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Current-induced switching in transport through anisotropic magnetic molecules
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Anisotropic single-molecule magnets may be thought of as molecular switches, with possible applications
to molecular spintronics. In this paper, we consider current-induced switching in single-molecule junctions
containing an anisotropic magnetic molecule. We assume that the carriers interact with the magnetic molecule
through the exchange interaction and focus on the regime of high currents in which the molecular spin dynamics
is slow compared to the time which the electrons spend on the molecule. In this limit, the molecular spin obeys
a nonequilibrium Langevin equation which takes the form of a generalized Landau-Lifshitz-Gilbert equation
and which we derive microscopically by means of a nonequilibrium Born-Oppenheimer approximation. We
exploit this Langevin equation to identify the relevant switching mechanisms and to derive the current-induced
switching rates. As a by-product, we also derive S-matrix expressions for the various torques entering into
the Landau-Lifshitz-Gilbert equation which generalize previous expressions in the literature to nonequilibrium
situations.
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I. INTRODUCTION

In recent years, electronic transport through nanostructures
has witnessed a shift toward molecular systems. Several
ingenious schemes for measuring transport through single
molecules have been realized and experimental control over
such systems is rapidly improving.1 A prime difference
between transport through single molecules or nanoelectrome-
chanical systems (NEMS)2 as opposed to transport through
more conventional nanostructures lies in the coupling of the
electronic degrees of freedom responsible for transport to few
well-defined collective modes of the molecule, with recent
research focusing on effects of molecular vibrations (molec-
ular nanoelectromechanics)3–5 and local magnetic moments
(molecular spintronics).6–10

The interesting property of transport setups based on
single-molecule magnets is the possibility of combining some
classical properties of macroscopic magnets with quantum
features such as quantum tunneling. Work on molecular spin-
tronics has focused on single molecule magnets such as Mn12

and transition-metal complexes. Transport experiments with
Mn12 concentrated on signatures of the magnetic excitations,
as revealed by peaks in the differential conductance,11 and
a spin-blockade mechanism.12 Research on transition-metal
complexes, based, e.g., on Co, also addresses the Kondo
effect.13 Related phenomena have been discussed in molecular
spin valves, which have been realized in setups with C60,14 and
more recently in TbPc2 setups coupled to nanotubes through
supramolecular interactions.15

In addition to their remarkable fundamental quantum trans-
port properties, single-molecule magnets are also appealing
for their potential as memory cells in spintronics.16 In this
context it is important to have reliable mechanisms for writing
and reading the stored information. Specifically, it is essential
to have protocols for manipulating and for detecting the
orientation of the magnetic moment. To this end it is convenient
to take advantage of the coupling between the spin of the
electrons, which tunnel from the electrodes, and the localized
magnetic moment of the molecule.17

Much of the existing literature, both on molecular nano-
electromechanics and molecular spintronics, assumes that the
electrons reside on the molecule for times large compared to
typical vibrational or magnetic precession periods. In this limit,
it is often appropriate to treat the dynamics of the system within
a rate or master equation in the exact eigenstate basis of the
isolated molecule,3,18 describing also spin-transfer torques out
of equilibrium.19–21 In the context of nanoelectromechanics,
there has recently been much interest in the opposite regime
of adiabatic vibrational dynamics, in which the electronic
processes are fast compared to the vibrational degrees of
freedom, e.g., in the context of certain molecular switches,22,23

NEMS near continuous mechanical instabilities,24,25 flexural
modes of suspended carbon nanotubes and graphene,26 or
the cooling and amplification of mechanical motion by the
backaction of conduction electrons.27–32

The goal of the present work is to explore the latter limit
in the context of magnetic molecules. We consider a generic
model for the magnetic molecule, which includes an easy-
axis anisotropy sandwiched between two metallic (possibly
polarized) electrodes at which a bias voltage is applied.9 We
focus on the regime where the typical time for dynamics of
the molecular magnetic moment is much larger than the dwell
time of the electrons flowing through the structure. Within this
adiabatic regime it is possible to study the coupled electronic
transport and spin dynamics within a nonequilibrium Born-
Oppenheimer approximation (NEBO) analogous to the one
adopted in NEMS in the equivalent regime.22,23 Starting
from a microscopic description, we can derive semiclassical
equations of motion for the local magnetic moment that have
the structure of generalized Landau-Lifshitz-Gilbert (LLG)
equations. The latter have been the basis for several previous
works in spintronics and nanomagnetism.33–43 We note that
in previous works describing magnetic nanoparticles, LLG
equations have been derived in a perturbative way assuming
either that the coupling between the electronic spin and the
magnetic moment of the nanoparticle is small33,35,36 and/or that
tunneling between the leads and nanoparticle is weak.33,35,39
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In contrast, our microscopic derivation relies entirely on
the nonequilibrium Born-Oppenheimer approximation which
is valid in the high-current limit as described above. As
a consequence our nonperturbative approach allows us to
compute how the parameters of the LLG equation depend
on the state of the molecular moment as well as on the applied
bias and gate voltages. We mainly focus on two important
features. First we analyze the magnetic molecule attached
to (nonmagnetic) metallic leads. In this case, switching of
the molecular moment is induced by the fluctuating torque
exerted by the current flow. In addition, we also investigate
the renormalization of the switching barrier by the average
torque caused by the charge carriers. Second, we consider
that switching is dominated by a different mechanism for
spin-polarized electrodes, namely by the spin-transfer torque
exerted by the transport current. The latter is well known
in the context of layered magnetic structures.44–46 We also
analyze the behavior of the electronic current and we identify
in this quantity the interplay between the spin fluctuations and
the signatures of coherent transport, which are typical of the
molecular devices.

This paper is organized as follows. In Sec. II, we introduce
our model of the single-molecule junction containing an
anisotropic magnetic molecule. The Landau-Lifshitz-Gilbert
equation describing the dynamics of the local moment of
the molecule is derived within the NEBO approximation in
Sec. III and related to scattering matrix theory in Sec. IV. This
Langevin equation is explored in Sec. V. Switching of the
molecular moment is discussed in Secs. VI and VII. Section VI
focuses on switching caused by fluctuations while Sec. VII
discusses situations when the switching is dominated by the
spin-transfer torque. We conclude in Sec. VIII. Some technical
details are relegated to appendices.

II. MODEL

We consider a minimal model of an anisotropic magnetic
molecule embedded into a single-molecule junction.47 We
assume that transport through the molecule is dominated by
a single molecular orbital which is coupled to left (L) and
right (R) leads at different chemical potentials. The spin ŝ of
the current-carrying electrons couples to a localized molecular
spin M̂ through exchange. Then, the full Hamiltonian

H =
∑

α=L,R

(Hα + Hdα) + Hd (1)

encompasses the Hamiltonians

Hα =
∑
kα,σ

εkα,σ c
†
kα,σ ckα,σ (2)

of the left (L) and right (R) leads, modeled as free-electron
systems (creation operators c

†
kα,σ ). We will consider the

possibility of spin-polarized leads, assuming a spin-dependent
dispersion εkα,σ . The tunneling Hamiltonian

Hdα =
∑
kα,σ

wkα
(c†kα,σ dσ + d†

σ ckα,σ ) (3)

describes the hybridization between the molecular orbital
(with creation operator d†

σ ) and the leads. The molecular

Hamiltonian is given by

Hd =
∑

σ

ε0d
†
σ dσ + ge ŝ · B + J ŝ · M̂ + U (M̂). (4)

The potential experienced by the molecular spin in the absence
of coupling to the external leads is U (M̂) = gdM̂ · B − DM̂2

z .
The uniaxial anisotropy of the molecule is parametrized
through the anisotropy parameter D, with easy-axis anisotropy
corresponding to D > 0 and easy-plane anisotropy to D < 0.
The coupling constant J denotes the strength of the exchange
interaction between the molecular spin M̂ and the electronic
spins,

ŝj = h̄

2

∑
σ,σ ′

d†
σ σ

j

σσ ′dσ ′ , (5)

where σ j (with j = x,y,z) are the Pauli matrices. For
simplicity, we assume this exchange interaction to be isotropic.
The energy of the molecular orbital ε0 can be tuned by a
gate voltage and B represents a Zeeman field acting on the
electronic and the localized spins with g factors ge and gd ,
respectively.

III. DESCRIPTION OF THE SPIN DYNAMICS

We now discuss this model in the limit of slow precession
of the magnetic moment, that is, many electrons are passing
the molecule during a single precessional period of the
molecular spin. In this limit, it is natural to approximate
the molecular spin as a classical variable whose dynamics
can be described within a nonequilibrium Born-Oppenheimer
approximation. The resulting dynamics takes the form of a
Langevin equation of the Landau-Lifshitz-Gilbert type which
we derive microscopically for our model. Specifically, the
exchange coupling between the current-carrying electrons
and the molecular moment introduces additional torques and
damping terms which enter into the Langevin equation and
which we will now discuss in detail.

A. Semiclassical equation of motion of the molecular spin

Our derivation starts from the Heisenberg equation of
motion for the molecular spin,

˙̂Mj =
∑
l,k

εjlk[J ŝl + gdBl]M̂k

+D
∑

k

εzjk[M̂zM̂k + M̂kM̂z], (6)

where εjlk is the antisymmetric Levy-Civita tensor. Within
the nonequilibrium Born-Oppenheimer approximation, we can
turn this into an equation of motion for the expectation value
M(t) = 〈M̂(t)〉 of the localized spin,

Ṁ = M × [−∂MU (M) − J s + δB] , (7)

with −∂MU (M) = −gdB + 2DMzêz. Here, M = M(t) de-
notes the molecular spin averaged over a time interval large
compared to the electronic time scales, but small compared
to the precessional dynamics of the molecular spin itself. The
corresponding time-averaged electronic spin s = s(t) can be
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expressed in terms of the electronic lesser Green’s function

G<
σσ ′(t,t ′) = i〈d†

σ ′ (t ′)dσ (t)〉 (8)

of the molecular orbital as

sj (t) = 〈ŝj 〉M(t) = − ih̄

2
tr[G<(t,t)σ j ]. (9)

It is important to note that due to the Born-Oppenheimer
approximation, the lesser Green’s function must be evaluated
for a given time dependence of the molecular spin M(t).
As a result, the average electronic spin s(t) depends on the
molecular spin at earlier times. This will be considered in more
detail in the next subsection. The instantaneous contribution
gives rise to a force acting on the molecular spin. Retardation
effects produce terms proportional to Ṁ, appearing in the
equation of motion as Gilbert damping and a change in the
gyromagnetic ratio. Additionally, fluctuations of the electron
spin give rise to a fluctuating Zeeman field δB acting on the
molecular spin.

B. Electronic Green’s function in the adiabatic limit

We now turn to evaluate the electronic lesser Green’s
function, accounting for the slowly varying molecular spin
M(t). We start by considering the corresponding retarded
Green’s function

GR
σ,σ ′ (t,t ′) = −iθ (t − t ′)〈{dσ (t),d†

σ ′(t ′)}〉. (10)

Since the electrons are noninteracting, we can obtain G< from
GR at the end of the calculation. From now on, we set h̄ = 1.
The retarded Green’s function satisfies the Dyson equation48

(−i∂t ′ − ε0)GR
σσ ′(t,t ′) −

∫
dt1

∑
σ1

GR
σσ1

(t,t1)�R
σ1σ ′(t1,t

′)

−
∑
σ1

GR
σσ1

(t,t ′)σ σ1σ ′ · b(t ′) = δ(t − t ′)δσσ ′ . (11)

Here we introduce the self-energy

�R
σ,σ ′(t,t ′) = δσσ ′

∑
α

∫
dω

2π
�R

α,σ (ω)e−iω(t−t ′) (12)

with

�R
α,σ (ω) =

∑
kα

|wkα
|2 1

ω − εkα,σ + iη
(13)

accounting for the coupling to the (possibly spin-polarized)
leads; see also Appendix A. It is convenient to introduce an
effective magnetic field experienced by the electrons given by

b(t) = 1
2 [JM(t) + geB]. (14)

Notice that even if we consider a constant external magnetic
field, the effective magnetic field is time dependent due to the
explicit time dependence of the molecular spin M = M(t).

In order to implement the Born-Oppenheimer approxima-
tion, it is convenient to rewrite the Dyson equation in the mixed
(Wigner) representation defined by

Õ(t,ω) ≡
∫

dτ eiωτO(t + τ/2,t − τ/2), (15)

for a general quantity O(t1,t2) depending on two times with
central and relative times defined as t = (t1 + t2)/2 and τ =

t1 − t2. The nonequilibrium Born-Oppenheimer approxima-
tion can now be implemented by noting that the dependence
on the central time t is slow. Thus, convolutions such
as C(t1,t2) = ∫

dt3 C1(t1,t3)C2(t3,t2) can be approximated in
Wigner representation through

C̃(t,ω) = exp

[
i

2

(
∂C̃1
ω ∂C̃2

t − ∂C̃1
t ∂C̃2

ω

)]
C̃1C̃2

� C̃1C̃2 + i

2

(
∂ωC̃1∂t C̃2 − ∂t C̃1∂ωC̃2

)
(16)

in next-to-leading order using the shorthand C̃l = C̃l(t,ω).
For our problem, to lowest order in the slow changes of M,

we then obtain for the Dyson equation

1 = GR(ω − ε0 − �R − σ · b)

− i

2
∂ωGR∂tσ · b − i

2
∂tG

R(1 − ∂ω�R), (17)

where GR = GR(t,ω) denotes the Green’s function in the
Wigner representation. In the above equation and in what
follows, the Green’s functions, as well as the self-energy, are
matrices in spin space with elements GR

σ,σ ′(t,ω) and �R
σ,σ ′(ω),

respectively. In the strictly adiabatic limit we drop the terms
proportional to derivatives with respect to the central time. To
this order we obtain

GR
0 (M,ω) = [

ω − ε0 − �R(ω) − σ · b
]−1

. (18)

In next-to-leading order in the Born-Oppenheimer approxima-
tion, we keep the time derivatives with respect to central time
to linear order. Equation (18) implies [∂tG

R
0 ]−1 = −σ · ḃ. Ac-

cordingly, by differentiating [ω − ε0 − �R(ω) − σ · b]GR
0 =

1 with respect to time and multiplying the resulting equation
with GR

0 one obtains the identity ∂tG
R
0 = GR

0 σ · ḃGR
0 . Then

the Dyson equation yields

GR � GR
0 + i

2

[
∂ωGR

0 σ · ḃGR
0 − GR

0 σ · ḃ∂ωGR
0

]
. (19)

The lesser Green’s function can now be deduced from the
relation G< = GR ⊗ �< ⊗ GA,48 where ⊗ denotes integra-
tion over internal time arguments and GA = [GR]†. The lesser
self-energy depends only on time differences,

�<
σ,σ ′(ω) = iδσ,σ ′

∑
α

fα(ω)�α,σ (ω). (20)

Here, we introduced �α,σ (ω) = −2Im[�R
α,σ (ω)] as well as the

Fermi functions fα(ω) = 1/(1 + eβα (ω−μα)) with α = L,R. We
obtain after straightforward algebra

G< � G<
0 + i

2

(
∂ωG<

0 σ · ḃGA
0 − G<

0 σ · ḃ∂ωGA
0

+ ∂ωGR
0 σ · ḃG<

0 − GR
0 σ · ḃ∂ωG<

0

)
. (21)

Here we used G<
0 = GR

0 �<GA
0 and suppressed the arguments

of the frozen Green’s functions, G
R,A,<
0 = G

R,A,<
0 (M,ω).

C. Electron spin

We can now employ this result for the electronic Green’s
function and evaluate the electron spin. Substituting Eq. (21)
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into Eq. (9), we find

J s(M) � J s0(M) + γ (M)Ṁ. (22)

The first term in (22) contains the average electron spin

s0
l (M) = − i

2

∫
dω

2π
tr[G<

0 σ l] (23)

in the strictly adiabatic limit. The correction due to retardation
effects associated with the slow dynamics of the molecular
spin are captured by the matrix γ (M),

γ lk(M) = J 2

4

∫
dω

2π
{tr[∂ωG>

0 σ kG<
0 σ l]

+ tr[∂ωGA
0 (σ kG<

0 σ l − σ lG<
0 σ k)]}, (24)

where we have integrated by parts and used the greater Green’s
function

G>
σσ ′(t,t ′) = −i〈dσ (t)d†

σ ′(t ′)〉, (25)

with the relation G> − G< = GR − GA. It is appropriate
to split this matrix into γ lk = γ lk

s + γ lk
a with the shorthand

γ lk
s,a = (γ lk ± γ kl)/2; see Eqs. (A10) and (A11). As we will

see, the symmetric part γ lk
s describes Gilbert damping of

the molecular spin, induced by the coupling to the electrons
while the antisymmetric part γ lk

a will induce a coupling
renormalization.

Due to the stochastic nature of the current flow through
the magnetic molecule (as reflected in thermal as well as shot
noise of the current), the electronic spin will also fluctuate,
giving rise to a fluctuating torque δB(t) acting on the molecular
spin. Using Wick’s theorem we obtain for the symmetrized
correlator

〈δBk(t)δBm(t ′)〉 = J 2

4
tr[σ kG>(t,t ′)σmG<(t ′,t)]s (26)

of the electron spin. In the Born-Oppenheimer approximation,
the fluctuations of the spin, as given by Eq. (26), can be
evaluated using the Green’s function G

<,>
0 to lowest order in

ḃ. Thus, the fluctuating Zeeman field δB has the symmetrized
correlator 〈δBk(t)δBl(t ′)〉 = D̃kl(M)δ(t − t ′) with

D̃kl(M) = J 2

4

∫
dω

2π
tr[σ kG>

0 σ lG<
0 ]s . (27)

Note that in the Born-Oppenheimer limit, we can neglect any
frequency dependence of this correlation function on the time
scales of the molecular spin, so that the fluctuating Zeeman
field can be taken as locally correlated in time.

D. Landau-Lifshitz-Gilbert equation

Substituting the expression for the electronic spin (22) into
the equation of motion (7) we obtain a Langevin equation of
the Landau-Lifshitz-Gilbert type,

Ṁ = M × [−∂MU − J s0 − γsṀ − γaṀ + δB]. (28)

Note that, unlike in simple versions of a Landau-Lifshitz-
Gilbert equation, the effective exchange field s0 as well as the
coefficient matrices γs and γa still depend on the molecular
spin M itself. We can simplify this equation by introducing

the vector

Ck(M) = 1

2

∑
lm

εklmγ lm
a (M). (29)

Using that the length of M is conserved, it follows that the
antisymmetric part of γ merely renormalizes the precession
frequency by an overall prefactor

α(M) = 1

1 + C · M
. (30)

This yields the simplified Landau-Lifshitz-Gilbert equation

Ṁ = αM × [−∂MU − J s0 − γsṀ + δB], (31)

which we will analyze further in the subsequent sections.
When coupled to spin-polarized leads and when a finite bias

voltage is applied, the torque can be nonconservative, yielding
the so-called spin-transfer torque.46 Also the eigenvalues of γs

can become overall negative, providing another mechanism of
energy transfer from the electrons to the localized spin.

It is interesting to compare these results with those for
the related problem of charge carriers interacting with a slow
vibrational degree of freedom in a NEMS. In both cases,
the dynamics of the slow collective degree of freedom can
be described in terms of a Langevin equation.22,23 Since the
stochastic spin dynamics is effectively two-dimensional, it
generically exhibits similar phenomena as NEMS with more
than one vibrational mode.29–31 Specifically, this includes
the nonconservative nature of the average force in general
nonequilibrium situations as well as the presence of the
antisymmetric contribution to the velocity-dependent force.
The latter Berry phase contribution49 acts, however, in different
ways in the two cases, owing to the different orders of the
Langevin equation. In the vibrational context, this term gives
rise to an effective Lorentz force, while it merely renormalizes
the precession frequency in the context of the magnetic
molecule.

IV. RELATION TO SCATTERING MATRIX THEORY

Before proceeding with analyzing the Landau-Lifshitz-
Gilbert equation (31) in more detail, we pause to provide S-
matrix expressions for the various entries into this equation. It
has already been noted in a series of works by Brataas et al.40–43

that the coefficients in the Landau-Lifshitz-Gilbert equation in
lead-ferromagnet-lead structures can be expressed in terms of
the scattering matrix of the structure, resulting in expressions
for Gilbert damping and the fluctuating torque in thermal
equilibrium and for current-induced spin-transfer torques
within linear response theory. Here we will provide S-matrix
expressions which remain valid in general out-of-equilibrium
situations and which include the exchange field and the
precession renormalization in addition to the Gilbert damping
with the only assumption that the precessional frequency of the
localized magnetic moment is slow compared to the electronic
time scales. Our discussion here closely follows recent work on
current-induced forces in nanoelectromechanical systems.31,32

For adiabatic parameter variations, the full S matrix of
mesoscopic conductors can be expressed in the Wigner repre-
sentation as S(t,ω) = 1 − 2πi(WGRW †)(t,ω). Expanding S
to linear order in the velocities Ṁ of the adiabatic variables,

115440-4



CURRENT-INDUCED SWITCHING IN TRANSPORT . . . PHYSICAL REVIEW B 85, 115440 (2012)

Moskalets and Büttiker50,51 introduced an A matrix through

S(t,ω) � S(M(t),ω) + Ṁ(t) · A(M(t),ω). (32)

For the model considered here, the frozen S matrix is readily
related to the frozen retarded Green’s function GR

0 (M,ω)
through47

S(M,ω) = 1 − 2πiWGR
0 (M,ω)W † (33)

while the A matrix is given by

Ak(M,ω) = π
J

2

[
∂ω

(
WGR

0

)
σ kGR

0 W † − WGR
0 σ k∂ω

(
GR

0 W †)].
(34)

The average electronic spin s0
l (M) can be written in

terms of the frozen S matrix (33) by expressing the lesser
Green’s function G<

0 = GR
0 �<GA

0 in terms of the self-energy
�<(ω) = iπ

∑
α fαW †�αW with �α a projector on lead α.

Using the identity 2πiW †W = (GR)−1 − (GA)−1, we then
find

J s0
k (M) = −

∑
α

∫
dω

2πi
fα Tr

(
�αS† ∂S

∂Mk

)
(35)

for the average electronic spin. Here the trace “Tr” acts in
lead-channel space.

The S-matrix expression (35) allows us to make some
general statements about the average torque acting on the
molecular spin. In particular, we can evaluate the curl of the
average torque,

∂
(
J s0

k

)
∂Ml

− ∂
(
J s0

l

)
∂Mk

= i
∑

α

∫
dε

π
fαTr

(
�α

∂S†

∂Ml

∂S

∂Mk

)
a

.

(36)

In thermal equilibrium, Eq. (36) can be turned into a trace
over a commutator of finite-dimensional matrices due to the
relations fα = f ,

∑
α �α = 1, and unitarity S†S = 1. This

implies that ∂(S†S)/∂Mk = 0 so that there is no spin-transfer
torque. In general out-of-equilibrium situations, the curl will
be nonzero, giving rise to finite spin-transfer torque.

Similar to the average spin, we can also express the variance
of the fluctuating Zeeman field (27) in terms of the frozen
S-matrix,

D̃kl(M) =
∑
αα′

∫
dω

2π
fα(1 − fα′ )

× Tr

{
�α

(
S† ∂S

∂Mk

)†
�α′S† ∂S

∂Ml

}
s

. (37)

By going to a basis in which D̃ is diagonal and using �α = �2
α ,

we find that D̃ is a positive definite matrix.
To express the velocity-dependent forces in terms of

the scattering matrix in general non-equilibrium situations,
we need to go beyond the frozen scattering matrix S and
include the A matrix introduced above. The Gilbert-damping
coefficients appearing in the Langevin equation (31) can then

be written as

γ kl
s (M) =

∑
α

∫
dω

4π
(−∂ωfα)Tr

{
�α

∂S†

∂Mk

∂S

∂Ml

}
s

+
∑

α

∫
dω

2πi
fαTr

{
�α

(
∂S†

∂Mk

Al − A
†
l

∂S

∂Mk

)}
s

.

(38)

The eigenvalues of the first line are strictly positive while
the sign of the second line is not fixed, giving rise to the
possibility of overall negative Gilbert damping. Note that
the second line is a pure nonequilibrium contribution. This
can be seen by using unitarity of S as well as S, implying50,51

AS† + SA† = (i/2)[∂MS∂ωS† − ∂ωS∂MS†]. With this prepa-
ration, it is now easy to ascertain that in equilibrium damping
and fluctuations are related by the fluctuation-dissipation
theorem, D̃kl = 2T γ kl

s .
Similarly, we express the antisymmetric part of γ kl as

γ kl
a (M) =

∑
α

∫
dω

2πi
fαTr

{
�α

(
S† ∂Ak

∂Ml

− ∂A
†
k

∂Ml

S

)}
a

,

(39)

which causes a renormalization of the precession frequency,
as discussed above.

V. MOLECULAR SWITCHES WITH AXIAL SYMMETRY

From now on we specify to the case of axial symmetry,
where both the magnetic field and the polarization of the leads
point along the anisotropy axis. In this section, we will derive
explicit expressions for the current-induced forces, including
their dependence on the molecular spin M.

We first consider the average torque which is determined
by the average electronic spin. Given that there are two basic
vectors in the problem, namely êz and M̂ = M/M , the spin
can be decomposed as

s0(M) = sM (M)M̂ + sz(M)êz + st (M)(êz × M̂). (40)

Hence, the average torque exerted on the molecular spin by
the conduction electrons is

−αM × J s0 = −αM × [sz êz + st (êz × M̂)], (41)

which is obtained by inserting Eq. (40) into the Landau-
Lifshitz-Gilbert equation (31). The first term inside the bracket
can be derived from a potential, since its curl vanishes. This
becomes more evident from the explicit expressions below
using that the M dependence of the coefficients stems from
the effective magnetic field b experienced by the electrons
and that the length of M is conserved. This contribution
modifies the precession frequency around the z axis. In
contrast, the second term on the right-hand side of Eq. (41)
has a nonvanishing curl, ∇M × [

st (êz × M̂)
] �= 0, so that st

introduces a nonconservative torque, providing the possibility
of energy exchange between the conduction electrons and the
molecule.
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Concrete expressions for these contributions to the current-
induced torque can be obtained from

sz(M) = −i

∫
dω

2π

[
G<

z (M,ω)

+G<
b (M,ω)

(
geB

2
+ Re

[
�R

s

])]
, (42)

st (M) = − iJ

M

∫
dω

2π
G<

t (M,ω), (43)

as derived by substituting Eq. (A6) into Eq. (23) and taking
into account possibly spin-polarized leads with the notation
�R

α,c(s) = [�R
α,↑ ± �R

α,↓]/2 for the self-energies.
These general expressions simplify significantly for un-

polarized leads, which corresponds to �R
α,s = 0. Indeed, one

finds that then G<
t and G<

z vanish; see Eq. (A7). This implies in
particular that the component st of the average torque vanishes.
The remaining conservative contribution sz is then found to be
sz = s−

z − s+
z with

s±
z (M) =

∑
α

�α

π�

(
arctan

[
μα − ε ± b

�/2

]
+ π

2

)
geB

2b
. (44)

Here we assume the limit of zero temperature and introduce
the shorthand ε = ε0 + Re[�c].

It is instructive to study the dependence of the average
torque on bias and gate voltage. Notice that, due to the effective
magnetic field acting on the electron spin, the electronic level
splits; see Fig. 1. The average torque is finite when just one
level, corresponding to, e.g., spin-up electrons, is occupied.
In contrast, for sufficiently high bias voltages both spin-up
and spin-down electrons participate in the transport so that no
net electron spin acts on the molecule. This is illustrated in
Fig. 2, where the average electronic spin on the molecule is
plotted as a function of the applied bias voltage eV for three
different values of the molecular level ε0 (as tunable by the
gate voltage eVg).

For Gilbert damping and the fluctuating torque, we restrict
ourselves to unpolarized leads. This choice is motivated by
the fact that switching of the molecular spin (as discussed in
the next two sections) is dominated by the average torque for
polarized leads (and thus weakly affected by higher orders
in the adiabatic expansion) and by the fluctuating force for
unpolarized leads. (We mention in passing that expressions
for Gilbert damping and fluctuating force for polarized leads
can be readily derived but are rather cumbersome.)

For unpolarized leads, we can split the Gilbert damping
tensor into one part proportional to the unit matrix and another

FIG. 1. (Color online) Illustration of the setup. The electronic
level splits due to the effective magnetic field, given by b = b(ϑ). The
number of levels in the current window depends on b, the applied bias
voltage eV = μL − μR , and the gate voltage eVg = (μL + μR)/2 −
ε. It changes from zero (eV/2 > eVg ± b) to one (eVg + b > eV/2 >

eVg − b) to two (eVg ± b > eV/2) (assuming eV,eVg > 0).

−2 · 10−3

−1.5 · 10−3

−1 · 10−3

−5 · 10−4

0

J
s z

/ω
0

0 0.2 0.4 0.6 0.8 1
eV

eVg = 0
eVg = 0.1
eVg = 0.2

FIG. 2. (Color online) Component of the average current-induced
torque in a uniaxial situation for unpolarized leads. J sz(M) is plotted
as a function of the applied bias voltage for different gate voltages eVg.
As discussed in the text, J sz changes when the number of levels in the
current window varies at Vg ± eV/2 = ±b (see also Fig. 1). The plots
are obtained at zero temperature at the potential minimum ϑ = 0 for
the values JM/2 = 0.2, � = 0.1, geB/2 = 0.002, and ge = gd . The
precession frequency in the absence of coupling to electron spin and
magnetic field is ω0 = 2DM = 0.01. All energies are measured in
units of the barrier height without magnetic field DM2.

proportional to a projector onto the z axis,

M × γsṀ = γs,1M × Ṁ + γs,2(Ṁ · êz)M × êz, (45)

where γs,1 and γs,2 are scalars. The first term in Eq. (45) tends
to (anti)align the molecular spin with the anisotropy axis while
the second modifies the precession frequency.

The coefficients γs,1 and γs,2 are calculated by inserting G<
0

and G>
0 from Eq. (A7) into Eq. (A12), resulting in

γs,1(M) =
∫

dω

8π

∑
αβ

J 2 �α�β(−∂ωfβ)∏
±[(ω − ε ± b)2 + (�/2)2]

(46)

and

γs,2(M) =
∫

dω

16π

∑
αβ

(geBJ )2 �α�β(−∂ωfβ)(ω − ε)2∏
±[(ω − ε ± b)2 + (�/2)2]

.

(47)

The damping coefficient is peaked when the number of levels
between μL and μR changes and thus vanishes at large voltages
when both levels are in the transport window. We illustrate
this dependence of γs,1 on gate and bias voltage in Fig. 3. The
prefactor α in Eq. (31) is calculated in the same way as the
damping coefficients, and the resulting expression is relegated
to the appendix; see Eq. (A13).

We close this section with the corresponding expression for
the variance of the fluctuating Zeeman field, Eq. (27), which
becomes D̃kl(M) = D̃1(M)δkl + D̃2(M)bkbl , where

D̃1(M) = J 2

2

∫
dω

2π

∑
αβ

�α�βfα(1 − fβ)∏
±[(ω − ε ± b)2 + (�/2)2]

,

D̃2(M) = J 2
∫

dω

2π

∑
αβ

�α�βfα(1 − fβ) (ω − ε)2∏
±[(ω − ε ± b)2 + (�/2)2]2

,

(48)

for unpolarized leads. As illustrated in Fig. 3, the strength of
the fluctuations changes with the number of electronic levels
in the transport window and saturates at high bias voltages
when both levels lie within.
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FIG. 3. (Color online) Damping and fluctuations as a function of the applied bias voltage. (a) The damping coefficient γs,1 is plotted for
three different gate voltages. It is peaked when the number of levels in the current region changes from zero to one to two at Vg ± eV/2 = ±b

(see also Fig. 1). (b) At these points the fluctuation kernel D̃1 increase steplike. The level broadening results from the interaction with the leads
encapsulated in �. (c) The effective temperature Teff = D̃1/(2γs,1) is shown as a function of the bias voltage. The plots are obtained at the
potential minimum ϑ = 0 with the same parameters as in Fig. 2. All energies are measured in units of the barrier height without magnetic field
DM2.

VI. FLUCTUATION-INDUCED SWITCHING OF THE
MOLECULAR MOMENT FOR UNPOLARIZED LEADS.

We now apply our results to discuss the switching dynamics
for unpolarized leads. In the absence of coupling to the
electrons the molecular spin moves in the potential U =
gdBMz − DM2

z . For sufficiently small magnetic fields, two
minima are present, corresponding to parallel and antiparallel
alignment of the spin to the magnetic field; see Fig. 4.

Assume that the molecular spin is initially aligned parallel
to the magnetic field. Due to the interaction with the electrons
the molecular spin fluctuates about this initial state, causing
spin flips at a certain rate which we calculate in this section.
Clearly, these fluctuations depend on temperature and applied
bias voltage. If the system is in thermal equilibrium, this
is a standard problem.52 Our approach allows us to extend
these standard results to out-of-equilibrium situations in the
presence of a bias voltage in addition to finite temperature. We
also demonstrate that the orientation of the molecular spin can
be read out by tracking the current through the molecule.

A. Fokker-Planck equation

Our approach is based on an equivalent Fokker-Planck
formulation of the Langevin dynamics of the molecular spin.
We first rewrite the Langevin equation (31) for unpolarized
leads. Describing the orientation of the molecular spin in
terms of a polar angle ϑ , measured relative to the applied

−2

−1.5

−1

−0.5

0

U

0 0.5 1 1.5 2 2.5 3
ϑ

ge B/2 = 0
ge B/2 = 0.002

FIG. 4. (Color online) Potential experienced by the molecular
spin in the absence of coupling to the electrons. U (ϑ) is shown for
different magnetic fields. All energies are measured in units of the
barrier height without magnetic field DM2.

magnetic field, and an azimuthal angle ϕ, and noting that
Ṁ/M = ϑ̇ êϑ + ϕ̇ sin ϑ êϕ , we find the Langevin equation

ϑ̇ = α[Mγs,1 sin ϑ ϕ̇ − δBϕ],

sin ϑ ϕ̇ = α[−∂ϑU/M − J sz sin ϑ + δBϑ

−M(γs,1 + γs,2 sin2 ϑ)ϑ̇], (49)

where the noise correlator is given in polar
coordinates by D̃ϕϕ = D̃ϑϕ = D̃1 and D̃ϑϑ = D̃1 +
[(geB/2) cos ϑ sin ϑ]2D̃2, with D̃i defined in Eq. (48).

Following standard procedures,53 we now derive the
corresponding Fokker-Planck equation for the probability
distribution P (M,t) of the magnetization vector M at time t .
In the uniaxial situation under consideration, this probability
distribution is independent of ϕ and depends on the angle ϑ

only. As outlined in Appendix B for the convenience of the
reader, we then obtain the Fokker-Planck equation

∂tP (ϑ,t) = 1

sin ϑ
∂ϑ sin ϑe−Ṽ (ϑ)∂ϑeṼ (ϑ)β̃(ϑ) P (ϑ,t). (50)

This equation has the stationary solution P (ϑ)stat ∝
exp[−Ṽ (ϑ)]/β̃. Here we have introduced

β̃(ϑ) = α2D̃1/2

1 + α2M2γs,1(γs,1 + γs,2 sin2 ϑ)
(51)

and

Ṽ (ϑ) =
∫ ϑ

dϑ ′ ∂ϑ ′U + MszJ sin ϑ ′

D̃1/(2γs,1)
. (52)

As long as the anisotropy is sufficiently large, U (ϑ) has
a minimum U1 at ϑ = ϑ1 = 0, another minimum U2 at
ϑ = ϑ2 = π , and a maximum Um at 0 < ϑ < π . We assume
that this holds also for Ṽ (ϑ) and visualize the dependence
of Ṽ (ϑ) on gate and bias voltage in Fig. 5. One clearly sees
that the difference between the values of Ṽ at the minima
and the maximum decreases with increasing bias voltage, as
one expects from the behavior of fluctuations and damping;
cf. Fig. 3.

Note that in equilibrium the ratio D̃1/(2γs,1) = T , as
dictated by the fluctuation-dissipation theorem. For zero
temperature but finite bias voltages V it is sometimes in-
structive to interpret this ratio as an effective temperature in
each potential well, Teff � D̃1/(2γs,1) (as done for instance
in Refs. 22,23,36); see Fig. 3. Generally, however, both
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FIG. 5. (Color online) Switching dynamics for unpolarized leads. (a) Ṽ is plotted for different bias and gate voltages. (b) The switching
rate 1/τ12 is plotted as a function of the applied bias voltage for different gate voltages. (c) The ratio between the switching rates 1/τ21 and
1/τ12 is shown. The plots are obtained with the same parameters as in Fig. 2. All energies are measured in units of the barrier height without
magnetic field DM2.

coefficients D̃1 and γs,1 are angle dependent and nontrivial
functions of voltage, as we have seen explicitly above.

We calculate how long the molecular spin remains on one
half of the Bloch sphere. The mean time between passing the
energy barrier τij due to the interaction with the electrons is
then found by a standard procedure.53 We consider an adjoint
equation to Eq. (50),

β̃(ϑ)

sin ϑ
eṼ (ϑ)∂ϑe−Ṽ (ϑ) sin ϑ∂ϑ τij (ϑ) = −1/2, (53)

with an absorbing boundary condition τij (ϑm) = 0 in order
to get the mean first passage time, as briefly outlined in
Appendix B. The factor 1/2 takes into account that it is equally
likely to go to ϑ ≷ ϑm at ϑ = ϑm. Solving the equation yields

τ12(ϑ) = 2
∫ ϑm

ϑ

dϑ ′ eṼ (ϑ ′)

sin ϑ ′

∫ ϑ ′

ϑ1

dϑ ′′ sin ϑ ′′

β̃(ϑ ′′)
e−Ṽ (ϑ ′′) (54)

for passing from ϑ < ϑm to ϑ > ϑm and an analogous
expression for the opposite process.

When the potential minima are well separated and the
fluctuations are small, we can give an analytical expression
for the switching rate. In this limit, the integrals in (54)
can be evaluated by saddle-point integration (see Ref. 52 for
the situation in which the coefficients do not depend on ϑ),
yielding

1

τij

� 1√
2π

sin ϑm

√
|Ṽ ′′(ϑm)|β̃(ϑi)Ṽ

′′(ϑi)e
−[Ṽ (ϑm)−Ṽ (ϑi )].

(55)

Hence, the rate depends exponentially on the difference be-
tween Ṽ evaluated at its maximum and minimum, respectively,
so that it can be tuned by varying bias voltage and gate
potential. The general behavior of 1/τij , as given by Eq. (54),
is shown in Fig. 5 for typical values as a function of gate
and bias voltages. We discussed above that the fluctuations
increase with the number of levels in the current window.
This is also reflected in the fluctuation-induced transition rates
which increase with the bias voltage accordingly.

B. Current

The current through lead α is given by the change of the
number of particles in the lead times the electronic charge,
Iα = −ie〈[H,

∑
kα,σ c

†
kα,σ ckα,σ ]〉. In the adiabatic limit this

becomes48

Iα = e

∫
dω

2π
tr
[(

GR
0 − GA

0

)
�<

α + G<
0

(
�A

α − �R
α

)]
, (56)

where �α = �α,c for unpolarized leads. Noting that IL =
−IR = I/2 and assuming symmetric coupling to the leads,
�L = �R = �/2, we obtain, by inserting the expressions
for the Green’s functions [Eqs. (A4) and (A6)] and the
self-energies [Eqs. (A1) and (20)] after straightforward
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FIG. 6. (Color online) Current-voltage characteristics. (a) The differential conductance dI/dV is peaked when the number of levels in the
current window changes at Vg ± eV/2 = ±b. (b) Obviously, the current changes when the number of level with energy between the chemical
potentials of the two leads changes. (c) The level splitting 2b(ϑ) depends on the orientation of the molecular spin. The relative difference of
the current evaluated at the two potential minima is plotted as a function of the bias voltage. [(a) and (b) are evaluated at ϑ = 0. The plots are
obtained with the same parameters as in Fig. 2 and all energies are measured in units of the barrier height without magnetic field DM2.]

115440-8



CURRENT-INDUCED SWITCHING IN TRANSPORT . . . PHYSICAL REVIEW B 85, 115440 (2012)

algebra

I = e

4π
�

∑
±

[
arctan

(
μL − ε ∓ b

�/2

)
− (L ↔ R)

]
, (57)

which is valid at zero temperature. As discussed above, the
electronic level splits due to the interaction with the effective
magnetic field b, defined in Eq. (14). When this level splitting
is larger than the level broadening �, the current increases
as the number of levels in the transport window increases; see
Fig. 1. This is reflected in peaks of the differential conductance
dI/dV as a function of gate and bias voltage. Note that
the splitting of the electronic levels and thus the number of
levels in the transport window depends on the molecular spin
orientation since b = b(ϑ). As a consequence, the current is
also a function of ϑ . In principle, this allows one to read out
the molecular switch via current measurements; see Fig. 6.

VII. SPIN-TORQUE-INDUCED SWITCHING WITH
POLARIZED LEADS

The switching mechanism discussed in the previous section
originates in fluctuations of the molecular magnetic moment,
introduced by the coupling to the itinerant electrons. In Sec. IV
we have seen that the presence of polarized leads opens the
possibility of negative Gilbert damping which could favor the
switching of the molecular spin. This mechanism strongly
depends on the details of the system, like the value of the mean
chemical potential μ and the applied bias voltage. However,
for spin-polarized leads, switching of the molecular moment
under general nonequilibrium conditions will typically be
dominated by a different mechanism which is driven by
the nonconservative (or spin-transfer) torque exerted by the
coupling to the current carrying electrons. The generic effect
of the spin-torque in the dynamics of M has been reviewed
in Ref. 46. This term appears already in leading order of the
Born-Oppenheimer approximation in which Gilbert damping
and fluctuations can be neglected.

In this section we focus on this spin-torque −J st (êz × M̂),
see Eq. (41), in the Landau-Lifshitz-Gilbert equation (31),
where st is given by Eq. (43). We analyze under which
microscopic conditions it is expected to drive switching in
our molecular setup. In the present case it is clear that it moves
the vector M along the azimuthal direction, tending to align
it along the magnetic field. Thus, given a tilted molecular
magnetic moment M precessing around the magnetic field,
for st < 0 the spin torque induces a spiral trajectory moving
M toward orbits of smaller radius around the magnetic field.
Instead, for st > 0 it induces orbits of larger radius enabling
the switching to the opposite hemisphere, with M tending to
align opposite to the external magnetic field.

In our model, the behavior of st can be rather easily analyzed
in the limit of completely polarized leads; e.g., �

↑
L = �

↓
R =

�/2. In this limit Eq. (43) simplifies to

st = − J�2

4πM

∫
dω

fL − fR∏
±[(ω − ε ± b)2 + (�/2)2]

. (58)

More generally, the sign of st is determined by the condition

sgn[st ] = sgn[(�↓
L�

↑
R − �

↑
L�

↓
R)(fL − fR)]. (59)

FIG. 7. (Color online) Sketch of the effect of polarized leads
inducing spin-torque-transfer (indicated by the magenta arrow) on the
molecular moment. Depending on the polarization and the current,
the spin-torque tends to align the molecular moment either (a) along
or (b) against the magnetic field.

Thus, when we consider a ↑-polarized left lead with �
↑
L�

↓
R >

�
↓
L�

↑
R , a current flowing from left to right, μL > μR , results

in st < 0 and thus antialignment of magnetic moment and
magnetic field. For the opposite spin polarization, the spin
torque tends to align the magnetic moment with the magnetic
field, as sketched in Fig. 7.

For a given spin polarization, inverting the direction of the
current can switch the orientation of the magnetic moment in
the same way. This is studied by solving numerically the equa-
tion of motion for the molecular spin in the strictly adiabatic
limit, hence neglecting Gilbert damping and fluctuations, in
the presence of strongly polarized leads. In Fig. 8 we show the
time evolution of the molecular spin initially slightly deviating
from the magnetic field axis for two different voltages. Clearly,
the motion of the molecular spin is determined by the direction
of the current through the molecule, showing that inverting the
bias voltage causes spin-flips in this setup.

FIG. 8. (Color online) Motion of the molecular moment in the
presence of spin-polarized leads. For negative bias voltage eV =
−0.4, the magnetic moment is driven toward the positive z axis (red
curve) while inverting the voltage eV → −eV causes a flip of the
magnetic moment (blue curve). (We consider �

↑
L = �

↓
R = 0.1, �

↓
L =

�
↑
R = 0, and eVg = 0; the other parameters are the same as in Fig. 2.)
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VIII. SUMMARY AND CONCLUSIONS

In this work we have considered an anisotropic magnetic
molecule in a single-molecule junction in which conduction
electrons couple via exchange to the localized magnetic
moment. The resulting current-induced torques have been
analyzed by means of the nonequilibrium Born-Oppenheimer
approximation, which gives rise to Langevin dynamics of
the magnetic moment, described by a generalized Landau-
Lifshitz-Gilbert equation. This approximation is valid in the
high-current limit when the precessional frequency of the
molecular spin is small compared to the electronic time
scales. Unlike previous works, our approach does not follow a
perturbative route either in the tunneling between leads and the
molecule or in the coupling between the electronic spin and
the molecular magnetic moment. Accordingly, we can render
the full dependence of the parameters of the LLG equation
on the state of the molecular moment as well as on the applied
bias and gate voltages.

The strictly adiabatic approximation causes a mean torque
exerted by the conduction electrons, while retardation effects
result in a renormalization of the precession frequency and
Gilbert damping. In addition, equilibrium and nonequilibrium
fluctuations of the current cause a fluctuating (Langevin)
torque. We have expressed these torques in terms of the elec-
tronic Green’s functions and have related them to scattering
theory, in the latter case extending earlier work to include
an applied bias voltage. We have concluded that in general
out-of-equilibrium situations the conduction electrons can
transfer energy to the localized moment by the fluctuations and,
in the presence of spin-polarized leads, via a nonconservative
(spin-transfer) torque and/or negative damping.

These mechanisms allow one to use the anisotropic mag-
netic molecule in an external magnetic field as a molecular
switch which can be read out via the backaction of the
molecular spin on the transport current. When the molecule is
attached to metallic leads in a uniaxial setup, we have turned
the Langevin equation into a Fokker-Planck equation allowing
us to calculate the switching rates between the two stable spin
orientations. Transitions between these states are driven by the
fluctuations which we have analyzed—in addition to the mean
torque, damping, and the current—as a function of the applied
gate and bias voltages and the orientation of the molecular
spin. In the presence of spin-polarized leads, the switching
dynamics is dominated by the nonconservative (spin-transfer)
part of the current-induced torque, which enables switching
between the spin orientations by reversing the direction of the
electronic current.

The above-mentioned features of the dynamics of the local
magnetic moment are also common in layered spintronic
devices. However, in the present case, the different coefficients
that govern the dynamics of the molecular magnetic moment
show a strong dependence on the bias voltage determined by
the electronic structure of the molecule (see Fig. 3). The latter
property also determines the behavior of the electronic current,
where features of the dynamics of the magnetic moment take
place in combination with coherent tunneling of molecular
systems, as signalized for instance in the current and the
differential conductance (see Fig. 6).

We have considered a generic and standard model for the
molecule which applies to a wide type of molecular systems,
provided that a sufficiently large current flows through the
molecule and that the magnetic moment is sufficiently large to
fulfill the adiabatic condition assumed in the NEBO treatment.
In particular, good candidates can be the Mn12- or Fe8-
based devices. These systems are described by microscopic
Hamiltonians of the type we considered in this work, and have
rigid magnetic cores with M = 10 and an anisotropy barrier
DM2 of the order of a few meV.9,10 Classical descriptions of
their spin dynamics have been presented for these molecules
in contact to phononic environments.54 The crucial parameters
in order to achieve the adiabatic regime in our setup should
be a good enough contact to the electrodes and a sufficiently
high applied bias voltage, leading to a short dwell time of the
electrons in the molecule. To be more specific, we estimate
for the Mn12 or Fe8 systems with a rather large magnetic
anisotropy that the Born-Oppenheimer approximation can be
applied when the current through the device exceeds ∼10 nA.
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APPENDIX A: GREEN’S FUNCTIONS, s0
l (t,M), γ l k

s (t,M),
AND NOISE CORRELATOR

We approximate the self-energy to be independent of
energy. In this wide-band limit Eq. (13) becomes

�R
α,σ (ω) � Re

(
�R

α,σ

) − πi να,σ |wα|2 (A1)

with the approximately constant density of states να,σ (ω) � νσ

and |w|2 = (|wL|2 + |wR|2)/2. We introduce the abbreviations

εσ = ε0 +
∑

α

Re
(
�R

α,σ

)
, (A2)

�σ/2 = −Im
[
�R

L,σ (ω) + �R
R,σ (ω)

] � π νσ |w|2, (A3)

and we will use the notation �R
c,s = [�R

↑ ± �R
↓ ]/2 and �c,s =∑

α �α,c(s), with �α,c(s) = (�α,↑ ± �α,↓)/2, taking into account
possibly spin-polarized leads.

From Eq. (18) we find for the frozen retarded Green’s
function

GR
0 (M,ω) = 1

ω̃2 − b̃2
[ω̃ 1 + b̃ · σ ]

= 1

2

1 + σ · b̃/b̃

ω̃ − b̃
+ 1

2

1 − σ · b̃/b̃

ω̃ + b̃
, (A4)

with ω̃ = (
ω − ε0 − �R

c

) � ω − ε + i�c/2. Here, we include
the antisymmetric part of the self-energy in the effective
magnetic field,

b̃(t) = 1
2 [JM(t) + geB] + �R

s êz. (A5)
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After some algebra we find the following expression for the
lesser Green’s function (21):

G<
0 (M,ω) = G<

I (M,ω) + G<
b (M,ω)b · σ + G<

z (M,ω)σ z

+G<
t (M,ω)σ · (êz × b), (A6)

where the coefficients are given by

G<
I (M,ω) = 1

|�(M,ω)|2
{
�<

c (ω)[|ω̃|2 + |b̃|2]

+�<
s (ω) 2

[
Re[ω̃]bz − �c�s

4

]}
,

G<
b (M,ω) = 2

|�(M,ω)|2 {�<
c (ω)Re[ω̃] + �<

s (ω)bz},

G<
z (M,ω) = 1

|�(M,ω)|2
{

− �<
c (ω)

�c�s

2

+�<
s (ω)

[
|ω̃|2 − |b̃|2 + �2

s

2

] }
,

G<
t (M,ω) = 1

|�(M,ω)|2 {�<
c (ω)�s − �<

s (ω)�c}. (A7)

We use �(M,ω) = ω̃2 − b̃2 and b̃ � b − i(�s/2)êz. Substi-
tuting the above expressions for �c,s , it can be seen that
G<

t (M,ω) = 0, for �L,σ = �R,σ , implying that this component
of the Green’s function contributes only for polarized leads.
Note that the corresponding expressions for the larger Green’s
function G>

0 (M,ω) are obtained by replacing �<
c,s by �>

c,s =
−i

∑
α[1 − fα(ω)]�α,c(s) in the expressions above.

Using the Green’s functions expressions, we find for the
mean value of the electronic spin at the molecule

s0(M) =
∫

dω

2πi
{G<

b b + G<
z êz + G<

t (êz × b)}, (A8)

resulting in Eq. (40) in the case of axial symmetry. The explicit
expression for the component parallel to M reads

sM (M) = − iJ

M

∫
dω

2π
G<

b (M,ω). (A9)

The correction due to retardation effects associated with
the slow dynamics of the molecular spin are captured by the
matrix γ lk; see Eq. (24). The symmetric part of this matrix,

γ lk
s (M) = J 2

4

∫
dω

2π
tr[σ l∂ωG>

0 σ kG<
0 ]s , (A10)

describes Gilbert damping of the molecular spin, induced by
the coupling to the electrons. The antisymmetric part of the
matrix γ is given by

γ lk
a (M) = J 2

4

∫
dω

2π
tr
[
σ l∂ω

(
GR

0 + GA
0

)
σ kG<

0

]
a
. (A11)

Considering a setup with unpolarized leads and the external
magnetic field pointing along the anisotropy axis, hence b =

(JM + geB êz) /2, Eq. (A10) becomes

γ kl
s (M) = J 2

4

∫
dω

2π

∑
αβ

�α�β(−∂ωfβ)∏
±[(ω − ε ± b)2 + (�/2)2]

δkl

+ J 2

2

∫
dω

2π

∑
αβ

�α�β(−∂ωfβ) (ω − ε)2∏
±[(ω − ε ± b)2 + (�/2)2]2

bkbl.

(A12)

This will be decomposed into a term proportional to the
unit matrix and a projector onto the z axis, as described
in Sec. V. Note that the sign of the eigenvalues of γ kl

s is
fixed, corresponding to damping in and out of equilibrium. As
described in the main text, the prefactor α in Eq. (31) is given
by α(M) = 1/ (1 + C · M), with C defined in Eq. (29). This
becomes

C(M) =
∫

dω

2π

∑
α

J 2�2 �αfα (ω − ε)∏
±[(ω − ε ± b)2 + (�/2)2]2

b,

(A13)

where we have inserted G<
0 , Eq. (A6), and the corresponding

expression for G>
0 into Eq. (A11).

APPENDIX B: FOKKER-PLANCK EQUATION

In this appendix we derive the Fokker-Planck equation from
the Langevin equation and obtain an expression for the mean
first passage time, following standard arguments.53

We note that the probability distribution for the molecular
spin is conserved for all t ,

∫
dM f (M,t) = 1. Hence, we can

write a continuity equation for the probability distribution,

∂tf (M,t) + ∂M · [
Ṁ f (M,t)

] = 0. (B1)

Inserting Eq. (31) for Ṁ we get

∂tf (M,t) = −Lf (M,t) − ∂M · [αξ (t)f (M,t)] , (B2)

where ξ (t) = M × δB and the differential operator L is
defined via its action on the function f (M,t) as

Lf = ∂M · (αM × [−∂MU − J s0 − γsṀ]f ). (B3)

From this follows the implicit solution

f (M,t) = e−tLf (M,0)

−
∫ t

0
dt ′ e−(t−t ′)L∂M · [ξ (t ′) f (M,t ′)]. (B4)

Inserting this again in Eq. (B2) and averaging over noise,
denoted by P (M,t) = 〈f (M,t)〉, yields the Fokker-Planck
equation

∂tP (M,t) = −LP (M,t) + 1
2∂M · (α2D̃) · ∂MP (M,t)

= F P (M,t), (B5)

where we use that the noise is Gaussian and delta func-
tion correlated, 〈ξk(t)ξl(t ′)〉 = D̃klδ(t − t ′), and introduce the
Fokker-Planck operator F .

We consider the distribution P (M,t) of M which have been
at M0 at time t = 0 and are inside a given volume at time t .
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The mean first passage time is then given by

τ (M0) =
∫

dt t

∫
dM

−dP (M,t)

dt
, (B6)

where − ∫
dM dP (M,t)

dt
is the distribution of first passage times

and
∫

dMP (M,t) gives the number of M which are still in
the volume of consideration at time t . The distribution of M is
P (M,t) = etF δ(M − M0) with P (M,t) = 0 when M is at the
boundary of the volume. We insert this into Eq. (B6) so that

after integration by parts

τ (M0) =
∫

dt

∫
MetF δ(M − M0) =

∫
dtetF †

1, (B7)

with the adjoint Fokker-Planck operator F †. This results in the
differential equation

F †τ (M) = −1 (B8)

for the mean first passage time with an absorbing boundary
condition.
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