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Topological superconducting phases in disordered quantum wires with strong spin-orbit coupling
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Zeeman fields can drive semiconductor quantum wires with strong spin-orbit coupling and in proximity to
s-wave superconductors into a topological phase which supports end Majorana fermions and offers an attractive
platform for realizing topological quantum information processing. Here, we investigate how potential disorder
affects the topological phase by a combination of analytical and numerical approaches. Most prominently, we
find that the robustness of the topological phase against disorder depends sensitively and nonmonotonously on
the Zeeman field applied to the wire.
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I. INTRODUCTION

Topological quantum information processing promises to
go a long way toward alleviating the problem of environ-
mental decoherence in quantum computers.1,2 In this scheme,
information is stored and processed by nonlocal qubits based
on quasiparticles with nonabelian quantum statistics.3,4 These
nonlocal qubits are topologically protected against local
perturbations. Qubit operations are based on quasiparticle
exchanges which are themselves topological in nature and
thus insensitive to small variations in the operation.

The simplest type of quasiparticles obeying nonabelian
quantum statistics is that of zero-energy Majorana fermions.5,6

Such Majorana bound states are carried by vortices of
weak-pairing superconductors with spinless p-wave pairing
symmetry, a phase which is widely expected to be realized
by the ν = 5/2 fractional quantum Hall state.7 Starting with
the seminal suggestion of Fu and Kane8 that zero-energy
Majorana fermions can in principle be engineered to exist in
hybrid structures of conventional s-wave superconductors and
topological insulators, various superconductor hybrids have
been predicted to support Majorana fermions. These hybrids
involve, e.g., standard two-dimensional electron systems with
strong spin-orbit coupling,9 metallic surface states,10 semicon-
ductor quantum wires with strong spin-orbit coupling,11,12 or
half-metallic wires and films.13–15

Realizations based on quantum wires are perhaps particu-
larly promising for realizing topological quantum information
processing since they allow for relatively detailed scenarios16

of how to manipulate (i.e., create, transport, or fuse) Majorana
fermions. At the same time, disorder is known to often
have drastic consequences for the electronic properties of
one-dimensional electron systems17 and for superconducting
pairing correlations.18 This motivates us to address the im-
portant question of how robust these proposed realizations of
Majorana fermions are against potential disorder.

The effects of disorder on topological phases which support
Majorana fermions were studied in relation to fermion zero
modes inside the vortex core in p-wave superconductors in
the presence of impurities by Volovik19 and, in the one-
dimensional case, by Motrunich et al.20 Both papers predate
the current wave of interest by almost a decade. Motrunich
et al. consider a disordered p-wave superconductor in one
dimension within a renormalization-group approach. Their
central finding is that disorder causes a sharp transition to

a nontopological phase at a critical disorder strength. More
recent work on disorder effects on Majorana fermions focuses
on the strong-disorder limit where the wire breaks up into
topological and nontopological domains.21,22

It is the central purpose of the present paper to emphasize
that the physics of disorder in proximity-coupled semiconduc-
tor wires with strong spin-orbit coupling is considerably richer.
It reduces to the model studied by Motrunich et al. (sometimes
referred to as Kitaev’s toy model)23 only in the limit of a
large Zeeman field. In contrast, we find that the semiconductor
quantum wires exhibit additional regimes, depending on the
strength of the Zeeman coupling, which display characteristic
differences in the effectiveness of disorder. Most importantly,
our results can give significant guidance to efforts to realize
Majorana fermions in the laboratory.

II. SEMICONDUCTOR WIRES

We consider a semiconductor quantum wire with strong
Rashba spin-orbit coupling u in an external Zeeman field B.
For definiteness, we take the spin-orbit field and the Zeeman
field to point along the x- and z directions, respectively.
If the wire is in proximity to an s-wave superconductor,
the corresponding Bogoliubov-de Gennes (BdG) Hamiltonian
takes the form11,12

H =
(

p2

2m
+ upσx + V (x) − μ

)
τz − Bσz + �τx. (1)

Here, p and x denote the momentum and position along
the wire and � is the proximity-induced pairing potential,
i.e., the gap in the absence of V , μ, and B. The Pauli
matrices σi (τi) operate in spin (particle-hole) space. Disorder
is modeled through a Gaussian white noise potential V (x)
with zero mean and correlator 〈V (x)V (x ′)〉 = γ δ(x − x ′).24

The disorder strength γ is related to the mean scattering time
τ0 = u/γ at μ = B = 0.

Equation (1) is written in a basis which corresponds to
the four-component Nambu operator � = [ψ↑,ψ↓,ψ

†
↓, − ψ

†
↑]

in terms of the electronic field operator ψσ (x). In this basis,
the time-reversal operator takes the form T = iσyK , where K

denotes complex conjugation. The BdG Hamiltonian Eq. (1)
obeys the symmetry {H,CT } = 0, with C = −iτy . Thus, if
|ψ〉 is an eigenspinor of H with energy E, CT |ψ〉 is an
eigenspinor of energy −E. Zero-energy Majorana fermions are
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FIG. 1. (Color online) Dispersion relations in the absence of disorder. (a) Quantum wire in the normal phase and zero Zeeman field.
(b) Quantum wire in the normal phase and finite Zeeman field B � εso, including an illustration (red arrows) of a second-order process
contributing to the effective disorder potential in the regime of intermediate Zeeman fields. (c) Quantum wire in the normal phase and strong
Zeeman field B � εso. (d) Quasiparticle excitation spectrum near (full line) and at (dashed line) the topological phase transition � = B. The
red (dashed) arrows illustrate a second-order process to the high-energy subspace near p = 0, which contributes to the random Zeeman field
in the low-energy model.

characterized by spinors satisfying CT |ψ0〉 = |ψ0〉 Majorana
modes by CT |ψp〉 = |ψ−p〉.

III. REGIMES AND EFFECTIVE LOW-ENERGY MODELS

In the absence of disorder and of the proximity-induced gap,
i.e., for � = V (x) = 0, the Hamiltonian Eq. (1) has the particle
dispersion E

(0)
p,± = p2/2m ± [(up)2 + B2]1/2. A topological

superconducting phase requires that there are only two Fermi
points [Figs. 1(a)–1(c)]. In this case, the chirality dependence
of the spin orientation induced by the Rashba coupling turns
the normal state into a helical liquid.11,12 The superconducting
phase for B < � is a conventional, nontopological s-wave
superconductor. A topological superconducting phase can
be realized when the Zeeman field is larger than �. For
strong spin-orbit coupling εso � � (with the spin-orbit energy
εso = mu2/2), it is natural to distinguish three regimes, as
follows.

A. Weak Zeeman fields (εso � B > � with B − � � �)

The gap at p = 0 is given by b = B − � in the presence of
both Zeeman field and proximity-induced superconductivity.
Thus, as long as |B − �| � �, the gap at p = 0 is much
smaller than the proximity-induced gap at the Fermi points
which is equal to �. In this case, the relevant low-energy
degrees of freedom for μ 	 0 are those with momenta p near
p = 0.12 (Note that here we take � and B to be positive.)

We can develop a low-energy model by focusing on small p
where p2/2m can be neglected relative to the spin-orbit term
and expanding about the critical point B = � at which the
p = 0 gap closes. The low-energy subspace is then spanned
by the eigenspinors 〈x|p,±〉 = (1/2

√
L)[1, ±1,1, ∓1]T eipx

of the BdG Hamiltonian, and the Hamiltonian evaluated in
this subspace takes the form

H =
(

up − v −b + w

−b + w −up + v

)
. (2)

Remarkably, all matrix elements of the disorder potential in
the low-energy subspace vanish, so that, to this order, we find
that the disorder fields v = w = 0. Note that the eigenspinors
of the low-energy subspace correspond to Majorana modes.

The leading contributions to the disorder fields v and w

are quadratic in the bare disorder potential, emerging from
virtual excitations of high-energy states shown in Fig. 1(d).

Adding the contributions from the three relevant high-energy
subspaces near p = 0 and p = ±pF (pF = 2mu), we obtain

v = V
up

u2p2 + 4�2
V −

∑
±

V
u(p ± pF )/2

u2(p ± pF )2 + �2
V, (3)

w = V
2�

u2p2 + 4�2
V +

∑
±

V
�/2

u2(p ± pF )2 + �2
V. (4)

In the low-energy limit, the random gauge field v(x) vanishes,
while w(x) is a Gaussian white noise Zeeman field with
〈w(x)〉 = γ /u and 〈w(x)w(x ′)〉 − 〈w(x)〉2 = (γ 2/2u�)δ(x −
x ′). The effective Hamiltonian Eq. (2) remains a valid
approximation for γ � γmax ∼ u�.

B. Intermediate Zeeman fields (εso � B � �)

When the Zeeman field is much larger than the proximity-
induced gap �, but still small compared to the spin-orbit
energy εso, the gap at p = 0 is of order B and thus much
larger than the gap at the Fermi points of order �. In this
case, the relevant low-energy degrees of freedom for μ 	 0
are those near the Fermi points ±pF . It is important to realize
that the spin orientation at the Fermi points is dominated by
the spin-orbit coupling so that electrons at the two Fermi
points have almost antiparallel spins. Thus, the proximity
effect is not attenuated by spin effects, while disorder-induced
backscattering is strongly suppressed.

This can be made explicit by projecting the origi-
nal Hamiltonian Eq. (1) onto the lower band of the
normal-state Hamiltonian of the clean wire. The cor-
responding electron and hole eigenspinors are |p,e〉 =
[cos(α/2), − sin(α/2),0,0]T eipx/

√
L and |p,h〉 = [0,0, −

sin(α/2), cos(α/2)]T eipx/
√

L with tan α = up/B. Evaluating
the matrix elements of the full Hamiltonian in this low-energy
subspace and linearizing the dispersion about the Fermi points,
we find a spinless p-wave superconductor:

H = veff(pλz − pF )τz + �effλyτx + Veff(x)λxτz, (5)

with Fermi momentum pF = 2mu, Fermi velocity veff = u,
and gap function �eff = �. The disorder potential has the
correlation function 〈Veff(x)Veff(x ′)〉 = γeffδ(x − x ′), corre-
sponding to the scattering time τeff = veff/γeff . The Pauli
matrices λi operate in the space of left- and right movers.
In Eq. (5), we ignore forward scattering by disorder, which is
not expected to affect the results.
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Unlike for weak Zeeman fields, the effective disorder
potential Veff(x) has a contribution Veff(x) = (B/4εso)V (x)
[such that γeff = (B/4εso)2γ ] which is linear in the bare
disorder potential. However, this contribution includes a strong
suppression by spin effects, and, for strong enough disorder
γ � γlin ∼ (Bu)(B/εso)2, the dominant contribution to Veff

remains quadratic in the bare disorder potential, involving
virtual intermediate states near p = 0 [Fig. 1(b)]. We find that
the corresponding magnitude of the effective disorder potential
is γeff = γ 2/2Bu. Note that, for intermediate Zeeman fields,
the projection to the lower sub-band remains well defined for
γ � Bu.

C. Strong Zeeman fields (B � εso � �)

The low-energy theory in this limit has been derived
previously for the clean case and can be obtained as in the
case of intermediate Zeeman fields.16 The relevant degrees
of freedom remain those in the vicinity of the Fermi points
[Fig. 1(c)], but the spin orientation is now dominated by
the Zeeman field and electrons at the two Fermi points
have essentially parallel spin. Consequently, the proximity
effect is suppressed, while backscattering is controlled directly
by the bare disorder potential V (x). Indeed, the projection
[valid for γ � Bu(B/εso)1/2] readily yields a spinless p-wave
superconductor [Eq. (5)]. Unlike in the regimes of weak and
intermediate Zeeman fields, the detailed parameters differ
for the cases of fixed chemical potential μ 	 0 and fixed
density n = 2mu/π . For fixed μ, one finds pF = (2mB)1/2,
veff = (2B/m)1/2, and �eff = 2�(εso/B)1/2. For fixed n, we
have pF = 2mu, veff = u, and �eff = 4�(εso/B). In both
cases, Veff(x) = V (x).

IV. PHASE DIAGRAM

Equation (5) is the continuum version of the lattice model
studied by Motrunich et al.20 It has a sharp transition to
a nontopological phase when �effτeff = 1/2. At the critical
disorder strength the density of states ν(ε) is singular:20,25–27

ν(ε) ∝ |(vFε/�eff) ln3(ε/�eff)|−1, (6)

whereas for weaker disorder ν(ε) has a power-law tail with an
exponent that depends on τeff :20,27

ν(ε) ∝ ε4�effτeff−3. (7)

Although both the topological and the nontopological phases
have a gapless excitation spectrum in the presence of disorder,
the topological phase distinguishes itself by the presence of
Majorana end states at an energy that is exponentially small in
the wire length L.20 Alternatively, for a wire that is coupled to
normal-metal leads, the topological phase is characterized by
a negative sign of the determinant of the reflection matrix r ,
whereas det r is positive for the nontopological phase.28

These results allow us to derive the phase diagram of the
quantum wire as function of Zeeman coupling and disorder in
some detail. Consider first the regime discussed in Sec. III C of
large Zeeman fields at fixed μ, for which 1/τeff = γ (m/2B)1/2

and �eff = 2�(εso/B)1/2. Hence, the phase boundary between
the topological and nontopological phases is at the critical
disorder strength γcr = 4�u. The critical disorder strength

decreases with the Zeeman field due to the concurring
suppression of the p-wave gap �eff when considering the case
of fixed density, where 1/τeff = γ /u and �eff = 4�(εso/B) so
that γcr = 8�u(εso/B).

In the intermediate regime presented in Sec. III B, the
contribution to Veff(x) which is linear in V (x) gives rise to an
elastic scattering rate 1/τeff = γ (B/4εso)2/u. The associated
critical disorder strength is γcr = 2u�(4εso/B)2. This result
is appropriate as long as γcr � γlin, which holds for B �
(�/εso)1/5εso. The expression for γcr decreases with the
Zeeman field, so that the critical disorder strength does not
increase with B throughout the entire range of B where
the phase boundary between topological and nontopological
phases is governed by the disorder contribution which is
linear in the bare disorder potential. In contrast, the critical
disorder strength increases with B when B � (�/εso)1/5εso,
where the quadratic contribution to Veff is dominant. The
quadratic contribution to Veff gives an elastic scattering rate
of 1/τeff = γ 2/2Bu2. This yields γcr = 2(�Bu2)1/2 for the
critical disorder strength.

In the regime of weak Zeeman fields (Sec. III A), the
low-energy model in Eq. (2) maps onto a random-hopping
chain with staggered mean hopping.25 In this model, an infinite
disorder strength is needed to tune to the critical point if a finite
gap is present in the nondisordered chain,29,30 indicating that
any finite disorder strength preserves the topological phase.
However, we still find a dependence of the phase boundary
on disorder due to a more basic effect: since the effective
disorder potential is quadratic in the bare disorder V (x), the
disorder-induced Zeeman field w(x) has not only a random
component but also a finite average 〈w(x)〉 = γ /u. Due to
this average, the phase boundary is no longer given by b = 0,
but rather determined by b − γ /u = 0 or B = � + γ /u. The
density of states shows a power-law dependence on both sides
of the topological phase transition, with

ν(ε) ∝ εα−1, with α = γ −2|4u�(bu − γ )|. (8)

Exactly at the phase transition, ν(ε) has the Dyson singularity
(6),25,29,30 with �eff = γ 2/4u2�. Of course, these conclusions
are restricted to disorder strengths smaller than the maximal
disorder strength γmax ∼ u�, where the mapping to the
Hamiltonian in Eq. (2) is valid. In fact, the matching with
the regime of intermediate Zeeman fields shows that the
topological phase is lost once disorder becomes of the order
of γmax.

We have also computed the critical disorder strength
numerically with a method based on a scattering approach
to the full model [Eq. (1)]. The method, which is explained in
detail in the Appendix, consists of computing numerically the
reflection matrix r(L) of a wire of length L. The existence of
the a topological phase (i.e., the presence of Majorana bound
states) is then signaled by the condition det[r(L)] = −1, as
opposed to det[r(L)] = 1 for a nontopological gapped phase.31

V. CONCLUSION

Our results for the critical disorder strength versus the
Zeeman field are summarized in Fig. 2, showing both the
analytical and numerical results for the phase boundary. This
phase diagram emphasizes the important implication that
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FIG. 2. (Color online) Phase diagrams of the quantum wire as
a function of Zeeman field B and disorder strength γ in a log-log
plot for (a) fixed density n and (b) fixed chemical potential including
numerical results. In (a), the long-dashed line delineates the limit of
validity of the low-energy models; at the short-dashed line, Veff (x)
changes between linear and quadratic dependence on the bare disorder
V (x). In (b), the numerics is based on calculating the determinant of
the reflection matrix for the full Hamiltonian [Eq. (1)].28 γcr,ii (dashed
line) interpolates between the linear and quadratic contributions to
γeff for intermediate Zeeman fields.

the topological superconducting phase is most stable against
disorder at the optimal Zeeman field Bopt ∼ (�/εso)1/5εso.
This is valid for fixed chemical potential [Fig. 2(b)], but most
pronounced for fixed density [Fig. 2(a)], where the critical
disorder strength γcr → 0 as B → ∞.

As discussed above, the cause of this effect is the vanishing
of the effective p-wave gap �eff in the limit B → ∞. It is
instructive to compare the large-B limit of the semiconductor
model considered here with that of a half-metallic ferromagnet,
brought into electrical contact with a superconductor with spin-
orbit coupling.14,15 In both models, charge carriers are fully
spin polarized. Yet, the induced gap �eff is independent of
the exchange field for the half metals of Refs. 14 and 15, the
reason being that �eff is set by the strength of the spin-orbit
coupling in the superconductor. Since �eff directly determines
the critical disorder strength γcr, we are thus lead to expect
that, even at fixed density, the critical disorder strength γcr for
a semiconductor wire can be made to saturate in the limit B →
∞, if the helical state in the semiconductor wire is attributed
to spin-orbit coupling in the superconductor, rather than spin-
orbit coupling intrinsic to the semiconductor.
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APPENDIX: NUMERICAL ANALYSIS OF THE
TOPOLOGICAL PHASE

In this Appendix, we describe the algorithm that allows us
to find the boundary between the normal and the topological
phase in a superconducting quantum wire with spin-orbit
interaction. The topological phase is marked by the existence

FIG. 3. Quantum wire of length L (grey shading) described by
Hamiltonian H, Eq. (A2), with unperturbed leads (white) described
by the Hamiltonian H0. The reflection matrix r(L) is found by
repeatedly concatenating scattering matrices of segments with length
δL.

of bound Majorana end states. Knowledge of the reflection
matrix r(L) of the wire (with length L) allows one to determine
whether Majorana states exist and, thus, to determine the
topological properties of the wire. Specifically, an odd number
of Majorana bound states exist precisely if det r = −1.31 The
numerical analysis thus focuses on the scattering matrix S(L)
of the wire and its reflections submatrix r(L).

The situation we consider is shown in Fig. 3. The scattering
states are chosen as the eigenstates of the Hamiltonian H0 of
a “free” wire (lead) with u = 0, � = 0, and B = 0, but with
finite chemical potential μ0:

H0 =
(

p2

2m
− μ0

)
τz. (A1)

The lead is attached to the central wire segment with nonzero
u, �, B, and chemical potential μ. The Hamiltonian of the
central segment is given by

H = H0 + δH, (A2)

with

δH = �τx + V (x)τz + upσxτz − Bσz + (μ0 − μ) τz. (A3)

Here the symbols u, V (x), �, and B are explained in the main
text. The scattering matrix of a segment of length L of the wire
has the form

S(L) =
[

t(L) r ′(L)

r(L) t ′(L)

]
, (A4)

where t , r , and t ′, r ′ are transmission and reflection matrices
for scattering states incoming from the left and from the
right, respectively. The scattering matrix of two wire segments
attached to each other, whose individual scattering matrices
are S1 and S2, is given by

S12 = S1 ⊗ S2 =
(

t12 r ′
12

r12 t ′12

)
, (A5)

where

t12 = t2(1 − r ′
1r2)−1t1, (A6)

r12 = r1 + t ′1(1 − r2r
′
1)−1r2t1, (A7)

t ′12 = t ′1(1 − r2r
′
1)−1t ′2, (A8)

r ′
12 = r ′

2 + t2(1 − r ′
1r2)−1r ′

1t
′
2. (A9)

The algorithm to find S(L) consists of repeated concatenations
of scattering matrices. The wire with length L is split into
segments of length δL, and the scattering matrices Sδ = S(δL)
of the segments are combined according to Eq. (A5). This
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method has been used previously to study disordered wires
with unconventional superconductivity33 and conductivity
scaling in graphene.34 In the limit where the segment length
δL is small (such that W ≡ Sδ − 1 deviates only slightly from
the zero matrix), the scattering matrix of a segment can be
calculated analytically in linear order in δL (see subsection
below). [Note that this approximation is not based on the
smallness of the perturbations δH but on the smallness of
δL.]

The initial condition S(0) is taken to be (open wire)

S =
(

1 0

0 1

)
. (A10)

In order to preserve unitarity to all orders, we set

Sδ → Sδ = (
1 + 1

2W
)(

1 − 1
2W

)−1
, (A11)

where W = Sδ − 1 contains the leading-in-δL contributions.

A. Scattering matrix of a small segment

To linear order in the segment length δL the scattering
matrix Sδ can be obtained analytically. The scattering states
in the leads are indexed by electron-hole character σ = ±1,
propagation direction (right-moving, left-moving) ρ = ±1,
spin in z direction (up, down) s = ±1, and energy measured
from the Fermi energy, ε. They are of the form

ψσ,ρ,s,ε = eiσρkσ,εx

√
vσ,ε

χσ,s, (A12)

where kσ,ε = √
2m(μ0 + σε) is the momentum, vσ,ε = kσ,ε/m

is the velocity, and χ is a four-component spinor in Nambu-
and spin space. To linear order in δL the contribution Sδ from
each term δH can be calculated individually. The contributions
from the deterministic terms in δH are obtained by matching
the scattering states ψσ,ρ,s,ε at the interface between the leads
and the wire to eigenfunctions of the wire segment. For the

disorder potential V (x) the contribution to Sδ is random and,
to leading order in δL, can be obtained using the first-order
Born approximation:

δrV
σσ ′,ss ′ = − i

h̄
〈ψσ ′,−,s ′,ε |V τz|ψσ,+,s,ε〉

= −i

h̄

∫ δL

0

V (x)ei(σ ′kσ ′,ε+σkσ,ε)xδs,s ′δσ,σ ′√
vσ,εvσ ′,ε

dx, (A13)

δtVσσ ′,ss ′ = − i

h̄
〈ψσ ′,+,s ′,ε |V τz|ψσ,+,s,ε〉

= −i

h̄

∫ δL

0

V (x)ei(σ ′kσ ′,ε−σkσ,ε)xδs,s ′δσ,σ ′√
vσ,εvσ ′,ε

dx, (A14)

and similarly for t ′ and r ′. From the correlator 〈V (x)V (x ′)〉 =
γ δ(x − x ′) one finds〈∣∣δrV

σσ ′,ss ′
∣∣2〉 = 〈∣∣δtVσσ ′,ss ′

∣∣2〉 = δs,s ′δσ,σ ′
δL

(h̄vF )2
γ, (A15)

where vF = vσ,ε=0 is the Fermi velocity. For each seg-
ment the contribution of V to Sδ is thus taken as a ran-
dom matrix with zero average and mean square given by
Eq. (A15).

B. Phase diagram

Since the wire has a superconducting gap the reflection part
r(L) of the scattering matrix becomes unitary in the limit of a
long wire, and for ε = 0 the determinant of r(L) approaches
either det r → +1 or det r → −1, with the latter indicating the
existence of a Majorana state. To obtain the phase diagram the
algorithm is repeated for different magnetic fields B and differ-
ent disorder strengths γ (but with a single disorder realization
for each disorder strength). From this the determinant det r(L)
is calculated and plotted as a function of B and γ . We have
verified that the phase diagram is independent of the choice
of the chemical potential μ0 in the lead. The data is shown
in Fig. 2(b) together with the theoretically predicted phase
boundaries.
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