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Large current noise in nanoelectromechanical systems close to continuous mechanical instabilities
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We investigate the current noise of nanoelectromechanical systems close to a continuous mechanical instability.
In the vicinity of the latter, the vibrational frequency of the nanomechanical system vanishes, rendering the
system very sensitive to charge fluctuations and, hence, resulting in very large (super-Poissonian) current noise.
Specifically, we consider a suspended single-electron transistor close to the Euler buckling instability. We show
that such a system exhibits an exponential enhancement of the current noise when approaching the Euler instability
which we explain in terms of telegraph noise.

DOI: 10.1103/PhysRevB.85.125441 PACS number(s): 73.63.−b, 85.85.+j, 63.22.Gh

I. INTRODUCTION

Nanoelectromechanical systems (NEMS) in which a
nanomechanical resonator is coupled to electronic degrees of
freedom1–3 through, e.g., a single-electron transistor (SET),
show spectacular effects stemming from the coupling of the
mechanical part of the device to the electronic charge. These ef-
fects arise due to the reduced size of the nanoresonator, so that
the backaction of the mechanical degree of freedom on the SET
can have significant consequences for the transport properties.
A prominent example is the low-bias current blockade that oc-
curs in the Coulomb blockade regime when the nanoresonator
is capacitively coupled to the SET.4,5 The presence of an extra
electron with charge −e < 0 on the central island forming a
quantum dot on the suspended vibrating structure induces an
electrostatic force Fe on the resonator, shifting the equilibrium
position of the latter by an amount Fe/k, with k the spring
constant of the oscillator (see Fig. 1). This induces a shift of
the gate voltage Vg ∼ F 2

e /ek seen by the SET, and, hence, a
blockade of the current through the device for bias voltages
V � F 2

e /ek. This phenomenon is the classical counterpart of
the Franck-Condon blockade in molecular devices6,7 that has
recently been observed in carbon nanotube-based resonators
for high-energy longitudinal stretching modes.8 For classical
nanoresonators, the current blockade has, to the best of our
knowledge, never been observed experimentally due to the
relatively weak electromechanical coupling Fe to the low-
energy bending modes of the suspended structure, although
a precursor of this effect has been lately reported in the
literature.9,10

It has been recently shown11,12 how one can enhance
the classical current blockade by orders of magnitude by
exploiting the well-known Euler buckling instability.13 Indeed,
the spring constant k (or equivalently, the vibrational frequency
of the fundamental bending mode ω) tends to zero when one
brings the nanoresonator to the buckling instability with the
help of a lateral compression force F (see Fig. 1). Thus,
the energy scale F 2

e /k at which the current blockade occurs

dramatically increases, rendering this phenomenon potentially
observable in future experiments.

It is the purpose of the present paper to investigate the
current noise in the vicinity of a mechanical instability, using
the Euler buckling instability as a paradigmatic model. We find
that the current noise (which contains valuable information
about the dynamics of the nanomechanical system14–20) is
strongly enhanced in the vicinity of the Euler instability.
The underlying source of noise arises from the stochastic
nature of the charge-transfer processes. These are producing
a current-induced stochastic force acting on the mechanical
degrees of freedom, consisting of current-induced (conserva-
tive and nonconservative) averages as well as a fluctuating
force.4,5,11,12,16,21–26 Hence, the deflection of the nanotube
exhibits a Langevin dynamics which, due to the backaction of
the nanoresonator on the SET, produces large super-Poissonian
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FIG. 1. (Color online) Sketch of a suspended doubly clamped
nanobeam forming a quantum dot (solid black line) connected via
tunnel barriers to source and drain electrodes held at chemical
potentials μL and μR by the bias voltage V . The lateral force F

compresses the nanobeam and induces the buckling instability. The
beam is capacitively coupled to a metallic electrode kept at a gate
voltage Vg. This induces a stochastic force Fe that attracts the beam
towards the gate electrode whenever the quantum dot is charged
(dashed red line), inducing fluctuations of the nanobeam’s deflection
and, in turn, fluctuations of the current through the device.
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current noise.5,14,16–20 This effect is particularly strong close
to the Euler buckling instability, where the nanoresonator
becomes extremely soft (k → 0).

Our theoretical approach employs a nonequilibrium Born-
Oppenheimer approximation,4,5,16,21–25 which exploits the
separation of time scales between fast electronic and slow
mechanical degrees of freedom. This leads to an effective
stochastic description of the nanoresonator in terms of a
Langevin equation. This approach becomes asymptotically
exact in the vicinity of the mechanical instability where
ω → 0.11,12,26

The paper is organized as follows: Our model and the
effective Langevin description of the nanoresonator deflection
is presented in Sec. II. In Sec. III, we briefly recall the main
results of Ref. 11 for the current-voltage characteristics of the
system that are essential for the understanding of our numerical
investigation of the current noise presented in Sec. IV. In
Sec. V, we detail the role played by thermal fluctuations
on the current noise and propose an analytical model based
on telegraph noise that reproduces most of our numerical
findings. We present in Sec. VI the role played by the full
nonequilibrium fluctuations on the noise before we conclude
in Sec. VII.

II. MODEL

The model we adopt is the same as in Ref. 11 and we
briefly recall it here for the convenience of the reader. The
setup (see Fig. 1) consists of a quantum dot embedded in a
suspended nanobeam connected via tunnel barriers to source
and drain leads. A lateral compression force F exerted on the
nanobeam brings it to the Euler buckling instability when F

approaches the critical force Fc. The gate electrode induces
an electromechanical coupling between the bending modes of
the tube and the charge state of the dot proportional to the
electrostatic force Fe. The Hamiltonian of the system reads

H = Hvib + HSET + Hc, (1)

where Hvib describes the oscillating modes of the nanobeam,
HSET the single-electron transistor, and Hc the coupling
between vibrational modes and electronic degrees of freedom.

At the Euler buckling instability (F = Fc), the frequency
of the fundamental bending mode

ω = ω0

√−δ, δ = F

Fc
− 1 (2)

vanishes,13 ω0 being the frequency of that mode for F = 0,
while all higher energy modes have a finite frequency. At
sufficiently low temperatures, we thus only consider the
fundamental bending mode and write11,12,26–30

Hvib = P 2

2m
+ mω2

2
X2 + α

4
X4 (3)

for the vibrational part of the Hamiltonian (1). Here, X is
the deflection of the tube and P is its associated canonical
momentum with effective mass m. In Eq. (3), the quartic term
proportional to α > 0 ensures the stability of the system for
F > Fc (ω2 < 0), where the beam buckles into one of the
two metastable positions at X = ±

√
−mω2/α. For F < Fc

(ω2 > 0), the beam remains flat.

We model the SET by a single-level quantum dot with or-
bital energy εd connected via tunnel barriers to left (L) and right
(R) leads held at chemical potential μL and μR, respectively.
The SET Hamiltonian reads HSET = Hdot + Hleads + Htun,
where the dot Hamiltonian Hdot = (εd − eV̄g)nd + Und(nd −
1)/2 is expressed in terms of nd = d†d, d annihilating an
electron on the dot. Here, V̄g is the (effective) applied gate
voltage. The intradot Coulomb repulsion is denoted by U

and is assumed to be the largest energy scale in the problem,
thus preventing double occupancy of the dot. The Hamiltonian
for the (spinless) electrons with energy εk and momentum k

in the two leads (annihilated by the operator cka , a = L,R)
is written as Hleads = ∑

ka(εk − μa)c†kacka . Finally, tunneling
between dot and leads is accounted for by the Hamiltonian
Htun = ∑

ka(tac
†
kad + H.c.), with ta the tunneling amplitude

between the dot and lead a. In the remainder of this paper, we
assume the temperature T to be much larger than the tunneling-
induced width � = ∑

a �a of the dot orbital (sequential
tunneling regime). This weak-coupling assumption should not
qualitatively change our results for the low-frequency current
noise, as it is the case for the I -V characteristics which is
qualitatively the same in the sequential11 and cotunneling12

regimes. Moreover, we consider for simplicity symmetric
voltage drops (μL = −μR = eV/2) and symmetric coupling
to the leads (�L = �R = �/2).

The coupling Hamiltonian between vibrational and elec-
tronic degrees of freedom entering Eq. (1),

Hc = FeXnd, (4)

arises due to the capacitive coupling between the gate electrode
and the nanobeam when the latter is charged with one extra
electron.9,10,31 Since the dot occupation nd is a stochastic
variable (taking values 0 and 1 in our model), the coupling
(4) produces a random electrostatic force with magnitude Fe

on the nanobeam (see Fig. 1).
As ω → 0 close to the buckling instability, the oscillator

becomes classical (h̄ω � kBT ) and slow compared to the elec-
tronic degrees of freedom (ω � �). This justifies a nonequilib-
rium Born-Oppenheimer approximation,11,12,16,21–26 in which
the vibrational dynamics is characterized by a Langevin
process with white noise,

d2x

dτ 2
+ [γ (x) + γe]

dx

dτ
= feff(x) + ξ (x,τ ). (5)

Here and in what follows, we use reduced units x = X/
,
p = P/mω0
 and τ = ω0t in terms of the polaron shift 
 =
Fe/mω2

0 and the relevant energy scale of the problem E0
E =

Fe
 (for more details, see Ref. 11). In Eq. (5), the effective
force acting on the nanobeam,

feff(x) = δx − α̃x3 − n0(x), (6)

with α̃ = α
4/E0
E, arises (i) from the bare vibrational Hamil-

tonian (3) and (ii) from the coupling between vibrational and
electronic degrees of freedom (4). This current-induced force
is proportional to the occupation of the dot for fixed x, which,
in the sequential tunneling regime (h̄� � kBT ), is given by

n0(x) = 1
2 [fL(x) + fR(x)] , (7)
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with

fL/R(x) =
[

exp

(
x − vg ∓ v/2

T̃

)
+ 1

]−1

(8)

the Fermi function in the left and right leads, respectively.
Here we introduced a reduced bias voltage v = eV/E0

E, gate
voltage vg = (eV̄g − εd)/E0

E, and temperature T̃ = kBT/E0
E.

The charge fluctuations on the quantum dot induce a fluctuat-
ing force ξ (x,τ ) in the Langevin equation (5), with average
〈ξ (x,τ )〉 = 0 and white-noise correlator 〈ξ (x,τ )ξ (x,τ ′)〉 =
[d(x) + 2γeT̃ ]δ(τ − τ ′). Here, the current-induced fluctuation
is given by4,11

d(x) = 2ω0

�
n0(x) [1 − n0(x)] , (9)

and the extrinsic damping constant γe accounts for the
finite quality factor Q = 1/γe of the nanoresonator. Finally,
retardation effects in the response of the resonator to the current
flow lead to a current-induced dissipative force with friction
coefficient4,11

γ (x) = −ω0

�

∂

∂x
n0(x). (10)

The Langevin equation (5) is equivalent to the Fokker-
Planck equation32

∂

∂τ
P(x,p,τ ) = LP(x,p,τ ) (11)

for the probability distribution P(x,p,τ ) that the nanobeam is
at phase-space point (x,p) at time τ . In Eq. (11), the Fokker-
Planck operator is defined as

L = −p
∂

∂x
− feff(x)

∂

∂p
+ [γ (x) + γe]

∂

∂p
p

+
[
d(x)

2
+ γeT̃

]
∂2

∂p2
. (12)

Solving the Fokker-Planck equation (11) [or equivalently the
Langevin equation (5)] gives access to both the dynamics of
the vibrational mode of the nanoresonator and the resulting
transport properties of the device, such as its I -V characteris-
tics (see Sec. III) and its noise power spectrum (see Secs. IV,
V, and VI).

III. CURRENT BLOCKADE

Due to the separation of time scales between slow vibra-
tional motion and fast electronic dynamics, the average current

I =
∫

dxdp Pst(x,p)I(x) (13)

is obtained by averaging the quasistationary current

I(x) = e�

4
[fL(x) − fR(x)] (14)

for fixed deflection x over the stationary solution Pst of the
Fokker-Planck equation (11).

The classical current blockade phenomenon4,11 can be
understood in terms of the effective potential

veff(x) = −δx2

2
+ α̃x4

4
+ x + T̃

2
ln (fL(x)fR(x)) (15)

associated to the effective force (6). The effective potential
is shown in Fig. 2 for T̃ = 0 together with the average
occupation of the dot (7) and the quasistationary current (14)
for compression forces corresponding to the beam far below
[Figs. 2(a)–2(c)] and at the Euler instability [Figs. 2(d)–2(f)].33

In both cases, the most stable minima of veff(x) correspond,
for bias voltages v smaller than the gap11

�v =

⎧⎪⎨
⎪⎩

−1/2δ, −δ 
 α̃1/3,

1/4δ, δ 
 α̃1/3,

21/3−1
α̃1/3

(
3

24/3 − δ
α̃1/3

)
, |δ| � α̃1/3,

(16)

to an average occupation n0(x) = 0 or 1, i.e., the system
is not conducting [“blocked” minima for which I(x) = 0,
cf. Figs. 2(b) and 2(e)]. For v > �v , the most stable mini-
mum corresponds to n0(x) = 1/2 and the current can flow
[“conducting” minimum corresponding to I(x) �= 0]. At the
threshold v = �v , the three minima are metastable, leading to
a current-induced instability of the system. Since for relevant
experimental parameters, α̃ � 1,9–11 the gap (16) is maximal
at the instability where δ = 0 [F = Fc, cf. Eq. (2)] and is
orders of magnitude larger than for δ = −1 (F = 0). The gaps
of Eq. (16) are obtained for gate voltages vg = vmin

g , with11

vmin
g =

⎧⎪⎨
⎪⎩

1/2δ, −δ 
 α̃1/3,

−1/4δ − √
δ/α̃, δ 
 α̃1/3,

− 1
4α̃1/3

(
3 + 2δ

α̃1/3

)
, |δ| � α̃1/3.

(17)

At finite temperatures, the effective potential (15) qualita-
tively changes (see Fig. 3): the barriers separating the minima
are lowered as one increases the temperature, leaving the
effective potential with a single minimum for large enough
temperatures. As detailed in Ref. 11, the current blockade
becomes less pronounced as the temperature increases [see
Fig. 8(a) below]. Moreover, taking into account the current-
induced fluctuations (9) and dissipation (10) in the Langevin
dynamics (5) further reduces the current blockade [see
Fig. 11(a) below].

IV. CURRENT NOISE AT THE EULER BUCKLING
INSTABILITY

We start by discussing the two contributions to the current
noise, i.e., the usual shot noise and the mechanically induced
noise. It is the latter contribution to the noise which we find to
be dramatically enhanced close to the mechanical instability.

The noise power spectrum is defined as34

S(
) = 2
∫ +∞

−∞
dtei
t 〈�Î (t0 + t)�Î (t0)〉, (18)

where �Î (t) = Î (t) − 〈Î 〉 denotes the time-dependent fluc-
tuations of the current operator. In Eq. (18), the brackets
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FIG. 2. (Color online) Zero-temperature (a),(d) average occupation of the dot for fixed x [Eq. (7)], (b),(e) quasistationary current [Eq. (14)]
and (c),(f) effective potential [Eq. (15)], (a)–(c) far below the Euler instability (−δ 
 α̃1/3) and (d)–(f) at the instability (δ = 0) for increasing
bias voltages and for a gate voltage vg = vmin

g [cf. Eq. (17)].

〈. . .〉 indicate an ensemble average or, equivalently, an average
over the initial time t0. Due to the separation of time scales
between fast electronic dynamics and slow vibrational motion
(ω � �), one can identify two additive contributions to the
noise power spectrum (18), S = Ssh + Sm.5,16,20,21 The first
one, Ssh, corresponds to the (thermal) Nyquist-Johnson and
shot noise and is discussed in Appendix A. The second
contribution to Eq. (18), the mechanically induced noise Sm

(referred to as “mechanical noise” in the sequel), is induced by
the fluctuations of the nanobeam deflection x(t). These occur
on a much longer time scale (of the order of 1/ω) than the shot
noise (the corresponding current-current correlator decaying
in that case on the short time scale 1/�). The mechanically
induced noise therefore dominates the noise power spectrum
at low frequencies, and can exceed the shot noise by orders of
magnitude.5,16,20,21

The mechanical noise reads

Sm(
) = 2
∫

dτ

ω0
ei
τ/ω0

∫
dxdpdx0dp0 �I(x)

×P(x,p,τ |x0,p0,τ0)�I(x0)Pst(x0,p0), (19)

whereP(x,p,τ |x0,p0,τ0) is the conditional probability that the
nanobeam is at phase-space point (x,p) at time τ , provided it
was at (x0,p0) at time τ0 ≡ 0. In Eq. (19), �I(x) = I(x) − I

is the quasistationary current fluctuation, with I(x) and I

given by Eqs. (14) and (13), respectively. The conditional
probability P(x,p,τ |x0,p0,τ0) can be obtained from the time-
dependent solution of the Fokker-Planck equation (11) with the
initial condition P(x,p,τ0|x0,p0,τ0) = δ(x − x0)δ(p − p0).
Equation (19) can then be re-expressed by exploiting the above
initial condition and performing the Laplace transform of the

Fokker-Planck equation (11). This procedure yields5

Sm(
) = − 4

ω0

∫
dxdp �I(x)

×
[
L2 +

(



ω0

)2 ]−1

L [�I(x)Pst(x,p)] , (20)

with L the Fokker-Planck operator defined in Eq. (12).35

In the form of Eq. (20), the mechanical noise can be
straightforwardly computed numerically, since it only requires
the knowledge of the stationary probability distribution Pst

corresponding to the Fokker-Planck equation (11), as it is the
case for the average current (13) (for details, see Ref. 5).36

Alternatively, one can solve for the time-dependent solution
x(τ ) of the Langevin equation (5) using standard techniques
for stochastic differential equations.37 The average current and
noise are then computed by performing the time averages
of the quasistationary current (14) and the current-current
correlator entering Eq. (18), respectively. We have checked
numerically that this approach yields the same results as the
ones based on the stationary solution of the Fokker-Planck
equation (11) [see Eqs. (13) and (20)]. However, although more
physically transparent, the method based on Eq. (5) requires
long simulation times as well as sampling. We thus use the
other method for all the numerical results presented in the
sequel of the paper [except in Fig. 5, where we explicitly
simulate the time-dependent deflection of the nanobeam from
the Langevin equation (5)].

In Fig. 4, we present our numerical results for the Fano fac-
tor Fm = Sm(0)/2e|I |, where the zero-frequency noise Sm(0)
and the average current I , Eqs. (20) and (13), respectively, are
computed for typical parameters as a function of the reduced
force δ. In Fig. 4, the bias and gate voltages correspond to
the apex of the Coulomb diamond [v = �v and vg = vmin

g , cf.
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FIG. 3. (Color online) For increasing temperature, (a),(d) average occupation of the dot for fixed x, (b),(e) quasistationary current, and
(c),(f) effective potential, (a)–(c) far below the Euler instability (δ = −1), and (d)–(f) at the instability (δ = 0). In the figure, v = �v , vg = vmin

g ,
and α̃ = 10−6.

Eqs. (16) and (17), respectively]. As envisioned above, there
is a dramatic increase of the mechanically induced current
noise in the vicinity of the Euler buckling instability (δ ≈ 0
in Fig. 4) as compared to the noise far away from the
instability. Moreover, the Fano factor can take, depending on
the compression force δ, super-Poissonian values (Fm > 1)
that are well above the shot-noise contribution, Fsh = 1/2 (see
Appendix A).

The results of Fig. 4 can essentially be understood in terms
of telegraph noise in the effective potential (15) (see also
Figs. 2 and 3).38 Indeed, unlike the energy gap (16) which
varies algebraically with the force δ as ∼1/|δ|, the numerical
results of Fig. 4 indicate that the noise (or Fano factor) depends
exponentially on 1/|δ| (notice the logarithmic scale in Fig. 4),
suggesting telegraph noise. As the compression force increases
toward the instability at δ = 0, the height of the barriers
separating the three metastable minima (for v = �v) grows
as the gap (16), such that the waiting time of the system in one
of these minima increases exponentially. Thus, the probability
for the system to switch to another minimum is drastically
reduced, subsequently increasing the telegraph noise. As the
height of the potential barriers near the Euler instability is
very large, scaling as 1/α̃1/3 with α̃ � 1 [see Fig. 2(f)], and
the energy gap (16) is maximal at the instability, this leads to
a current noise which is also maximal at the Euler instability.

This interpretation is confirmed by Fig. 5, which shows the
result of a simulation37 of the deflection of the nanobeam x

as a function of time (see blue lines in the figure) as obtained
from the Langevin equation (5) for the same parameters as
in Fig. 4. We also show the resulting quasistationary current
(14) as a function of time by red lines in Fig. 5. Far from the
instability [Figs. 5(a) and 5(e)], the dynamics of the nanobeam
follows qualitatively the behavior of a Brownian particle in
a harmonic potential. Indeed, for the temperature used in
Figs. 4 and 5, the effective potential (15) far from the

instability has a single minimum [see also Fig. 3(c)]. For
temperatures T̃ which are large compared to the gap (16),
the current shown in Figs. 5(a) and 5(e) switches rapidly
between values which are small as compared to the maximal
current e�/4 [cf. Fig. 3(b)]. Hence, the resulting Fano factor
is relatively small (cf. Fig. 4). As one approaches the Euler
instability from below [Fig. 5(b)] or above [Fig. 5(d)], the
dynamics of the nanobeam becomes slower. Then the behavior
of the current as a function of time starts to resemble
telegraph noise, as the effective potential starts developing
metastable minima for this value of the temperature as
compared to the energy gap (16). At the instability [Fig. 5(c)],
the dynamics of the nanobeam becomes very slow, and the
behavior of the current as a function of time is completely

10−1

100

101

102

103

104

F
m

−1 −0.5 0 0.5 1

δ

FIG. 4. (Color online) Fano factor as a function of the reduced
compression force δ [cf. Eq. (2)]. In the figure, γe = ω0/� = 10−2,
T̃ = 3, α̃ = 10−6, v = �v and vg = vmin

g . The red circles correspond
to the data points, while the dotted line serves as a guide to the eye.

125441-5
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FIG. 5. (Color online) Deflection x (in blue) and quasistationary
current I (in red) as a function of time simulated by the Langevin
equation (5). In the figure, the compression force increases from
(a) to (e): (a) δ = −1, (b) δ = −0.05, (c) δ = 0, (d) δ = 0.05, and
(e) δ = 1. The parameters used in the figure are the same as in
Fig. 4.

stochastic and uncorrelated, with long waiting times between
vanishing and maximal current. The corresponding Fano
factor is thus extremely large and super-Poissonian (Fm >

103 in Fig. 4), and much larger than far from the Euler
instability.

In order to understand the features of our main numerical
results presented in Figs. 4 and 5 in more detail, we will first
consider the role played by thermal fluctuations alone (Sec. V),
while the full nonequilibrium dynamics is investigated further
in Sec. VI.

V. THERMAL FLUCTUATIONS

In this section, we consider the fully adiabatic limit
ω0/� → 0. We neglect the current-induced fluctuations and
dissipation in the Fokker-Planck equation (11) [cf. Eqs. (9)
and (10)] and consider the role played by thermal fluctuations
alone. We start in Sec. V A with a simplified analytical model
based on standard telegraph noise. In Sec. V B we substantiate
our findings by evaluating Eq. (20) numerically.

A. Telegraph noise

We present here an analytical estimate of the noise power
spectrum. Our simplified model relies on thermally induced
telegraph noise39 and on an estimate of the escape rates based
on Kramers reaction rate theory.32,40,41

In what follows, we work in the low-temperature regime
T̃ � �v , with the gap �v given in Eq. (16). Moreover, we
focus on the case where the nanobeam is far below the
Euler instability (−δ 
 α̃1/3), as the results presented below
should stay qualitatively the same for larger compression
forces. We thus approximate the effective potential (15) by
its zero-temperature counterpart, which is shown in Fig. 2(c)
for a gate voltage vg = vmin

g [cf. Eq. (17)]. As one can see
from Fig. 2(c), the effective potential has three metastable
minima for 0 < v < 2�v: two of them are equivalent (located
symmetrically at x1 = 1/δ and x0 = 0 about the line x =
1/2δ) and correspond to a state in which the current vanishes
[see Fig. 2(b)], while the one at x1/2 = 1/2δ corresponds
to a current-carrying state. This suggests to write a rate
equation for the probabilities Pc and Pb that the system
is in a conducting or blocked state, respectively. Denoting
�in = (�x0→x1/2 + �x1→x1/2 )/2 and �out = �x1/2→x1 + �x1/2→x0

the transition rates in and out of the conducting state (�xi→xj
is

here the transition rate from the minimum located at xi to the
one at xj ), we have Ṗc = −Ṗb = −�outPc + �inPb. Following
Ref. 39, the average current and the noise power spectrum are
readily obtained from the above rate equation. They read

I = e�

4

�in

�in + �out
(21)

and

Sm(
) = e2�2

4

�in�out

�in + �out

1


2 + (�in + �out)2
, (22)

respectively. Notice that for bias voltages v 
 2�v , the
effective potential (15) has a single minimum [see Fig. 2(c)],
and the telegraph noise model presented above does not apply.
Instead, the system’s dynamics is characterized in that case by
standard Brownian noise.

As detailed in Appendix B, the transition rates entering
Eqs. (21) and (22) can be easily calculated using Kramers
theory.32,40,41 Incorporating Eq. (B2) in Eq. (21), we find for
the average current the approximate expression

I = e�

4

{
1 + 2 exp

[
�v

4T̃

(
1 − v

�v

)]}−1

, (23)
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valid for v < 2�v . Using Eqs. (22) and (B2), we find for the
zero-frequency noise42

Sm(0) = e2�2

ω0
γ −1

e
2T̃

�v

h−1

(
v

2�v

)

× exp

(
�v

2T̃

[
1 − v

�v

+ 1

2

(
v

2�v

)2 ])

×
{

1 + 2 exp

[
�v

4T̃

(
1 − v

�v

)]}−3

, (24)

where the function h(z) is defined in Eq. (B3).
At a bias voltage corresponding to the energy gap (16)

(v = �v), the results of Eqs. (23) and (24) simplify to yield
the Fano factor

Fm = 16�

3ω0
γ −1

e
T̃

�v

exp

(
�v

16T̃

)
. (25)

Although this result is based on a simplified model and despite
the fact that it does not include the full nonequilibrium dynam-
ics of the nanoresonator induced by the charge fluctuations on
the dot, it qualitatively captures our main finding depicted
in Fig. 4. Indeed, as one approaches the Euler instability
from below, the gap �v increases algebraically as ∼1/|δ| [cf.
Eq. (16)], resulting in an exponential increase of the Fano
factor.

The results of Eqs. (23)–(25) also apply for compression
forces far above the Euler instability (δ 
 α̃1/3).33 Since the
energy gap �v is, in that case, half of the gap far below
the instability [−δ 
 α̃1/3, cf. Eq. (16)], this explains the
asymmetry of the Fano factor for negative and positive δ in
Fig. 4. In the vicinity of the buckling instability (|δ| � α̃1/3),
the exponential dependence of the Fano factor as a function of
the gap (16) (which here scales with α̃ � 1 as 1/α̃1/3) should
stay qualitatively the same. This results in a Fano factor which
saturates at its maximal value at the Euler instability (cf. Fig. 4).

The results of Eqs. (23) and (24) for the average current
and the zero-frequency noise are shown in Figs. 6(a) and 6(b),
respectively. As one can see from Fig. 6(b), our analytical
results capture the following trends for the mechanical noise:
(i) it only depends on the compression force δ through the
ratio T̃ /�v , (ii) the noise is maximal close to v = �v (a
feature which has also been found in Ref. 5 in the case of fully
coherent transport) and its maximum shifts toward higher bias
voltages when one increases the temperature, and (iii) the noise
is inversely proportional to the extrinsic damping constant
(i.e., proportional to the quality factor). In Sec. V B, these
features based on our simplified telegraph-noise model will be
confirmed and discussed further in the context of numerical
calculations based on Eq. (20).

B. Numerical results

In Fig. 7, we present numerical results for the average
current [Fig. 7(a)] and the zero-frequency noise [Fig. 7(b)]
as a function of bias voltage, for a gate voltage corresponding
to the apex of the Coulomb diamond, see Eq. (17). As one
can see from the figure, the noise has qualitatively the same
behavior far from the Euler instability [|δ| 
 α̃1/3, see the thin
black lines in Fig. 7(b)] and at the instability [δ = 0, thick lines
in Fig. 7(b)]. Remarkably, the noise [as well as the current, see

0

2

4

6

γ
e
ω

0
S

m
(0

)/
e2

Γ
2

0.6 0.8 1 1.2 1.4

v/Δv

T̃ /Δv = 0.01

T̃ /Δv = 0.015

T̃ /Δv = 0.02

T̃ /Δv = 0.025

(b)

0

0.1

0.2

I
/e

Γ

(a)

FIG. 6. (Color online) (a) Current (23) and (b) zero-frequency
noise (24) as a function of bias voltage for increasing temperature as
obtained from the telegraph-noise model.

Fig. 7(a) and Ref. 11], once plotted as a function of v/�v ,
and for the same value of T̃ /�v , is (almost) quantitatively the
same for any δ far from the instability [see thin black lines
in Fig. 7(b)]. The overall behavior of the current and noise
in Fig. 7 when the system is far from the Euler instability
(see thin solid black lines in Fig. 7) can be understood in
terms of the telegraph-noise model detailed previously. Indeed,
Eq. (24) shows that for T̃ � �v , the noise is exponentially
sensitive to the ratio �v/T̃ only, thus explaining the scaling

0

2.5

5

7.5

10

ω
0
S

m
(0

)/
e2

Γ
2

0 1 2 3 4

v/Δv

δ = 0, α̃ = 10−6

δ = 0, α̃ = 10−3

δ = −1

δ = −0.1

δ = 0.1

δ = 1

(b)

(a)

0

0.1

0.2

I
/e

Γ

FIG. 7. (Color online) (a) Current and (b) zero-frequency noise
as a function of bias voltage for increasing values of the reduced
compression force δ. In the figure, vg = vmin

g , T̃ = �v/10, γe = 10−2,
ω0/� = 0 (no current-induced fluctuations), and α̃ = 10−6 for all
lines except for the thick blue dashed one, where α̃ = 10−3.
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FIG. 8. (Color online) (a) Current and (b) zero-frequency noise as
a function of bias voltage for increasing temperature T̃ = 0.03 (solid
line), 0.04 (dashed line), 0.06 (dotted line), 0.08 (dash-dotted line). In
the figure, δ = −1, vg = vmin

g , γe = 10−2, ω0/� = 0, and α̃ = 10−6.
Insets: Same as the main figure for δ = 0. In the insets, T̃ = 2 (solid
line), 2.5 (dashed line), 3 (dotted line), 3.5 (dash-dotted line).

in Fig. 7(b). In contrast, the above scaling does not apply
at the mechanical instability [see thick red and dashed blue
lines in Fig. 7(b)]. There, the noise is larger for smaller
values of the anharmonicity parameter α̃, the latter deter-
mining the strength of the quartic correction in the effective
potential (15).

In Fig. 8, we present the temperature dependence of
both the current and the zero-frequency noise far below the
Euler instability [Figs. 8(a) and 8(b), respectively] and at
the instability (see insets in Fig. 8). As one can see from the
figure, the behavior of these two quantities is qualitatively the
same far from and at the buckling instability. As temperature
increases, the current blockade becomes less pronounced [see
Fig. 8(a)] as the system can explore more phase space due to
thermal fluctuations (for more details, see Ref. 11). Moreover,
the maximum of the zero-frequency noise decreases with
temperature and gets shifted to larger values of the bias
voltage [see Fig. 8(b)], a phenomenon which is captured
by our analytical estimate of the noise in Sec. V A (see
Fig. 6). As temperature increases, the probability to jump
out of one minimum of the effective potential (cf. Fig. 2)
increases exponentially, such that the associated telegraph
noise decreases.

In Fig. 9, we show numerical results for the zero-frequency
noise for various values of the extrinsic damping constant
γe = 1/Q (or inverse quality factor) far below the instability
(Fig. 9) and at the Euler instability (inset in Fig. 9). As one
can see from the main figure, the mechanically induced noise
scales almost perfectly as Sm(0) ∼ γ −1

e for compression forces
far below the instability. This is characteristic of telegraph
noise in the weak friction limit,40,41 where the system’s energy
varies only slowly with time [cf. Appendix B and Eq. (24)].

0
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FIG. 9. (Color online) Zero-frequency noise as a function of
bias voltage for increasing values of the extrinsic damping constant
(or inverse quality factor) γe. In the figure, δ = −1, vg = vmin

g ,
T̃ = �v/10, ω0/� = 0, and α̃ = 10−6. Inset: Same as the main figure
for δ = 0.

Interestingly, in the case of molecular devices, the noise is
also much larger for unequilibrated (high-Q) vibrons.6,7 At
the instability (see the inset in Fig. 9), the scaling with γe is
only approximate.43

We conclude this section by computing the frequency
dependence of the mechanical noise (20) far below (Fig. 10)
and at the Euler instability (inset in Fig. 10). Far from the
instability, the frequency dependence of the noise shows a 1/f 2

dependence, typical of telegraph noise [cf. Eq. (22)]. Notice
that the width of the Lorentzian shape of Sm(
) depends on
the bias voltage through the transition rates for the system to
enter or leave the conducting minimum corresponding to an
average occupation of the dot of 1/2, see Eqs. (22) and (B2).
At the Euler buckling instability, Sm(
) also follows a 1/f 2

behavior for 
 � ω0, although additional structures appear
for larger frequencies and for certain bias voltages.44
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FIG. 10. (Color online) Frequency dependence of the mechanical
noise for various values of the bias voltage. In the figure, δ = −1,
vg = vmin

g , T̃ = �v/10, α̃ = 10−6, γe = 10−2, and ω0/� = 0. Inset:
Same as the main figure for δ = 0.

125441-8



LARGE CURRENT NOISE IN NANOELECTROMECHANICAL . . . PHYSICAL REVIEW B 85, 125441 (2012)

0

2.5

5

7.5

10

ω
0
S

m
(0

)/
e2

Γ
2

0 1 2 3 4

v/Δv

ω0/Γ = 0

ω0/Γ = 0.005

ω0/Γ = 0.05

ω0/Γ = 0.5

(b)

0

1

2

0 1 2 3 4

0

0.1

0.2

I
/e

Γ

(a)

0

0.25

0 1 2 3 4

FIG. 11. (Color online) (a) Current and (b) zero-frequency noise
as a function of bias voltage for increasing values of the adiabaticity
parameter ω0/�. In the figure, δ = 0, vg = vmin

g , γe = 10−2, T̃ /�v =
0.1 and α̃ = 10−6. Inset: Same as the main figure with δ = −1.

VI. NONEQUILIBRIUM FLUCTUATIONS

We now investigate the mechanical noise in the presence
of the current-induced fluctuations and dissipation, Eqs. (9)
and (10). Our numerical results for the current and the
zero-frequency noise are shown in Figs. 11(a) and 11(b),
respectively, when the nanobeam is at the Euler instability (the
insets in Fig. 11 consider the case δ = −1). As one can see
from Fig. 11, the effect of an increasing adiabaticity parameter
ω0/�, which controls the strength of the current-induced
fluctuations (9) and dissipation (10), is qualitatively similar
to the effect of an increasing temperature (cf. Fig. 8). Indeed,
the overall noise level is reduced and the maximum of the
noise is shifted toward larger bias voltages for increasing
ω0/� [see Fig. 11(b)]. Moreover, the current blockade gets
less pronounced for increasing ω0/� [see Fig. 11(a)].

The results of Fig. 11 can be qualitatively understood by
defining an effective temperature11,12

T̃eff = 〈d〉/2 + γeT̃

〈γ 〉 + γe
(26)

in analogy with the fluctuation-dissipation theorem.32 Here,
〈d〉 and 〈γ 〉 are the averages over phase space of the
current-induced fluctuations and dissipation, Eqs. (9) and (10),
respectively. As shown in Ref. 11, the effective temperature
(26) is approximately given by T̃eff � T̃ + ω0/�

4γe
�(v − �v),

with �(z) the Heaviside step function. This explains why both
the current and the zero-frequency noise are quite insensitive
to the ratio ω0/� for v < �v and are similar to the case
ω0/� = 0, i.e., the fully adiabatic limit. On the contrary, for
v > �v , the effective temperature increases with increasing
ω0/�, explaining the similarity of the behavior of the current
and noise in Figs. 11 and 8.

We conclude this section by noticing that we have nu-
merically checked that the frequency dependence of the
noise power spectrum also follows a 1/f 2 behavior when
one takes into account current-induced fluctuations, similar
to Fig. 10. This confirms that the noise is dominated by a
telegraph noise at low-enough temperatures even in presence
of nonequilibrium fluctuations.

VII. CONCLUSION

We have investigated the current noise in nanoelectrome-
chanical systems close to a continuous mechanical instability.
Specifically, we have considered the paradigmatic Euler
buckling instability in suspended single-electron transistors
which are capacitively coupled to a gate electrode. We have
predicted a drastic enhancement of the current noise when
the nanobeam supporting the quantum dot is brought to the
Euler instability, resulting in very large Fano factors that are
well above the Poisson limit. This exponential enhancement
at the buckling instability is directly related to the (algebraic)
enhancement of the current blockade predicted in Ref. 11.
We developed a rather detailed picture of the underlying
physics in terms of a telegraph-noise model. While such large
Fano factors may make observation of the low-bias current
blockade more challenging, the large noise levels predicted in
this work would serve also as a clear experimental signature
of the interplay between electronic and mechanical degrees
of freedom in NEMS (e.g., carbon nanotubes45) close to
continuous mechanical instabilities.
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APPENDIX A: SHOT NOISE

In this Appendix, we briefly comment on how the shot-noise
properties of the setup considered in this paper (see Fig. 1)
are influenced by the coupling (4) between the charge on the
quantum dot and the mechanical degree of freedom.

Within the adiabatic approach presented in Sec. II, the shot
noise reads

Ssh(
) =
∫

dxdp Pst(x,p)Ssh(
,x), (A1)

where Ssh(
,x) is the quasistationary shot noise for fixed
position x. Its zero-frequency limit (
 � �)34 reads in the
sequential-tunneling regime (h̄� � kBT )

Ssh(0,x) = e2�

4
[fL(x) + fR(x)] [2 − fL(x) − fR(x)] ,

(A2)

where fL/R(x) are the Fermi factors defined in Eq. (8).
In the strictly adiabatic limit ω0/� → 0, the current-

induced fluctuation and damping coefficients are both vanish-
ing [see Eqs. (9) and (10)], such that the stationary probability
distribution function corresponding to the Fokker-Planck
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vgvg

vv

(a) (b)

FIG. 12. (Color online) Zero-frequency shot noise as a function
of bias v and gate voltage vg (a) for vanishing compression force
F = 0 and (b) at the Euler buckling instability where F = Fc. The
parameters used in the figure are T̃ = 10, α̃ = 10−6, ω0/� = 10−2,
and γe = 1/Q = 10−2. Color scale: white and red (light gray) regions
correspond to Ssh(0) = 0 and e2�/4, respectively.

equation (11) is a Boltzmann distribution at temperature T̃ .
Assuming zero temperature, the (zero-frequency) shot noise
(A1) reduces to Ssh(0) = Ssh(0,xm), with xm the global
minimum of the effective potential (15).11 Thus, the shot
noise observes the same behavior as the mean-field current
discussed in Ref. 11: In the v-vg plane, the shot noise has the
same structure as the Coulomb diamonds delimited by slopes
v ∼ ±2vg, the apex of these diamonds being given by Eqs. (16)
and (17). The zero-frequency shot noise thus takes the value
Ssh(0) = e2�/4 = e|I | in the conducting regions of the v-vg

plane, with a corresponding Fano factor Fsh = Ssh(0)/2e|I |
of 1/2, typical for a single-level quantum dot symmetrically
coupled to source and drain leads in the sequential-tunneling
regime.34 The behavior of the mean-field zero-frequency
shot noise as a function of the reduced compression force
δ can thus readily be deduced from the behavior of the
mean-field current shown in Fig. 4 of Ref. 11 (see also Fig. 2
in Ref. 12).

Including thermal as well as current-induced fluctuations
by solving for the stationary solution of the Fokker-Planck

equation (11) numerically and computing the shot noise with
the help of Eq. (A1) leads to qualitatively the same effects as
for the average current. This is exemplified in Fig. 12, where
fluctuations lead to a softening of the borders in the v-vg plane
delimiting the regions with a finite shot noise Ssh � e2�/4.

APPENDIX B: TRANSITION RATES

The transition rates �in and �out entering our ap-
proximate expressions for the average current (21) and
the noise power spectrum (22) can be calculated using
Kramers reaction rate theory.32,40,41 In the weak damping
regime, which is the experimentally relevant one for carbon
nanotube-based resonators that can present very high quality
factors,9,10 the escape rate from the minimum located at xi is
given by

kxi
= γe

ω0

√
v′′

eff(xi)

2πT̃
S0(vb,i) exp

(
−vb,i

T̃

)
, (B1)

where S0(vb,i) is the abbreviated action at the barrier top, whose
energy, seen from xi , is denoted by vb,i . Notice that Eq. (B1)
is valid as long as T̃ � vb,i and in the weak damping regime,
i.e., γeS0(vb,i) � T̃ .41 With Eq. (B1), and taking into account
the probability that the system thermalizes in the well it jumps
to,41 we find for the transition rates

�in =γeω0
�v

4T̃
h

(
v

2�v

)
exp

(
− �v

4T̃

[
1 − v

2�v

]2 )
, (B2a)

�out =γeω0
�v

2T̃
h

(
v

2�v

)
exp

(
− �v

4T̃

[
v

2�v

]2 )
, (B2b)

with

h(z) = z2(1 − z)2

z2 + 2(1 − z)2
. (B3)
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14T. Novotný, A. Donarini, C. Flindt, and A.-P. Jauho, Phys. Rev.

Lett. 92, 248302 (2004).
15F. Pistolesi, Phys. Rev. B 69, 245409 (2004).
16Y. M. Blanter, O. Usmani, and Y. V. Nazarov,

Phys. Rev. Lett. 93, 136802 (2004); 94, 049904(E)
(2005).

17A. D. Armour, Phys. Rev. B 70, 165315 (2004).
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