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Abstract. Experiments on Coulomb drag in double-layer systems in the quantum-
Hall regime have observed a number of surprises which were only partially under-
stood for some time. The most striking observations are that Coulomb drag can
become negative in the regime of high Landau levels and that its temperature de-
pendence is non-monotonous. In this contribution, we review a theory of Coulomb
drag in high Landau levels for the ballistic regime which is in good agreement with
the experiments. Our starting point is the diagrammatic approach to drag, treat-
ing the interlayer interaction perturbatively and accounting for disorder within the
self-consistent Born approximation. Our theory shows that drag in high Landau
levels is an interplay of two contributions arising from different sources for particle-
hole asymmetry, namely the curvature of the zero-field electron dispersion and the
Landau-level density of states.

Frictional drag [1,2] between two parallel two-dimensional electron systems
has become a powerful tool to study quantum Hall systems. When a current I
is applied to one (active) layer, interlayer interactions will impart momentum
to the carriers of the second, passive layer. If no current is allowed to flow
in the passive layer, a voltage V builds up there, neutralizing the momen-
tum transfer. The ratio V/I is known as drag resistance or transresistance.
Depending on the strength of the interlayer interaction – tunable in experi-
ment by the interlayer distance – one can distinguish between two regimes.
At large separation, the interlayer interaction can be treated perturbatively.
When the two layers are brought closer together, the interlayer interaction
can become strong enough to lead to the formation of states with interlayer
correlations. In this paper, we will be concerned with the first regime of weak
interlayer interaction.

The picture of momentum transfer between the two layers leads to the
following basic predictions. Clearly, the momentum transfer is independent
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of the nature (electrons or holes) of the carriers in the two layers. Thus, one
expects that the sign of the drag resistance depends on the relative sign of
the carriers in the two layers. Conventionally, one refers to the resulting drag
between two layers with equal (opposite) carriers as positive (negative). A
consequence of this is that drag vanishes for particle-hole symmetric systems.
In addition, drag is expected to increase monotonously with temperature due
to the increased phase space for interlayer scattering. These basic expecta-
tions were well supported by early theoretical considerations of Zheng and
MacDonald [3].

1 Coulomb drag in high Landau levels

Remarkably, a series of experiments [4–6] on drag in quantum Hall systems
shows that these simple expectations are violated in the regime of high Lan-
dau levels (large filling factor). First experiments [4,5] showed that drag can
change sign as function of magnetic field or filling factor difference, when the
two layers are at different densities. This was surprising because the carriers
in both layers are electrons. A more recent experiment [6] studied the temper-
ature dependence and found that while exhibiting the expected increase with
temperature at high temperatures, an additional peak develops at low tem-
peratures which can be either positive or negative, depending on the filling
factor difference between the two layers. This non-monotonous temperature
dependence contrasts with the phase-space argument given above.

Drawing an analogy between partially filled Landau levels and partially
filled Bloch bands, it is natural to suggest [4] that a less-than-half-filled Lan-
dau level behaves as an electron-like band while a more than half-filled Lan-
dau level behaves as a hole-like band. This analogy suggests that there are
sign changes in the drag resistivity as function of the filling factor difference
between the two layers. While there is an element of truth in this picture, it
turns out [7] that this analogy can be rather misleading. One reason is that
it neglects the contributions to the drag resistivity which arise from the Hall
conductivity.

We find [8] from a careful evaluation of the diagrammatic expressions for
the drag conductivity that the experiments can be understood in terms of
the interplay of two contributions which are associated with two sources of
particle-hole symmetry violation. One source is the curvature of the (quadra-
tic) zero-magnetic-field dispersion of the electrons. This contribution is closely
related to the conventional picture for drag described above. Thus, this contri-
bution which dominates at high temperatures, indeed increases monotonously
with temperature and has a fixed sign (positive for two electron layers). A
second source is related to the oscillatory Landau-level density of states. This
anomalous contribution dominates at low temperatures where it exhibits a
peak. Its sign depends on the filling factor difference between the two layers.
In the ballistic regime Rc � d (Rc denotes the cyclotron radius and d the
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spacing between the two layers), the sign turns out to be in agreement with
experiment.

2 Previous theoretical work

We briefly discuss previous theoretical work. Early theoretical work [9] on
Coulomb drag in a magnetic field in the limit of high Landau levels showed
that the magnetic field strongly enhances the Coulomb drag. More recent
work [7] showed that Landau-level quantization can lead to sign changes in
drag. However, the results obtained for the diffusive regime indicated that
unlike the experimental observation, negative drag should be observed for
equal filling factors in the two layers. None of these works can explain the
observed non-monotonic temperature dependence.

Ref. [7] started from an alternative picture for the drag conductivity which
can be roughly thought of as follows. The fluctuations of the electron density
of the active layer lead to a fluctuating electric potential which is seen by the
passive layer. Due to the applied voltage in the active layer, these electric
potential fluctuations are not fully isotropic in the wavevector q and thus
induce a dc current in the passive layer in nonlinear response. This argument
shows that drag is related to the ”nonlinear susceptibility” Γ(q, ω) which,
loosely speaking, gives the dc current response to an electric potential φ(q, ω)
in quadratic order, jdc = Γ(q, ω)|φ(q, ω|2. (A more accurate, diagrammatic
definition is given in the next section.) The diagrammatic approach (see be-
low) shows that the anisotropic part of the electric potential fluctuations of
the active layer is also related to Γ(q, ω) of the active layer. As a result, one
finds for the dc drag conductivity the expression [10,11]

σ
(D)
ij =

e2

16πTS

∑
q

∫ ∞

−∞

dω

sinh2(ω/2T )
Γ

(1)
i (q, ω)Γ (2)

j (q, ω)|U(q, ω)|2. (1)

where S denotes the area of the sample, T the temperature, and U(q, ω) the
screened interlayer interaction.

In the limit in which the current response of the passive layer to the elec-
tric potential fluctuation generated by the active layer is local, one can argue
[12,7] in an elementary fashion that the ”nonlinear susceptibility” becomes

Γ(q, ω) = 2
dσ

d(en)
· qImΠ(q, ω), (2)

where Π(q, ω) is the polarization operator of the layer, σ the conductivity
tensor, and n denotes the electron density. Inserting this into the expression
for the drag conductivity which is related to the experimentally measured
drag resistivity by ρD = ρ(1)σ(D)ρ(2) (here ρ(i) denotes the resistivity of the
ith layer), one finds [7] that the drag resistivity, takes the form

ρ(D) ∼ ρ(1) dσ(1)

dn

dσ(2)

dn
ρ(2). (3)
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Here, the prefactor is positive. From this expression, we can read off the
following results:

• Replacing the conductivity and resistivity tensors by their Drude form,
assuming that the scattering time is independent of density, and using
that in this case dσ/dn = ±σ/n (the plus (minus) sign is valid for elec-
trons (holes), respectively), we find that the drag resistivity is diagonal
and its sign is in agreement with the simple arguments in the introduction
to this paper.

• Even for the Drude conductivities, a density-dependent scattering time
results in a finite Hall drag, i.e., an off-diagonal conribution to the drag
resistivity.

• In the presence of a strong magnetic field, the longitudinal conductivity
oscillates as a function of n due to the Shubnikov-deHaas oscillations.
This leads to sign changes in the drag resistivity as function of the density
difference between the layers.

• In strong magnetic fields, we have ρxx � ρxy and in addition, the self-
consistent Born approximation (SCBA) valid in the limit of high Landau
levels yields that dσxx/dn � dσxy/dn, so that to leading order

ρ(D)
xx ∼ ρ(1)

xy

dσ
(1)
yy

dn

dσ
(2)
yy

dn
ρ(2)

yx . (4)

Remarkably, since ρxy = −ρyx, this expression predicts that the drag
resistivity is negative for equal densities. Thus, while the expression does
exhibit sign oscillations as a function of filling factor differences between
the two layers, the overall sign is in stark contrast to the experimentally
observed positive sign for equal filling factors.

Thus, we have to go beyond the local, diffusive limit discussed in this
section in order to understand the experiments. The corresponding diagram-
matic calculation for the ballistic regime has recently been performed by us [8]
and is sketched in the next section. We will see that this calculation resolves
the discrepancy with experiment found here.

3 Diagrammatic theory

Our considerations [8] are based on the Kubo approach to Coulomb drag
[10,11] which expresses the drag conductivity σ

(D)
ij (Q, Ω) in terms of a current-

current correlation function,

σ
(D)
ij (Q, Ω) =

1
ΩS

∫ ∞

0

dt eiΩt
〈
[j(1)†

i (Q, t), j(2)
j (Q, 0)]

〉
. (5)

where i, j label the components of the drag conductivity tensor, Q, Ω denote
the wave vector and frequency of the applied field, S is the area of the sample,
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and j
(l)
i denotes the ith component of the current operator in the lth layer.

The dc drag conductivity follows by taking the limit

σ
(D)
ij = σ

(D)
ij (Q = 0, Ω → 0). (6)

Considering the diagrams in Fig. 1, one obtains Eq. (1) for the dc drag con-
ductivity [11,10]. The triangle vertex Γ(q, ω) takes the explicit form Γ =
Γ(a) + Γ(b) with the two contributions

Γ(a)(q, ω) =
∫

dε

4πi
tanh

ε + ω

2T
tr

{
vG+(ε + ω)eiqrG+(ε)e−iqrG+(ε + ω)

− vG−(ε + ω)eiqrG−(ε)e−iqrG−(ε + ω)
}

+ (ω,q → −ω,−q) (7)

Γ(b)(q, ω) =
∫

dε

4πi
(tanh

ε + ω

2T
− tanh

ε

2T
)

×tr
{
vG−(ε + ω)eiqr[G−(ε) − G+(ε)]e−iqrG+(ε + ω)

}
+(ω,q → −ω,−q) (8)

Here, G±(ε) denotes the advanced/retarded Green function for a particular
impurity configuration.

ωq,

ωq,q,ω

q,ω

Fig. 1. Diagrams for the drag conductivity and for the triangel vertex Γ(q, ω)
.

We perform the average over the white-noise impurity potential, charac-
terized by 〈V (r)〉 = 0 and 〈V (r)V (r′)〉 = (1/2πν0τ0)δ(r− r′), within the self-
consistent Born approximation (SCBA) [13]. (ν0 and τ0 denote the density
of states and the elastic scattering time at zero magnetic field, respectively.)
This approximation which neglects diagrams with crossing impurity lines,
can be shown to give the leading contribution when the Fermi energy EF is
in a high LL with LL index N � 1 [14].

3.1 The triangle vertex

In the ballistic regime for well-sparated Landau levels, we can expand in three
small paramenters simultaneously. The parameter Γ/h̄ωc � 1 describes the
fact that the LLs are well separated. Here Γ denotes the broadening of the
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LL and ωc is the cyclotron frequency. The limit of high LLs allows us to treat
1/N � 1 as a small parameter. Finally, the ballistic regime is characterized
by the small parameter 1/qRc � 1.

In the leading order in all three parameters, the following simplifications
occur.

• There is no vertex correction due to disorder of the vector vertex in Γ.
This is actually generally true for white-noise disorder.

• There are also no vertex corrections of the scalar vertices due to the small
parameter 1/qRc � 1.

• Two of the three Green function can be evaluated in the Nth LL in
which the Fermi energy resides. One Green function must be evaluated
in a neighboring LL N ± 1 since the velocity operator, entering at the
vector vertex, has nonzero matrix elements between neighboring LLs only.

• The matrix elements associated with the vertices can be evaluated in the
semiclassical approximation due to N � 1.

Remarkably, at this order we find that there is an exact cancellation between
the contributions Γ(a) and Γ(b). This cancellation requires us to go beyond
the leading order to find the relevant expression for the triangle vertex. Since
all three small parameters are of comparable magnitude, we need to look for
the leading correction in each of the three small parameters separately.

The leading correction in the ballistic parameter 1/qRc requires us to
retain the vertex corrections to the scalar vertices. Within the SCBA, these
vertex corrections arise from impurity ladders dressing both scalar vertices.
As a result, we find

Γ(1/qRc)(q, ω) = −q̂
128ωRc

π2�2

× (E − EN )[Γ 2 − (E − EN )2]3/2

Γ 6
J1(qRc)J3

0 (qRc). (9)

Here, we introduced a superscript on Γ(q, ω) in order to distinguish this
contribution from other contributions computed below. Note that this is a
purely longitudinal contribution to Γ (i.e., parallel to q) which changes sign
at the center of the LL.

Corrections of order Γ/h̄ωc can arise from two sources:

• The Green functions adjacent to the current vertex are evaluated in Lan-
dau levels different from N . (Note that the Green function between the
scalar vertices must still be evaluated in the Nth Landau level because
G+

n − G−
n ∼ Γ/(h̄ωc)2 for n �= N .)

• The diagrams giving the leading contribution can be evaluated more ac-
curately, keeping corrections in Γ/h̄ωc. Note that we may now neglect
vertex corrections at the scalar vertices because we consider the leading
order in qRc � 1.
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It turns out that the first contribution vanishes for both Γ(a) and Γ(b). Con-
sidering the second contribution, it turns out that it still gives a vanishing
contribution to the longitudinal triangle vertex, due to the cancellation be-
tween Γ(a) and Γ(b) described above. However, the transverse contribution to
Γ(b) no longer vanishes when considering corrections in Γ/h̄ωc. In this way,
we obtain the contribution

Γ(Γ/h̄ωc)(q, ω) = −q̂ × ẑ
8ωRc

π2�2

× (E − EN )[Γ 2 − (E − EN )2]
ωcΓ 4

J0(qRc)J1(qRc) (10)

to the triangle vertex. This is a transverse contribution to Γ which also
changes sign in the center of the LL.

Finally, we consider the contribution to Γ due to terms of order q/kF

relative to the leading order. Such terms arise from a more accurate treatment
of the matrix elements involved in the scalar vertices, keeping corrections of
order 1/N in the arguments of oscillatory terms. These corrections arise only
for the contribution Γ(b) and one finds

Γ(q/kF ) = −ẑ× q
4ω

π2

Γ 2 − (E − EN )2

Γ 4
J2

0 (qRc). (11)

This expression can also be rewritten as

Γ(q/kF ) = −ẑ× q
2σxy

n
ImΠ(q, ω) (12)

with the polarization operator Π(q, ω) for the ballistic regime [cf. Eq. (15)
below] and the Hall conductivity σxy = en2/B− (e2/π2h̄)N(Γ/h̄ωc)[1− (E−
EN )2/Γ 2]3/2 in SCBA. This expression is a high-magnetic field analog of the
conventional contribution to Γ [3] and thus does not change sign in the center
of the LL.

3.2 Screened interlayer interaction

In this section, we briefly summarize the results for the screened interlayer
interaction. For q small compared to the Thomas-Fermi screening wave vec-
tors κl,0 = 4πe2νl,0 (l = 1, 2 labels the layer and νl,0 denotes the zero-field
density of states per spin of layer l), the screened interlayer interaction can
be approximated as [11]

U(q, ω) 	 πe2q

κ1,0κ2,0 sinh(qd)
2ν1,0

Π1(q, ω)
2ν2,0

Π2(q, ω)
. (13)

Here, d denotes the distance between the layers. The polarization operator
of layer l is denoted by Πl(q, ω).
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In the ballistic regime qRc � 1, for ω � Γ , the real part of the polariza-
tion operator takes the form

ReΠ(q, ω) = 2ν0 + 2ν(E)[J0(qRc)]2. (14)

Here, the second term arises from contributions of the Nth LL, while the
first term [15] arises from Landau levels n �= N . The imaginary part of the
polarization operator takes the form [16]

ImΠ(q, ω) = 2ν0
2ωωc

πΓ 2

[
1 − (E − En)2

Γ 2

]
[J0(qRc)]2. (15)

Note that ImΠ � ReΠ .

3.3 Results for the drag resistivity

In this section, we summarize our results for the drag resistivity based on the
formalism sketched above [8]. In strong magnetic fields, the Hall conductivity
ρxy dominates over ρxx. Therefore, using Eq. (1), the drag resistivity ρ

(D)
xx 	

ρ
(1)
xy σD

yyρ
(2)
yx can be expressed as

ρD
xx = − B

en1

B

en2

1
8π

∫ ∞

−∞

dω

sinh2(ω/2T )

×
∫

d2q
(2π)2

Γ (1)
y (q, ω, B)Γ (2)

y (q, ω,−B)|U(q, ω)|2. (16)

A careful analysis shows that at low temperatures, T � Γ , the contribution
of Γ (Γ/h̄ωc) to ρ(D) dominates. Performing the remainin integrals yields the
final result

ρD
xx =

8
3π2e2

1
(kF d)2

1
(κRc)2

(
T

Γ

)2

ln
(

RcΓ

dωc

)

×
(

E − EN

Γ

)2 [
1 − (E − EN )2

Γ 2

]2

. (17)

for the drag resistivity of identical layers. Thus at low temperature T � Γ ,
the drag resistivity scales with magnetic field and temperature as

ρD
xx ∝ T 2B ln B, (18)

which compares nicely to the empirical scaling reported in Ref. [6],

ρD
xx ∝

( n

B

)−2.7

f(T/B), (19)

with f(x) ∼ x2.
For different filling factors (or densities) in the two layers, the cyclotron

radii of the two layers are no longer the same. If the cyclotron radii Rc of the
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two layers are slightly different, such that δRc/d � 1, the above calculation
fully applies, and the result is obtained by the replacement

(
E − EN

Γ 2

)2 [
1 − (E − EN )2

Γ 2

]2

→
(

E − EN

Γ

[
1 − (E − EN )2

Γ 2

])
1

(
. . .

)
2

(20)

in Eq. (17). This yields an oscillatory sign of the drag resistivity. Importantly,
for equal layer densities the drag resistivity is positive, in agreement with
experiment. This result is different from the result for the diffusive regime
discussed above [7]. The origin of the difference between the diffusive and
the ballistic regime is that in the former (latter), the leading term originates
from a longitudinal (transverse) contribution to Γ.

If d � δRc � RcΓ/ωc, the calculation still applies if we make the re-
placement

ln
(

Rc

d

Γ

ωc

)
→ ln

(
Rc

δRc

Γ

ωc

)
(21)

of the logarithm in Eq. (17).

T

T

T2

2

2

T3

T 3

T

1

1

1

− − mismatched

matched
densities

densities

T

I II III IV

ρ D

Γ T*
ωc

Fig. 2. Schematic temperature dependence of drag for matched and mismatched
densities. In the latter case, the mismatch is chosen such that drag is negative at
low temperatures.
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For larger temperatures T � Γ , we find a number of different temperature
regimes which are summarized in Fig. 2. For Γ � T � T∗ (regime II in Fig.
2), we find that the drag resistivity scales as

ρD
xx ∝ T−3B7/2 ln B (22)

as function of B and T . This contribution arises from Γ(Γ/h̄ωc). The upper
limit of the temperature interval is given by

T∗ ≡ Γ

(
Γ

ωc

)
kF d. (23)

For even higher temperatures, the conventional contribution Γ(q/kF ) domi-
nates and the drag resitivity becomes positive. Specifically, we find that the
drag resisitivity scales as

ρD
xx ∝ T−1B7/2 (24)

for T∗ � T � ωc (regime III in Fig. 2) and as

ρD
xx ∼ 1

e2

1
(kF a)2

1
(κRc)2

(
T

EF

)2 (ωc

Γ

)
∝ T 2B1/2. (25)

for even higher temperatures T � ωc (region IV in Fig. 2).

4 Summary and outlook

Experimental studies of drag in high Landau levels have given a number of
surprises, including negative drag and a non-monotonous temperature de-
pendence. Earlier theoretical work had led to some understanding of the
possibility of sign changes of drag in this regime, but the detailed predictions
for the sign did not agree with experiment. In this contribution, we sketch our
results for Coulomb drag in high Landau levels, obtained in the framework of
a diagrammatic calculation. Our calculation treats the interlayer interaction
perturbatively and accounts for disorder in the self-consistent Born approxi-
mation which is expected to become exact in the limit of high Landau levels.
Focusing on the ballistic regime for well-separated Landau levels, we find
that there are two types of contributions to the triangle vertex entering the
expression for the drag resistivity which are associated with different sources
for a particle-hole asymmetry. At high temperatures, the contribution aris-
ing from the particle-hole asymmetry due to the zero-field electron dispersion
dominates. This contribution is positive and increases with temperature. At
lower temperatures, an anomalous contribution dominates which arises from
the particle-hole asymmetry associated with the Landau level spectrum. This
contribution changes sign in a way which is consistent with experimental ob-
servations. We close by mentioning that it would be interesting to apply the
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approach outlined here to the fractional quantum Hall regime close to half
filling of the lowest Landau level.
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