+ iη) of the spin-carrying orbital exhibits a sharp

resonance at the Fermi energy. We therefore relate the remaining Green functions in Eq. (S6) to Gdd†(ω + iη). This
yields (see Ref. [9] for a similar expression in the case that the parallel channel originates from direct tunneling into
the substrate)

dI

dV
=

2e2

h
4π2νL

−1

π
Im {tLhg̃hh†(eV )tLh

+ [tLd + tLhg̃hh†(eV )tRhgRR†(eV )tRd]Gdd†(eV )[tLd + tRdgRR†(eV )tRhg̃hh†(eV )tLh]} . (S7)

Here, a capital G denotes a fully dressed Green function, a lower-case g denotes a bare Green function (g) or a Green
function including a subset of self-energy contributions (g̃). We sketch the derivation of Eq. (S7) in the subsequent
section. Since it can also be readily understood physically, we proceed first with a qualitative justification and focus
on how it predicts a Fano lineshape for the Kondo resonance. The first term within the curly brackets describes
tunneling from tip to substrate via the HOMO in the absence of the d orbital. Correspondingly, this term involves
the Green function

g̃hh†(ω) =
1

ω − εh − tRhgRR†(ω)tRh
=

1

ω − εh + iπ(tRh)2νR
(S8)

of the HOMO including the self energy correction due to tunneling into the bare substrate. The latter enters through
the Green function gRR†(ω) of the bare substrate in the absence of the molecular adsorbate. Neglecting the spatial
extent of the molecule for simplicity, this Green function enters only with equal spatial indices of its two electron
operators, and we have

gRR†(ω) = −iπνR (S9)

in terms of the electronic density of states νR of the bare substrate. The second term in the curly bracket collects
all contributions which proceed via the d orbital and are thus sensitive to the Kondo resonance. The contribution
involving t2Ld describes direct tunneling from the tip into the d orbital, dressed by its coupling to the remainder of the
system. Similarly, the term proportional to t2Lh describes a process in which an electron tunnels from the tip into the
dressed d orbital via a multistep process involving the HOMO and the substrate. Finally, the terms involving tLdtLh
describe contributions which arise from interference of the previous two tunneling paths.

To bring out the essential physics of the Fano lineshape, we note that the two terms in square brackets in Eq. (S7)
are identical and complex. Defining the polar representation

√
Aeiφ/2 = td + tLhg̃hh†(eV )tRhgRR†(eV )tRd, (S10)

Eq. (S7) becomes

dI

dV
=

2e2

h
4π2νL

−1

π
Im
{
tLhg̃hh†(eV )tLh +AeiφGdd†(eV )

}
. (S11)

We evaluate Eqs. (S10) and (S11) by keeping only the leading nonvanishing contributions of g̃hh†(ω) in the limit in
which the broadening of the HOMO is small compared to its energy εh measured from the Fermi energy. (It should be
evident that it is straight-forward to go beyond this approximation, but this is unnecessary for our purposes.) With
this approximation, g̃hh†(eV ) ' −iπ(tRh)2νR/ε

2
h in the first term in curly bracket in Eq. (S11) and g̃hh†(eV ) ' −1/εh

in Eq. (S10). This yields

√
Aeiφ/2 = td + iπ

tLhtRh
εh

νRtRd. (S12)

Since the imaginary part of the right-hand side is proportional to the tunneling amplitude tLh into the HOMO of the
molecule, the phase φ passes through zero and changes sign at the nodal plane.
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Within a simple, but useful approximation, we can express the d-orbital Green function in the vicinity of the Fermi
energy as [12]

Gdd†(eV ) =
ZK

eV − εK + iTK
, (S13)

where ZK denotes the intrinsic strength of the Kondo resonance, εK ' 0 its energy, and TK the Kondo temperature.
The shape of the Kondo resonance is frequently fitted more accurately by the Frota function [13]

Gdd†(eV ) =
−iZK
TK

√
iTK

eV − εK + iTK
. (S14)

Inserting this expression into Eq. (S11), we obtain

dI

dV

∣∣∣∣
res

=
2e2

h
4π2νLRe

{
Aeiφ ZK

πTK

√
iTK

eV − εK + iTK

}
. (S15)

This expression has the same form as Eq. (1) of the main text. It also shows that the sign change of the HOMO
wavefunction changes the sense of asymmetry of the Kondo resonance, as we observe experimentally.

Green-function expression (S7)

In this section, we sketch the derivation of Eq. (S7) from Eq. (S6). This requires one to relate the various Green
functions entering Eq. (S6) to Gdd† . Since interactions enter only on the d orbital, this can be done with the help of
the equations of motions of the Green functions. One readily finds the Dyson equations

Ghh† = ghh† + ghh†tRhGRh† (S16)

GhR† = ghh†tRhGRR† (S17)

Ghd† = ghh†tRhGRd† (S18)

GRh† = gRR†tRhGhh† + gRR†tRdGdh† (S19)

GRR† = gRR† + gRR†tRhGhR† + gRR†tRdGdR† (S20)

GRd† = gRR†tRhGhd† + gRR†tRdGdd† (S21)

GRh† = GRR†tRhghh† (S22)

Gdh† = GdR†tRhghh† (S23)

GdR† = Gdh†tRhgRR† +Gdd†tRdgRR† . (S24)

Here, ghh†(ω) = 1/(ω− εh + iη) denotes the Green function of the uncoupled HOMO. The first six expressions result
from equations of motions involving time derivatives with respects to the first time argument of the Green function.
The last three identities follow from equations of motions with respect to the second time argument.

We first insert Eq. (S24) into Eq. (S23) and solve for Gdh† . This yields

Gdh† = Gdd†tRdgRR†tRhghh†
1

1− tRhgRR†tRhghh†
(S25)

and thus

Gdh† = Gdd†tRdgRR†tRhg̃hh† . (S26)

Similarly, inserting Eq. (S21) into Eq. (S18) and solving for Ghd† , we find

Ghd† =
1

1− ghh†tRhgRR†tRh
ghh†tRhgRR†tRdGdd† (S27)

and thus

Ghd† = g̃hh†tRhgRR†tRdGdd† . (S28)
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Finally, we insert Eq. (S19) into Eq. (S16) and solve for Ghh† . This yields

Ghh† =
1

1− ghh†tRhgRR†tRh
ghh†(1 + tRhgRR†tRdGdh†) (S29)

and thus

Ghh† = g̃hh† + g̃hh†tRhgRR†tRdGdh† . (S30)

Inserting Eq. (S26), we obtain

Ghh† = g̃hh† + g̃hh†tRhgRR†tRdGdd†tRdgRR†tRhg̃hh† . (S31)

We can now insert Eqs. (S26), (S28), and (S31) into Eq. (S6) and obtain Eq. (S7).

YSR resonances

Schrieffer-Wolff transformation

To understand the asymmetry of the YSR resonances at positive and negative bias voltages, it is convenient to
eliminate the spin-carrying d orbital as well as the HOMO by a Schrieffer-Wolff transformation and to obtain an
effective low-energy Hamiltonian.

The molecular d orbital leads to exchange and potential scattering terms,

Hd =
∑
αα′

J
(d)
αα′(R)S · ψ†α(0)σψα′(0) +

∑
αα′

V
(d)
αα′(R)ψ†α(0)ψα′(0) (S32)

with the impurity-spin operator S, the vector σ of Pauli matrices, and the spinor of electron field operators ψα(0) =
[ψα,↑(0), ψα,↓(0)]T in the tip (α = L) and the substrate (α = R; with 0 denoting the adsorption position of the
molecule). In contrast, the nonmagnetic HOMO gives rise to a potential scattering term only,

Hh =
∑
αα′

V
(h)
αα′(R)ψ†α(0)ψα′(0). (S33)

The Schrieffer-Wolff transformation yields

J
(d)
αα′(R) = tαdt

∗
α′d

[
1

εd + U
− 1

εd

]
(S34)

for the exchange coupling and

V
(d)
αα′(R) = tαdt

∗
α′d

[
1

εd + U
+

1

εd

]
(S35)

for the amplitude of potential scattering from the molecular d orbital. Similarly, the HOMO results in the amplitude

V
(h)
αα′(R) = tαht

∗
α′h

1

εh
(S36)

of potential scattering.
In experiment, the tip-molecule coupling is much weaker than the molecule-substrate coupling. We thus neglect

the exchange and potential-scattering processes which only involve the tip (i.e., we set J
(d)
LL = V

(d)
LL = V

(h)
LL = 0) and

treat terms which scatter electrons between tip and substrate perturbatively. In leading order, the molecule is then

coupled to the substrate through J
(d)
RR and V

(d)
RR as well as V

(h)
RR . The strong Kondo correlations arise as the exchange

coupling flows to strong coupling at low energies, and we can thus neglect V
(d/h)
RR relative to J

(d)
RR in discussing low-bias

tunneling. For the same reason, scattering between tip and substrate via the spin-carrying orbital is dominated by

the exchange term, and we neglect V
(d)
RL and V

(d)
LR .

As a result of these considerations, we obtain the effective Hamiltonian

H = H0 +H1 (S37)
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with unperturbed Hamiltonian

H0 =
∑
α

Hα + J
(d)
RR(R)S · ψ†R(0)σψR(0). (S38)

and tunneling perturbation

H1 = ψ†R(0)
[
J
(d)
RL(R)S · σ + V

(h)
RL (R)

]
ψL(0) + h.c.. (S39)

As time-reversal symmetry implies that all tunneling amplitudes can be chosen real, this also holds true for J
(d)
αα′(R)

and V
(h)
αα′(R). The Kondo correlations as well as the YSR states are induced by the exchange coupling between

molecular spin S and substrate included in H0. Tunneling between tip and substrate proceeds via two separate
channels involving the molecular d orbital and the HOMO, respectively. While the second tunneling channel is
independent of electron spin, the first is spin dependent. According to Eq. (S36), the sign change of the HOMO
wavefunction at the nodal plane introduces a sign change of the potential scattering amplitude V (h)(R).

Asymmetry of YSR resonances

We now derive the tunneling current into the YSR state by Fermi’s golden rule. At large tip distances, tunneling
between tip and substrate is rate limited by the tunneling between tip and YSR state [14]. The resulting subgap
excitation (i.e., a quasiparticle occupying the YSR state) relaxes into the quasiparticle continuum by inelastic processes
which are more frequent than tunneling. As a consequence of the strong Kondo correlations, the YSR state originates
from strong exchange coupling JRR between molecular orbital and substrate, with potential scattering VRR being
a small perturbation. In this case, one expects that the electron and hole wavefunctions of the YSR states are
approximately equal. For instance, it is well known that the asymmetry between electron and hole wavefunctions is
due to nonzero potential scattering when modeling the impurity as a classical spin.

Motivated by the experiment, we assume that the YSR state is on the weak-coupling (unscreened) side of the
quantum phase transition between doublet (unscreened) and singlet (screened) ground states. (As mentioned in
the main text, this assumption is made for definiteness. Our conclusions would not change for a YSR state in the
strong-coupling state and the following arguments can be readily adapted to this case.) In this case, the substrate
superconductor is in a fully paired ground state |even〉 with even fermion parity, and tunneling is into the excited
odd-fermion parity state |odd〉 = γ†ε |even〉 with a quasiparticle occupying the YSR state (with Bogoliubov operator
γε). For simplicity, we assume a classical-spin model for the impurity in the following, i.e., we effectively keep only the
exchange coupling to Sz. This suffices to elucidate the emergence of the asymmetry between the bias directions due to
the presence of two parallel tunneling channels. As this asymmetry is clearly associated with the different behaviors
of exchange and potential scattering under time reversal of the substrate Hamiltonian (for a given impurity spin), the
underlying mechanism is expected to be robust when extending the theory to include the full quantum nature of the
impurity spin. Developing such a theory would be an interesting problem for future research, but is beyond the scope
of the present paper.

To compute the tunneling rate between superconducting tip and substrate, we expand the electron operator of the
substrate into Bogoliubov operators. At subgap bias voltages, we only need to retain the contribution of the YSR
state. We take the impurity spin as polarized in the positive z-direction, so that the YSR bound state is polarized
along the negative z-direction. We can then write the substrate electron operators as

ψR,↓(r) = uε(r)γε + . . . (S40)

and

ψR,↑(r) = −v∗ε (r)γ†ε + . . . , (S41)

with the ellipses referring to the contributions of above-gap quasiparticles. Here, we have introduced the electron and
hole wavefunctions uε(r) and vε(r) of the YSR state. These equations reflect that due to the spin polarization of the
YSR state, removing a quasiparticle is associated with annihilating a down-spin electron. Conversely, removing an
up-spin electron from the ground state necessarily breaks a Cooper pair and its spin-down electron can subsequently
occupy the YSR state.



9

First consider tunneling from the tip into the YSR state of energy εs at positive bias voltages. Fermi’s golden rule
gives the tunnel current

I|+ =
2πe

~
∑
k,σ

|〈odd;ELk|H1|even; BCSL〉|2δ(eV − ELk − εs), (S42)

where |BCSL〉 and |ELk〉 denote the BCS ground state and a state with a single Bogoliubov quasiparticle of energy
ELk in the tip. According to Eqs. (S40) and (S41) and in accordance with the spin polarization of the YSR state,
tunneling into the YSR state is due to spin-down electrons,

I|+ =
2πe

~
∑
k

|〈odd;ELk|ψ†R↓(0)
[
−J (d)

RL(R)S + V
(h)
RL (R)

]
ψL↓(0)|even; BCSL〉|2δ(eV − ELk − εs)

=
2πe

~
|uε(0)|2

[
−J (d)

RL(R)S + V
(h)
RL (R)

]2∑
k

|〈ELk|ψL↓(0)|BCSL〉|2δ(eV − ELk − εs). (S43)

The sum over k can be identified with the superconducting density of states of the tip,

νL,SC(E) = νL
|E|√

E2 −∆2
θ(∆− |E|), (S44)

at energy E = eV − εs, so that we obtain

I|+ =
2πe

~
|uε(0)|2

[
−J (d)

RL(R)S + V
(h)
RL (R)

]2
νL,SC(eV − εs). (S45)

Importantly, the current involves interference between an exchange contribution associated with the molecular d orbital
and a potential scattering contribution associated with the HOMO. The relative sign with which these contributions
contribute directly reflects the fact that the tunneling current from tip to substrate is carried by spin-down electrons.

We will now see that the relative sign between these contributions is reversed at negative bias voltages, as in this
case, current is carried by spin-up electrons. This can be seen from Eqs. (S40) and (S41). Physically, tunneling of an
electron from the substrate into the tip breaks a Cooper pair in the even-parity ground state of the substrate. The
spin-down electron of the Cooper pair occupies the YSR state, while the spin-up electron tunnels into the tip. This
leads to

I|− =
2πe

~
∑
k

|〈odd;ELk|ψ†L↑(0)
[
J
(d)
RL(R)S + V

(h)
RL (R)

]
ψR↑(0)|even; BCSL〉|2δ(−eV − ELk − εs)

=
2πe

~
|vε(0)|2

[
J
(d)
RL(R)S + V

(h)
RL (R)

]2
νL,SC(e|V | − εs) (S46)

for the YSR resonance negative bias.
Comparing Eqs. (S45) and (S46), we see that the relative signs of the exchange and potential-scattering contributions

to the tunneling current differ between positive and negative bias voltages,

dI

dV

∣∣∣∣
±
∝
[
∓J (d)

RL(R)S + V
(h)
RL (R)

]2
, (S47)

with the other contributions being essentially independent of the bias direction. Indeed, the electron and hole wave-
functions of the YSR state should be approximately equal, |uε(0)| ' |vε(0)|, due to the dominance of exchange
coupling to the substrate implied by the well-developed Kondo correlations observed in experiment. We thus con-
clude that the YSR resonances should be symmetric between the bias directions when tunneling into the nodal plane
of the HOMO, and have opposite asymmetries on the two sides of the nodal plane as a result of the sign change of

V
(h)
RL (R).

Further comparison between theory and experiment

Experimentally, the Kondo and YSR asymmetries have different magnitudes. The experimental Kondo asymmetry,
as parametrized by the angle φ, is small (compared to π), see Fig. 1e of the main text. In contrast, the YSR
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asymmetries are of order unity, see Fig. 1f of the main text. This can be readily understood based on our theoretical
results.

We first consider the Kondo resonance. According to Eqs. (S12) and (S15), the asymmetry emerges as follows.
Tunneling between tip and magnetic orbital can proceed either directly [as described by the first term on the right
hand side of Eq. (S12)] or indirectly via HOMO and substrate [as described by the second term on the right hand side
of Eq. (S12)]. Indirect tunneling is a higher order process and should typically be smaller than the direct contribution.
As the first contribution is real, while the second is imaginary (reflecting the continuum of states in the substrate),
the phase φ is typically small in agreement with the experimental observation.

Next consider the YSR asymmetry. As we find in Eq. (S47), the asymmetry emerges from interference of two
cotunneling paths. In one case, the electron cotunnels from the tip into the YSR state in the substrate via the
magnetic orbital, in the other via the HOMO. Both paths give contributions of the same order, so that the YSR
asymmetries are expected to be of order unity, again in agreement with our experimental data.

Using these results, we can further draw some conclusions about the spatial patterns of the Kondo and YSR
resonances. First, we again consider the Kondo resonance whose spatial pattern of the amplitude of the Kondo
resonance is shown in Fig. 2b. The smallness of the asymmetry parameter φ also implies that the amplitude of the
Kondo resonance is dominated by td. Thus, its spatial pattern should be controlled by the magnetic orbital, with the
HOMO only leading to small deviations. Consistent with this conclusion, the spatial pattern of the Kondo amplitude
does not seem to resemble the experimental HOMO orbital shown in Fig. 3b. The HOMO only resembles the spatial
pattern in the asymmetry of the Kondo resonance, consistent with Eq. (S12).

The spatial structure of the experimental YSR resonances shown in Figs. 2d,e shares gross features with the spatial
pattern of the Kondo resonance. This should be expected as they also involve a large contribution due to cotunneling
via the magnetic orbital. The HOMO resembles the spatial pattern in the asymmetry of the YSR resonances, consistent
with Eq. (S47).
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