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We develop a scattering theory of current-induced forces exerted by the conduction electrons of a

general mesoscopic conductor on slow ‘‘mechanical’’ degrees of freedom. Our theory describes the

current-induced forces both in and out of equilibrium in terms of the scattering matrix of the phase-

coherent conductor. Under general nonequilibrium conditions, the resulting mechanical Langevin dy-

namics is subject to both nonconservative and velocity-dependent Lorentz-like forces, in addition to

(possibly negative) friction. We illustrate our results with a two-mode model inspired by hydrogen

molecules in a break junction which exhibits limit-cycle dynamics of the mechanical modes.
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Introduction.—Current-induced forces play a central
role in many contexts of modern condensed matter physics
such as molecular electronics [1], nanoelectromechanical
systems (NEMS) [2], spintronics [3], or backaction forces
in quantum measurements [4–6]. In its simplest incarna-
tion, the current flow through, say, a carbon nanotube
suspended over a gate electrode governs the electronic
occupation of and thus the capacitive force exerted on
the flexible nanotube. This force, including the dissipation
of the mechanical motion resulting from retardation ef-
fects, was recently observed in seminal experiments [7,8].
The nature of the interaction of conduction electrons with
collective degrees of freedom, such as vibrational modes in
NEMS or the magnetization in spintronics devices, de-
pends sensitively on the relevant time scales. In the context
of NEMS and molecular electronics, much work has
focused on the limit in which the vibrations are fast com-
pared to typical time scales of the conduction electrons. In
this regime, the electron-vibron interaction causes vibra-
tional sidebands in the current-voltage characteristics [1],
Franck-Condon blockade of transport [9], or current-
induced heating of the vibrational mode [1].

Here we consider the opposite regime in which the
collective mode is slow compared to electronic time scales.
This limit applies, for instance, to the flexural modes of
suspended graphene membranes and carbon nanotubes [7],
the current-induced electromigration of nanoscale islands
on Ag surfaces [10], the cooling and amplification of
mechanical motion by the mesoscopic backaction of elec-
trons [4,5], certain molecular switches [1,11], spin transfer
torques and current-induced domain wall motion in
ferromagnets [3], as well as NEMS near continuous me-
chanical instabilities [12]. In this nonequilibrium Born-
Oppenheimer (NEBO) limit, it is typically appropriate to
describe the collective mode as a slow classical degree of
freedom exhibiting Langevin dynamics. The central sub-
ject of this Letter is the current-induced forces governing
this Langevin process. Given the wide applicability and

physical transparency of the scattering approach to quan-
tum transport in nanoscale systems [13], it seems highly
desirable to develop a scattering theory of current-induced
forces for a general phase-coherent mesoscopic conductor.
Such a theory is our main result.
When developing a general theory of these current-

induced forces out of equilibrium, it is imperative to con-
sider more than one collective coordinate [14,15]. Indeed,
this introduces several qualitatively new and remarkable
features into the Langevin equation

M�
€X� þ @U

@X�

¼ F� �
X
�0
���0 _X�0 þ �� (1)

for the collective coordinates X�. The left-hand side de-
scribes the elastic dynamics and the right-hand side col-
lects the current-induced forces, including the fluctuating
Langevin force ��ðXÞ. With applied bias, the current-
induced average force F�ðXÞ will generally be nonconser-
vative. Moreover, the velocity-dependent force does not
only contain a frictional contribution, corresponding to the
symmetric part of the tensor ���0 ðXÞ, but also a ‘‘Lorentz’’
force (or Berry-phase contribution [16]), arising from its
antisymmetric part. We will see that these features can
cause unconventional collective dynamics and may pro-
vide the operating principle of a nanoscale motor.
Model.—Our starting point is a simple yet very general

model of a mesoscopic conductor [13]. The ‘‘quantum
dot’’ is described in terms of M electronic orbitals with

fermion operators dn obeying the Hamiltonian HD ¼P
nn0d

y
n ðhDÞnn0dn0 . The conduction electrons are coupled

to a collection of N ‘‘slow’’ collective degrees of freedom
XðtÞ ¼ ðX1; . . . ; XNÞ, which may, for instance, represent
vibrational modes or atomic locations. We take this

coupling to be linear, hD ¼ h0 þ
P

N
�¼1 ��X̂�, character-

ized by the coupling matrices ��. As usual in applications
of scattering theory to mesoscopic transport, we assume
that the electrons are otherwise noninteracting. In addition,
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the total Hamiltonian H ¼ HD þHL þHT þHX models
the leads (labeled by� and with chemical potentials��) as

free Fermi systems, HL ¼ P
�ð�� ���Þcy�c� with com-

posite index � ¼ ðk; �Þ, in terms of the lead fermions c�
with Fermi-Dirac distribution f�ð��Þ. It also includes

hybridization between leads and quantum dot through

HT ¼ P
�;nc

y
�W�ndn þ H:c: with coupling matrix W, and

describes the uncoupled mode dynamics through the

Hamiltonian HX ¼ P
�P̂

2
�=2M� þUðXÞ.

Nonequilibrium Born-Oppenheimer approximation.—
Generalizing previous formulations for N ¼ 1 [11], we
start by deriving Green’s function (GF) expressions for
the current-induced forces in Eq. (1) within the Keldysh
formalism, based on the Heisenberg equations of motion

M�
€X� þ @U

@X�

¼ �X
n;n0

dyn ð��Þnn0dn0 : (2)

(An alternative derivation proceeds in terms of Keldysh
functional integrals, following, e.g., Ref. [17].) In the
NEBO approach, we average the force operator appearing
on the right-hand side over time intervals long compared to
the electronic time scales but short compared to time scales
of the collective dynamics. In addition to a fluctuating
force �� discussed below, this yields a time-averaged force
tr½i��G<ðt; tÞ�. Here, the trace acts in dot level space, and

the lesser GF is G<
nn0 ðt; t0Þ ¼ ihdy

n0 ðt0ÞdnðtÞi. This electronic
GF should be evaluated for a given time dependence XðtÞ
of the collective coordinates. To linear order in the veloc-
ities _X�, we find (see below)

G < ’ G< þ i

2
ð@�G<� � _XGA �G<� � _X@�G

A

þ @�G
R� � _XG< �GR� � _X@�G

<Þ (3)

in terms of the frozen (adiabatic) GF Gð�;XÞ obtained for
fixed configuration X. Inserting Eq. (3) into the time-
averaged force given above, we obtain GF expressions
for the current-induced forces in Eq. (1). The mean force

F�ðXÞ ¼ �
Z d�

2�i
tr½G<ð�;XÞ��� (4)

follows from the strictly adiabatic (frozen) limit G< ’ G<.
The first nonadiabatic correction of G< gives rise to the
velocity-dependent term in Eq. (1). Decomposing � ¼
�s þ �a into symmetric and antisymmetric contributions,
we obtain for the frictional contribution

�s
��0 ðXÞ ¼

Z d�

2�
trf��G

<��0@�G
>gs (5)

and for the effective orbital magnetic field

�a
��0 ðXÞ ¼ �

Z d�

2�
trf��G

<��0@�ðGA þGRÞga: (6)

Here, we employed G> ¼ G< þGR �GA with GA¼
ðGRÞy and the shorthand fA��0 gs=a ¼ ðA��0 � A�0�Þ=2.

The fluctuating force �� in Eq. (1) can be obtained
from the (thermal and nonequilibrium) fluctuations of the

force operator �P
n;n0d

y
n ð��Þnn0dn0 in Eq. (2). Exploiting

Wick’s theorem, one readily finds that the fluctuating force
is a Gaussian white noise variable, h��ðtÞ��0 ðt0Þi ¼
D��0 ðXÞ	ðt� t0Þ, with symmetric variance matrix

D��0 ðXÞ ¼
Z d�

2�
trf��G

<��0G>gs: (7)

The correlations of ��ðtÞ are local in time since in the
NEBO limit, the electronic fluctuations involve much
shorter time scales than the collective dynamics. For N ¼
M ¼ 1, our expressions recover previous results [11]. We
emphasize that all current-induced forces in Eq. (1) are
nontrivial functions of the collective coordinates X as the
latter enter into the frozen GF Gð�;XÞ.
We briefly sketch the derivation of Eq. (3). Following

Refs. [11,18], we start from the Dyson equation GRði@t0 �
HD � �RÞ ¼ 1 for the retarded dot GF. The coupling
between dot and leads is accounted for by the self-energy
�R ¼ �i

P
��� in terms of the hybridization matrices

�� ¼ ��Wy��W (� is a lead density of states and ��

a projection operator to states in lead �). The Dyson
equation can now be solved to linear order in _X after
passing to the Wigner representation. Relating G< to GR

using the Langreth rules yields Eq. (3).
Scattering theory of current-induced forces.—The scat-

tering approach to quantum transport in mesoscopic sys-
tems, as epitomized by the Landauer-Büttiker formula for
the conductance, is formulated in terms of the S matrix
describing the single-particle scattering by the nanostruc-
ture of electrons incident from one lead. For the model
considered here, the frozen S matrix is readily related to
the frozen retarded GF GRð�;XÞ through [13]

Sð�;XÞ ¼ 1� 2�i�WGRð�;XÞWy: (8)

We assume the wideband limit in which � and W are
energy independent. The average force F�ðXÞ in Eq. (4)
can be written in terms of the frozen S matrix [Eq. (8)] by
expressing the lesser GF G< ¼ GR�<GA in terms of the
self-energy �<ð�Þ ¼ 2i

P
�f��� [13]. Using the identity

2�i�WyW ¼ ðGRÞ�1 � ðGAÞ�1, we then find

F�ðXÞ ¼ X
�

Z d�

2�i
f�Tr

�
��S

y @S

@X�

�
(9)

for the mean force expressed through the S matrix. Here
the trace ‘‘Tr’’ acts in lead-channel space. By a similar set
of steps, we can also express the variance [Eq. (7)] of the
fluctuating force in terms of the frozen S matrix,

D��0 ðXÞ ¼ X
��0

Z d�

2�
f�ð1� f�0 Þ

� Tr

�
��

�
Sy

@S

@X�

�y
��0Sy

@S

@X�0

�
s
: (10)
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By going to a basis in whichD is diagonal and using�� ¼
�2

�, we find that D is a positive definite matrix.
To express the velocity-dependent forces in terms of the

scattering matrix in general nonequilibrium situations, we
need to go beyond the frozen scattering matrix S. The
relevant concepts have been developed in the context of
the scattering theory of quantum pumps [18]. For adiabatic
parameter variations, the full S matrix of mesoscopic
conductors can be expressed in Wigner representation as
Sð�; tÞ ¼ 1� 2�i�WGRð�; tÞWy, which naturally extends
Eq. (8). Expanding S to linear order in the velocities _X
of the adiabatic variables, Moskalets and Büttiker [18]
introduced an A matrix through Sð�; tÞ ’ Sð�;XðtÞÞþP

�
_X�ðtÞA�ð�;XðtÞÞ, where

A�ð�;XÞ ¼ ��Wð@�GR��G
R �GR��@�G

RÞWy (11)

in terms of the frozen GF. It is now tedious but straightfor-
ward to write the damping coefficients in Eq. (5) as

�s
��0 ¼

X
�

Z d�

4�
ð�@�f�ÞTr

�
��

@Sy

@X�

@S

@X�0

�
s

þX
�

Z d�

2�i
f�Tr

�
��

�
@Sy

@X�

A�0 � Ay
�0

@S

@X�

��
s
:

(12)

Similarly, the effective magnetic field in Eq. (6) becomes

�a
��0 ¼

X
�

Z d�

2�i
f�Tr

�
��

�
Sy

@A�

@X�0
� @Ay

�

@X�0
S

��
a
: (13)

Several comments on these results are now in order. (i) The
current-induced mean force F�ðXÞ in Eq. (9) is conserva-
tive (the gradient of a potential) if its ‘‘curl’’

@F�

@X�0
� @F�0

@X�

¼ X
�

Z d�

�i
f�Tr

�
��

@Sy

@X�

@S

@X�0

�
a

(14)

vanishes. This is indeed the case in thermal equilibrium,
where Eq. (14) can be turned into a trace over a commu-
tator of finite-dimensional matrices due to the relations
f� ¼ f,

P
��� ¼ 1, and unitarity SyS ¼ 1 implying

@ðSySÞ=@X� ¼ 0. In general, however, the mean force
will be nonconservative in out-of-equilibrium situations.
Equation (9) for FðXÞ provides an S-matrix representation
for the ‘‘water wheel’’ [14] or ‘‘electron wind’’ [15] force
discussed recently. (ii) The second contribution to the
damping matrix (12) is a pure nonequilibrium term. In
fact, it can be shown to vanish in equilibrium using unitar-
ity of S as well as S, where the latter implies [18] ASy þ
SAy ¼ ði=2Þ½@XS@�Sy � @�S@XS

y�. The first term in
Eq. (12) is a close analog of the S-matrix expression for
Gilbert damping in ferromagnets [19]. From this perspec-
tive, our expressions for �s can be viewed as mechanical
analogs of Gilbert damping, generalized to arbitrary non-
equilibrium situations. While the first term has strictly
positive eigenvalues, the second term can have either
sign and even cause negative eigenvalues of the full

dissipation matrix �s. (For a simple model exhibiting
negative damping cf. Ref. [20].) This reflects the fact that
out of equilibrium, the electronic degrees of freedom can
effectively pump energy into the collective modes. (iii) If
the conductor is time-reversal symmetric such that S ¼ ST

and A ¼ �AT , the effective orbital magnetic field �a

vanishes in thermal equilibrium. In general out-of-
equilibrium situations, �a is nonzero even for time-reversal
symmetric conductors since the current provides another
quantity which is odd under time reversal. (iv) In thermal
equilibrium, the variance D��0 of the fluctuating force is
related to the dissipation matrix �s through the fluctuation-
dissipation theorem D��0 ¼ 2T�s

��0 . This follows readily

since the second term in Eq. (12) vanishes in equilibrium
and �@�f ¼ fð1� fÞ=T. We note that a recent study [6]
of backaction forces in quantum measurements in terms
of the Smatrix obtains a friction coefficient which violates
the fluctuation-dissipation theorem unless the S matrix
is energy independent. (v) The current flowing in lead �
is given in terms of an appropriate average over the
Langevin process of the current to linear order in _X.
Starting with the GF expression, this is the sum of the
conventional Landauer-Büttiker current [13], I�ðXÞ ¼
ðe=hÞP


R
d�ðf� � f
ÞTrðS�
S

y��Þ, and a pumping

correction [18],

	I�ðXÞ ¼ e

2�

Z
d�

X



_X �
�
�@f


@�
ImTr

�
��

@S

@X
�
S

y
�

þ f
ReTr

�
i��

@S

@X
�


@Sy

@�
� 2��A�
S

y
��

:

(15)

In thermal equilibrium, the first term reproduces the well-
know S-matrix expression [21] for the pumping current,
while the second term vanishes by unitarity of S.
Limit-cycle dynamics.—We now employ our general

theory to show that at finite bias, the current-induced forces
can change the collective dynamics qualitatively. Without
applied bias, the collective dynamics exhibits oscillations
about a stable equilibrium. These oscillations can become
destabilized under out-of-equilibrium conditions, due to
negative eigenvalues of the dissipation matrix �s, a non-
conservative force field FðXÞ, or both. Within a stability
analysis for these scenarios, one would predict an expo-
nential instability of at least one collective mode [15].
A more thorough understanding of the resulting dynam-

ics requires one to retain the full anharmonic Langevin
dynamics, including the complete dependence of the
current-induced forces on the mode coordinates X, which
is readily possible within our formalism. Indeed, we find
that the current-induced instability typically drives the
collective degrees of freedom into a limit cycle. Systems
with more than one collective degree of freedom are most
susceptible to this scenario when the elastic contributions
to the mode frequencies are (near)degenerate.
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Consider a model, inspired by transport measurements on
hydrogen molecules [22], with two electronic orbitals which
are each coupled to one of the leads and which allow tunnel-
ing between them. The hydrogen molecule in a single-
molecule contact has two almost degenerate low-energy
vibrational modes [22], corresponding to the center-of-
mass vibration between the contacts and the rigid-rotation
mode. Taking their respective couplings�� to the electronic
orbitals as Pauli matrices in the electronic subspace, say �0

and �x, we find that the mean force becomes nonconserva-
tive for a finite bias. Without fluctuating force, this gives rise
to limit-cycle dynamics at larger biases which evolves from
the stable equilibrium at small voltages, see Fig. 1(a). With
Langevin force [Fig. 1(b)], the trajectory fluctuates about the
limit cycle, with occasional larger excursions.

Most importantly, this transition into limit-cycle dynam-
ics has directly observable consequences even for the full
Langevin dynamics. In the absence of a limit cycle, the
collective motion is a random superposition of two normal
modes whose frequencies differ due to the current-induced
forces. (Here, we assume that the elastic mode frequencies
are strictly degenerate.) Apart from higher harmonics, this
leads to two distinct peaks in the Fourier transforms of
correlation functions such as hX1ðtÞX2ðtþ �Þi. In contrast,
once the limit cycle develops, its frequency completely
dominates the correlation function, and its Fourier trans-
form exhibits a single peak only [Fig. 1(c)]. This frequency
locking is mirrored in the correlation function of the cur-
rent, as shown in Fig. 1(d). This should serve as a direct
signature of current-induced limit-cycle dynamics in ex-
periment. Remarkably, the present system resembles a
nanoscale motor as the mechanical motion remains almost
periodic even for the full Langevin dynamics and this
motion is driven by a nonconservative force.
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Zarand, and L. Arrachea as well as support by the DFG
through SPP 1459, SFB TR/12, and SFB 658.
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FIG. 1 (color online). (a) Limit cycle (blue solid line) and its approach (blue dotted line) at large bias vs stable oscillations at low bias
(red asterisk) in the Langevin dynamics without fluctuating force. (b) Several periods of typical trajectories with fluctuating forces for
the parameters of the limit cycle in (a). (c) Fourier transform of the correlation function hX1ðtÞX2ðtþ �Þi. The limit cycle is signaled by
a single peak, as opposed to two peaks in the absence of a limit cycle. (d) The same signature appears in the current-current correlation
function, making the onset of limit-cycle dynamics observable in experiment. These zero-temperature results, based on analytical
results for the current-induced forces, are obtained for �1 ¼ 
1�0 and �2 ¼ 
2�x with 
1=
2 ¼ 3=2. In units of 
2=ðM!2

0Þ [where

 ¼ ð
1 þ 
2Þ=2], the elastic modes are degenerate with @!0 ¼ 0:014, �L;R ¼ 1�0:8

2 ð�0 � �zÞ, and the hopping between the orbitals

is w ¼ 0:9. The dimensionless coordinates are xi ¼ ðM!2
0=
ÞXi.
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