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Ground state energy of an interacting electron system in the background of two
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Motivated by our earlier work, we show in this paper rigorously that the ground state energy
and degeneracy of an infinitely extended system of interacting electrons in the background of a
homogeneous magnetic field and two separated magnetic strings of opposite strength is the same
as for the system without strings. By using symmetry considerations we obtain further that the
energy spectrum does not depend on the string separation distance for strictly positive distances.
As a side effect of our considerations, we obtain a virial theorem for the two string system in the
case of a homogeneous interaction potential which has the same form as the virial theorem without
the strings.

PACS numbers: 71.10.Pm, 61.72.Lk, 03.65.Vf, 73.43.-f

I. INTRODUCTION

Since the discovery of the Aharonov-Bohm1 effect there is a growing interest in quantum mechanical systems in the
presence of a finite number of magnetic strings. Due to the localization of the magnetic field of a string these systems
are rather quantum mechanical objects than classical ones. The magnetic strings affect the energy spectrum and the
electronic wavefunctions due to the extension of the wavefunctions which is governed by the uncertainty principle. In
this paper we consider an infinitely extended system of two dimensional interacting electrons under the influence of
a homogeneous magnetic field B and two magnetic strings of opposite strength separated by a distance d. We will
show that the spectrum of the electron system does not depend on d for d > 0. Furthermore, we will show that the
ground state energy and the degeneracy of the electron system are the same with and without the two strings5.

We have two motivations to consider this two string system. The first motivation comes from the observation2,3 that
the Green’s function of Chern-Simons theories for fractional quantum Hall systems in the commonly used Coulomb
gauge vanishes exponentially with an exponent proportional to the logarithm of the area of the system. We have
analyzed in Ref. 4 the physically better motivated Chern-Simons Green’s function in the temporal gauge. The Green’s
function is divergent to lowest order perturbation theory at zero temperature. In contrast to this we have shown in
Ref. 4 non-perturbatively that in the case of the validity of the two string spectral properties mentioned above we
obtain a finite Green’s function in the temporal gauge. It was shown that for non-interacting electrons the ground
state energy is the same with and without the two strings. Furthermore, we calculated by an explicit construction of
the ground state wavefunctions the interaction free Chern-Simons Green’s function in the temporal gauge. At last,
we gave two non-rigorous physical arguments that the interacting electron system should also have the same ground
state energy with and without the two strings. This will be shown rigorously in this paper.

The second motivation for this paper comes from the observation made in Ref. 6 that in the continuum limit of a
tight binding model, the force of a screw dislocation on the electrons can be described as a magnetic string located at
the core of the dislocation. This force is caused by the distorted topology of the real space7,8. In this approximation
the crystal lattice is completely lost. This model was refined recently9,10 by taking into account also the distance
dependence of the transfer matrix of the tight binding model in the continuum limit. In the context of dislocations
the interaction energy of two opposite screw dislocations is an interesting quantity. This energy was first calculated
using elasticity theory11. Recently, it became possible to carry out ab initio calculations on parallel computers to
calculate the interaction energy of two opposite dislocations for special crystals which take also the electron system
into account (e.g.12). These calculations neglect the interaction potential between the electrons. Our analysis will
thus also be useful in the field of dislocations in solids.

The strategy of the proof that the ground state energy is the same with and without the two strings is as follows:
In section II we show by symmetry considerations that the energy spectrum of the two string system does not depend
on the string separation for d strictly positive. This is done by calculating the derivate of the energy function with
respect to the string separation d. By using the space inversion symmetry of the two string system we are able to
express this derivate as a function which depends on the asymptotics of the wavefunction at the two strings. This
will be shown in subsection A of section II. In subsection B we go further by rewriting this function as a differential
of the energy with respect to the magnetic field and the interaction strength. Thus, we obtain a differential equation
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for the energy function. By using the space inversion symmetry we obtain from this differential equation that the
energy spectrum does not depend on the string separation d. In section III we show that the ground state energy
is continuous at string separation zero. The technical details of the proof are deferred to appendix A. By using the
results of section II and section III we obtain in section IV that the ground state energy and degeneracy is the same
for the system with or without the two strings. We give a conclusion in section V.

II. THE SEPARATION DISTANCE INDEPENDENCE OF THE ENERGY SPECTRUM

In order to show the spectral properties mentioned above for the infinite system we consider in this paper a high
symmetric finite system with zero boundary conditions. The boundary should have an inversion symmetry. The two
strings are arranged in order to ensure that the inversion symmetry is indeed conserved. In this paper we show the
spectral properties for this system. We loose the boundary dependence when carrying out the limit to an infinite
system size.

The Hamiltonian of N electrons in the background of a homogeneous magnetic field ~B = −B~ez (B > 0) and two
magnetic strings of opposite strength ±φ separated by d is given by

Hss(φ, d) =

N
∑

i

1

2m

(

− i~∇i + ~A(~ri) + φ~f(~ri + d~ex/2)− φ~f(~ri − d~ex/2)

)2

+
α

2

∑

i6=j

V ee(~ri − ~rj) , (1)

where the convention ~ = 1, c = 1 and e = 1 has been used. ~A(~r) is the vector potential ~A = ~B × ~r/2. The function
~f(~r) represents the vector potential of a magnetic string with unit flux quantum and is given by ~f(~r) = ~ez × ~r/r2.
V ee(~r) is a potential function. In the following, we restrict us at first on a homogeneous potential functions of scaling
dimension γ ∈ R, i.e. V ee(a~r) = |a|−γV ee(~r). In the case of the Coloumb interaction we have γ = 1. α is the coupling
constant of the interaction potential. In the following derivations we consider only systems with string strength
0 ≤ φ < 1. By using the fact that the Hamiltonian (1) with string strength φ is unitary equivalent to the Hamiltonian
with strength φ + z, z ∈ Z we immediately obtain a generalization of all results deduced in this paper to arbitrary φ.
The transformation between both systems is given by a phase transformation.

Next, we have to determine the domain of the Hamiltonian Hss (1), which can be done in two ways. We restrict
ourselves to a short outline due to lack of space. A much more detailed discussion can be found in the literature cited
below.

First, one can determine the self-adjoint domains of Hss by a mathematical extension formalism13. There are many
different self-adjoint extensions of Hss. Which of these extensions has to be used, depends on the particular physical
system14. For example, an additional point force such as a Zeeman term at the origin of the string can change the
extension that has to be used.

In this paper, we pursue a more physical way of determining the domain of (1). It consists of a regularization of
the magnetic strings to a tube of finite width. This yields a Hamiltonian with finite regular potentials for which the
self-adjoint domain of the Hamiltonian is well known. After determining the eigenvalues and eigenfunctions of this
regularized Hamiltonian, one can carry out the limit of tube width zero. This was done first for the one string system
by Aharonov and Bohm1 and for much more general regularizations by Hagen in Ref. 15. Similar considerations for
the two string system were outlined by the author4 and can be extended easily to the many particle (interacting)
case. We obtain that the physical domain D[Hφ,d] of the Hamiltonian Hss consists of wavefunctions with nodes at
the positions of the two strings

D[Hφ,d] := {Ψ(~r) | Ψ(~r) is square integrable and Ψ(−d~ex/2) = Ψ(d~ex/2) = 0} . (2)

It is then easily seen by carrying out a partial integration that the Hamilton operator (1) is symmetric on this domain.
Next, we will determine the asymptotics of the eigenfunctions of Hss at the position of the two strings. Without

loss of generality we determine the asymptotics for ~r1 → ∓d~ex/2. We now seek a solution of the Schrödinger equation
(1) of the asymptotic form

Ψ(r) =
1√
2π

f±
p (|~r±1 |;~r2, .., ~rN )eipϕ± (3)

where ~r±1 := ~r1 ∓ d~ex/2 using cylindrical polar coordinates. f±
p is the asymptotic wave function for ~r1 → ∓d~ex/2.

Then one gets for the eigenvalue equation in polar coordinates at ~r1 ≈ ∓d~ex/2

− 1

2m

(

∂2
|~r±

1 |
+

1

|~r±1 |∂|~r±

1 | −
(p ∓ φ)2

|~r±1 |2
)

f±
p (|~r±1 |;~r2, .., ~rN )
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+
∑

p′

(

Mp,p′(|~r±1 |)fp′(|~r±1 |) + Dp,p′(|~r±1 |)∂|~r±

1 |

)

f±
p′ (|~r±1 |;~r2, .., ~rN ) = E f±

p (|~r±1 |;~r2, .., ~rN ) . (4)

Mp,p′ is a multiplication operator which scales as O(1/|~r±1 |) for |~r±1 | → 0 or a differential operator with respect to the
coordinates ~r2, .., ~rN . Similarly Dp,p′ is a multiplication operator which scales as O(|~r±1 |0). Both of these operators
reduce the scaling power of the function f±

p at most by one. The asymptotic eigenvalue equation (3) and the restriction
on the wavefunction (2) then immediately leads to

f±
p = v±p (~r2, .., ~rN )

(

δp,0|~r±1 |φ + δp,±1|~r±1 |1−φ
)

+ O(|~r±1 |) . (5)

for d > 0. Here v±p is a finite function of ~r2, .., ~rN 6= ±~d/2. We see from (5) that the eigenfunctions have not to be
continuous in general at d = 0 for 0 < φ < 1. The same holds also for the eigenvalues.

In the following, we denote by Ψn
φ,d the normalized eigenstates with energies En(φ, d) labelled by n. With the help

of the current operator ~̂Jφ,d(~r) =
∑

i δ(~r − ~ri)(−i~∇i + ~A(~ri) + φ~f(~r−i ) − φ~f(~r+
i ))/m (the physical current being the

real part of the expectation value of this current operator) we get

∂ξE
n =

∫

d2r(∂ξ
~Fφ,d(~r))〈 ~̂J(~r)〉nφ,d + Sn

ξ (6)

with

~Fφ,d(~r) =
φ

m

(

~f(~r−) − ~f(~r+)
)

(7)

and

Sn
ξ (φ) =

∑

σ∈{±}

N
∑

i=1

∫

d2r1..d
2ri−1d

2ri+1..d
2rN







∫

S
σ~d/2

d~oi

(

(~∇iΨ
n
φ,d)

∗∂ξΨ
n
φ,d − (Ψn

φ,d)
∗~∇i∂ξΨ

n
φ,d

)






(8)

where ξ equals d or φ, respectively. Here, we denoted 〈Ψn
φ,d| ~̂Jφ,d(~r)|Ψn

φ,d〉 by 〈 ~̂J(~r)〉nφ,d. The integration contour of

the surface integral
∫

S
σ ~d/2

d~oi is an infinitesimally small circle around the string position ~ri = σd~ex/2. With the help

of the asymptotics (5) of the eigenfunctions, we can show easily that Sn
φ is zero. This is not the case for Sn

d . The

reason is that the domain (2) of the Hamiltonian (1) changes for different string positions, i.e. the derivation of the
eigenfunction Ψn

φ,d with respect to d can be divergent at the string position and thus is not in the domain of the

Hamiltonian (1). This results in surface terms Sn
d . With the help of the definition of the restricted overlap function

On(φ) =
∑

σ∈±

σ

∫

d2r2 . . . d2rN (vσ,n
0 (~r2, ., ~rN ))∗vσ,n

σ1 (~r2, ., ~rN ) (9)

we get for Sn
d by using (1)

Sn
d (φ) = N

π

m
φ

((

φ

2
− 1

)

On(φ) +

(

φ − 1

2

)

(On(φ))∗
)

. (10)

This is a term which is in general not zero.
One can interpret formula (6) as the energy variation of the electron system caused by an induced electric field

originating from a variation of the magnetic string field. The first term in (6) originates from the force of the induced
electric field on the electrons outside the strings and the last term from the force inside the magnetic strings. This
is an astonishing result because from (5) we see that the electron density at the positions of the magnetic strings is
zero. Nevertheless, one can have a finite current density at the positions of the strings resulting in this additional
term. We should mention that this additional term was erroneously omitted in4.

A. Space inversion symmetry of the system

In the following, we will show by using the space inversion symmetry of the two string system that the energy
spectrum does not depend on the string distance d for d > 0. To achieve this result we will first express ∂dE

n(φ, d) in
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(6) as a pure surface term. Due to the space inversion symmetry, we have the following relation for the eigenfunctions
of Hss

Ψn
1−φ,d(~r1, .., ~rN ) (11)

= Ψn
φ,d(−~r1, ..,−~rN )e−i

∑

i arg[~r−

i ]e+i
∑

i arg[~r+
i ] .

Here arg[~r] is the angle between ~r and the x axis. The wavefunction Ψn
1−φ,d(~r1, .., ~rN ) is an eigenfunction of Hss with

string strength 1 − φ, i.e.

En(φ, d) = En(1 − φ, d) . (12)

Thus we denote the related states (11) by the same label n. The current expectation value is given by

〈 ~̂J(~r)〉n1−φ,d = −〈 ~̂J(−~r)〉nφ,d . (13)

In summary, due to the different signs of the strengths of the two strings we obtain an inversion symmetry of the
energy spectrum with respect to the strength φ = 0.5.

By using the symmetry of the wave functions (11) in order to get the corresponding symmetries for the values of
the wavefunctions at the strings (5) we obtain for Sn

d (1 − φ) by using (9) and (10)

Sn
d (1 − φ) = N

π

m
(φ − 1)

(

φ

2
On(φ) +

(

φ + 1

2

)

(On(φ))∗
)

. (14)

In the following, we calculate the derive of the state energy En(φ, d) with respect to d. By using ~Fφ,d(~r) = ~Fφ,d(−~r),
En(φ, d) = En(1 − φ, d) and (6), (13) we get

∂dE
n(φ, d) = − φ

1 − φ
(∂d

~Fφ,d(~r))〈 ~̂J(~r)〉n1−φ,d + Sn
d (φ)

= − φ

1 − φ
∂dE

n(φ, d) +
φ

1 − φ
Sn

d (1 − φ) + Sn
d (φ) , (15)

for d > 0. With the definition of the overlap function On(φ) (9) and by using (10), (14) we get

φ

1 − φ
Sn

d (1 − φ) + Sn
d (φ) = −N

2π

m
φRe [On(φ)] . (16)

Now we insert (16) in (15) to get

∂dE
n(φ, d) = N

2π

m
φ (φ − 1)Re [On(φ)] . (17)

Thus, we obtain a formula which relates the distance dependence of the energy spectrum to the asymptotic values of
the wavefunction at the two magnetic strings. When neglecting the surface term on the right hand side which stems
from the domain subtleties of the Hamilton operator Hss mentioned above we obtain the invariance of the energy
spectrum as a function of the string distance d. In the following, we will show that this term is in fact zero. This will
be done by deriving a virial theorem for the two string system.

B. Generalized virial theorem for the two string system

In order to derive this virial theorem we consider the operator ~Πi = (−i~∇i + ~A + φ~f(~r−i ) − φ~f(~r+
i )) of the ith

electron. This operator fulfills the following commutation relation

[Πxi , Πyi ] = i(B − φ δ(~r−i ) + φ δ(~r+
i )) . (18)

For N = 1, the ladder operators Π+
i = (Πx,i + iΠy,i)/2m (Π−

i = (Πxi − iΠyi)/2m), when acting on an eigenfunction
of Hss, raise (lower) the eigenvalue (remember that the eigenfunctions of Hss are zero at the strings for φ 6= 0). This
is well known for a single electron in a homogeneous magnetic field without strings. However, a generalization of this
procedure in the presence of strings is rather difficult. This is due to the fact that the wavefunctions created by acting
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with the ladder operators Π+
i and Π−

i on an eigenfunction need not be in the domain D[Hφ,d] (2) of Hss for φ 6= 0.
This can be shown easily for the known ground state wavefunctions of the one and two string systems4.

In order to express the surface term on the right hand side of equation (17) as a function of the energy En(φ, d)

we consider the operator
∑N

i=1{~ri, ~Πi} where {·, ·} is the anti-commutator. Then, by using (18) and the homogeneity
of the interaction function V ee we obtain

i

[

Hss,

N
∑

i=1

{

~ri, ~Πi

}

]

= 4Hss + (γ − 2)α
∑

i6=j

V ee(~ri − ~rj)

+
1

m

[

N
∑

i=1

B
[

~ri ×, ~Πi

]

+

[

~ri

2
×,
{

φ δ(~r+
i ) − φ δ(~r−i ), ~Πi

}

]

]

. (19)

Here ~A × ~B − ~B × ~A is denoted by [ ~A ×, ~B] for two vector operators ~A, ~B.

In the following, we will calculate the expectation values of the various operators in (19) with respect to the
eigenfunction Ψn

φ,d. The expectation values of the two operators which contain only surface terms are given by

i
〈[

Hss,

N
∑

i=1

{

~ri, ~Πi

}

]〉n

φ,d
= N

4πd

m
φ(1 − φ)Re[On(φ)] , (20)

1

2m

N
∑

i=1

〈[

~ri ×,
{

φ δ(~r+
i ) − φ δ(~r−i ), ~Πi

}]〉n

φ,d
= N

2πd

m
φ(1 − 2φ)Re[On(φ)] . (21)

Now we have everything that is required for the derivation of the energy formula. With the help of (1), (17), (20)
and (21) we obtain the following differential equation for the energy function En(φ, d)

d

(φ − 1)

∂

∂d
En(φ, d) = 4

(

1 − B
∂

∂B
+

(γ − 2)α

2

∂

∂α

)

En(φ, d) (22)

This is a remarkable result stating that the energy is a homogeneous function of the possibly rescaled variables α, B
and d. We now come to the conclusion that the energy function does not depend on the string distance d for d > 0.
This can be seen by the use of the relation (12). From this mirror symmetry relation of the spectrum we get that
En(φ, d) fulfills also the differential equation (22) in the case of the substitution φ → (1 − φ) in the left hand side
of (22). Thus we obtain (∂/∂d)En(φ, d)/(φ − 1) = −(∂/∂d)En(φ, d)/φ. This equation can only be fulfilled when
(∂/∂d)En(φ, d) = 0 identically. Summarizing, we obtain:

∂

∂d
En = 0 , (23)

En − B
∂

∂B
En +

(γ − 2)α

2

∂

∂α
En = 0 . (24)

This is the main result of this section. It is valid only in the case of a homogeneous interaction potential V ee.
The first equation states that the energy spectrum does not depend on the string separation distance for d > 0.

We get the constraint d > 0 because we used the asymptotic formula (5) for the eigenfunctions in the derivation
above. This formula is only valid for a finite positive string distance because the eigenfunctions and eigenvalues are
not continuous in general at d = 0. Nevertheless, we will show in the following section that the ground state energy
as well as the ground state degeneracy are continuous as a function of d at d = 0.

The differential equation (24) states that En(φ, d) is a homogeneous function of the magnetic field B and the
interaction coupling constant α(2−γ)/2. For φ = 0 and B = 0 this equation is the well known quantum mechanical
version of the virial theorem16.

The above results for the homogeneous two particle interaction potential V ee can be generalized. It is easily seen
from the derivation above that (23) and (24) are also valid for homogeneous many particle potentials αV (~r1, .., ~rN ).
Furthermore, (23) and (24) can be generalized to the more general case of an inversion symmetrical potential,

i.e. αV (~r1, . . . , ~rN ) = α V (−~r1, . . . ,−~rN ) by substituting (γ/2 − 1)α(∂/∂α)En → −α〈(V (~r1, .., ~rN ) +
∑N

i=1(~ri ·
~∇i)V (~r1, .., ~rN )/2)〉nφ,d in the last term on the right hand side of (24). We should point out that the physically
relevant interaction potential of the jellium system is exactly of that form.
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III. GROUND STATE ENERGY FOR SMALL STRING SEPARATION

In this section we will show the continuity of the ground state energy for small string separations. In the following
we briefly outline the strategy of the proof deferring the details to appendix A.

Given a (degenerate) ground state wavefunction of the electron system without strings (a ground state wavefunction
of Hss(0, 0)), we construct wavefunctions which depend on the string separation d. These wavefunctions have expec-
tation values with respect to the Hamiltonian Hss(φ, d) which converge towards the ground state energy of Hss(0, 0)
for d → 0. By using the Rayleigh-Ritz variational principle we obtain limd→0(E

GS

φ,d−EGS

0,0) ≤ 0 (A10) where EGS

φ,d is the
ground state energy of Hss. A rigorous proof of the continuity of the ground state energy for small string separations,
requires the proof of the reverse, too. Given a ground state wave function of Hss(φ, d) we will construct wavefunc-
tions (depending on string distance d) for which we calculate the expectation value with respect to the Hamiltonian
Hss(0, 0). We will show that the difference of this expectation value and the ground state energy of Hss(φ, d) converges
to zero for d → 0. By using the Rayleigh-Ritz variational principle we obtain limd→0(E

GS

φ,d − EGS

0,0) ≥ 0 (A12).

By combining (A10) and (A12) we obtain that the ground state energy of Hss(φ, d) is continuous at d = 0, i.e.

lim
d→0

(EGS

φ,d − EGS

0,0) = 0 . (25)

From the explicit construction carried out in appendix A one further obtains the continuity of the ground state
degeneracy at d = 0.

IV. GROUND STATE ENERGY WITHOUT RESTRICTIONS ON THE STRING SEPARATION

In section II, we have shown that the energy spectrum does not depend on the string separation. In section III,
the continuity of the ground state energy at d = 0 has been shown. Using Eq. (23) and Eq. (25) we obtain that the
ground state energy is the same for the system with or without the two strings, i.e.

EGS

φ,d = EGS

0,0 , (26)

Furthermore, we obtain from the remark below (25) that the ground state degeneracy is also the same.
We should mention that this result is to our understanding by no means trivial which can be seen by considering

the ground state energy of an interacting electron system in the background of one string. Let us suppose that the
ground state degeneracy is lifted by the interaction between the electrons for the system without the string. This
ground state wavefunction is changed when adiabatically switching on the magnetic string. During this process the
angular momentum of the wavefunction in z-direction remains constant. When the string reaches one flux quantum
the ground state of this system is connected with the ground state of the system without the string by a phase
transformation. Thus, the angular momentum of the two ground states for the system with zero flux quantum and
one flux quantum differs by N~. This means that the ground states of the system with zero string flux and with string
flux one are not connected in the energy spectrum as a function of the string strength. Then we obtain a crossing of
the energy values of these two states at values between zero and one. This crossing should in general happen at an
energy above the ground state energy of the system without the magnetic string. Thus, we obtain that the ground
state energy is in general not the same with or without the string. The main difference between the one string system
and the system with two opposite strings considered in this paper is that the net flux is zero for the two string system.
Thus, one could suppose that the results above are true in general for a many string system with resulting net zero
flux. This is an open question which can not be answered by the symmetry considerations carried out in this paper.

At last we compare the results derived in this paper with the corresponding results for the non-interacting (N = 1)
two string system in a homogeneous magnetic field considered in Ref. 4. There we obtain that only the energy of the
wavefunction which is constant on both strings increases when switching on the magnetic strings. The energies of the
rest of the ground states are constant. Due to the infinite degeneracy of the ground state we obtain the correspondence
between the results in this paper and in Ref. 4 concerning the ground state energy and the ground state degeneracy
of the two string system. The increase of the energy of one of the ground states when switching on the strings is a
pure edge effect which is linked to the property that the degeneracy of the non-interacting system is proportional to
its area.

V. CONCLUSION

We discuss in this paper the problem of the ground state energy calculation for an infinitely extended system of
interacting electrons in a homogeneous magnetic field and in the background of two magnetic strings with opposite
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flux. We treat at first an interaction potential for the electrons which is homogeneous. By using the inversion
symmetry of the two string system and further some commutator algebra we obtain two equations. The first equation
(23) states that the energy spectrum does not depend on the separation distance of the two strings for strictly positive
string separation. The second equation (24) has the same shape as the virial theorem equation for the system without
strings. It contains only differentials with respect to the magnetic field and the interaction strength. This equation
gives evidence on the homogeneity of the energy function as a function of the rescaled magnetic field and interaction
strength. Next, we showed by using the Rayleigh Ritz variational principle that the ground state energy and the
ground state degeneracy are continuous functions at zero string separation.

By using these properties, we obtain the main result of this paper: The ground state energy of the interacting
system is the same with and without the two magnetic strings. This is an answer to a question that arose in the
context of determining a theory for the fractional quantum Hall effect with a finite Green’s function4 but will also be
useful in other fields of physics, as for example in the dislocation theory of solids.

We should point out that the results concerning the independence of the energy spectrum with respect to the string
separation and the invariance of the ground state energy are also valid for the more general class of inversion sym-
metrical many particle interaction potentials for indistinguishable particles. For example, the two particle interaction
potentials which depend on the distance between the electrons are of that form. Furthermore, we obtain the validity
of the results also for the jellium model. We can generalize our findings to the case of bosons.

We would like to thank Christian Joas, M. Semmelhack, and Sven Gnutzmann for helpful discussions during the
course of this work. This work has been supported by the DFG-Schwerpunktprogramm Quanten-Hall-Systeme.

APPENDIX A: PROOF OF THE CONTINUITY OF THE GROUND STATE ENERGY FOR SMALL
STRING SEPARATION

In this appendix, we give a formal proof that the the ground state energy and the ground state degeneracy are
continuous functions of d for d → 0 following the strategy outlined in section III .

1. Proof of limd→0(E
GS

φ,d − E
GS

0,0) ≤ 0

We first construct approximate ground state wavefunctions of Hss(φ, d) from the ground state of Hss(0, 0). To this
end, we define the following auxiliary function

Pφd,d :=























(r−)φd for x ≤ −d/2 ,
y2

(|y|+|x−|)2−φd
for − d/2 ≤ x < 0 ,

y2

(|y|+|x+|)2−φd
for 0 ≤ x < +d/2 ,

(r+)φd for d/2 ≤ x .

(A1)

which is continuous on R
2. Let ΨGS

0,0 be an arbitrary ground state wavefunction of Hss(0, 0). The corresponding
approximate ground state of Hss(0, 0) is given by

Ψφ,d :=
1

N(φ, d)

(

N
∏

i=1

eiφarg[~r+

i ]e−iφarg[~r−

i ]Pφd,d(~ri)

)

ΨGS

0,0 (A2)

with N(φ, d) a normalization factor defined by
∫

d2r|Ψφ,d(~r)|2 = 1 and

φd =
1

√

| ln(d)|
. (A3)

Due to the non-differentiability of Ψφ,d on the axes x = −d/2, x = 0 and x = d/2 we get that Ψφ,d is not in the domain
of Hss(φ, d). Nevertheless, Ψφ,d is continuous on R

2. It can be shown that the wavefunction Ψφ,d can be smoothed in
a way that its expectation value with respect to Hss(φ, d) remains unchanged up to an infinitesimal amount and lies
in the domain of Hss(φ, d). By definition, it is immediately clear that limd→0 N(φ, d) = 1. In the following, we show
that limd→0〈Ψφ,d|Hss(φ, d)|Ψφ,d〉 = EGS

0,0. We restrict the discussion to the one particle case in order to simplify the
notation. The following results can be generalized easily to the many particle case. With the help of

T1 :=
1

N(φ, d)

1

2m
〈ΨGS

0,0|(~∇Pφd,d(~r))(~∇Pφd,d(~r))|ΨGS

0,0〉 , (A4)
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T2 := − 1

N(φ, d)

1

2m
〈ΨGS

0,0|Pφd,d(~r)(~∇Pφd,d(~r))~∇ + ~∇Pφd,d(~r)(~∇Pφd,d(~r))|ΨGS

0,0〉 , (A5)

T3 :=
1

N(φ, d)

1

i

1

m
〈ΨGS

0,0|Pφd,d(~r)( ~A(~r)(~∇Pφd,d(~r))|ΨGS

0,0〉 (A6)

we obtain 〈Ψφ,d|Hss(φ, d)|Ψφ,d〉 = EGS

0,0 + T1 + T2 + T3. Thus, we have to show that limd→0(T1 + T2 + T3) = 0.
The expectation values in (A4)-(A6) stand for a two dimensional integration over the plane. In the following, we

will show that limd→0 T1 = 0 is fulfilled separately for the four different integration areas x < −d/2, −d/2 < x < 0,
0 < x < d/2 and d/2 < x. It is immediately clear from the definitions (A1)-(A6) that limd→0 T1 = 0 is fulfilled for
the integration area x < −d/2 and x > d/2. Now we will show first that limd→0 T1 = 0 is fulfilled for the integration
area −d/2 < x < 0 and y > 0. In this area, we get

(~∇Pφd,d)
2 =

2(2 + φ2
d − 2φd)y

4

(y + |x−|)6−2φd
+

4φd x−y3 + 4(x−)2y2

(y + |x−|)6−2φd
. (A7)

Since ΨGS

0,0 is continuous differentiable it is sufficient to show that limd→0

∫

−d/2<x<0 d2r(~∇Pφd,d(~r))
2 = 0. As an

example we show the asymptotic vanishing of the first term in (A7). The vanishing of the last term in (A7) works
similarly. By carrying out the integration we get for the first term

∫

−d/2<x<0,y>0

d2r
[

(~∇Pφd,d)
2
]

1
= − (2 + φ2

d − 2φd)

(5 − 2φd)φd

[

(y0+d/2)2φd−(d/2)2φd−(y0)
2φd−2φd

y0
∫

0

dy
(y + d/2)4 − y4

(y + d/2)5−2φd

]

. (A8)

Here y0 is the y-coordinate of the upper edge of the sample (without loss of generality we assume a square sample with
center at the origin). By a binomial expansion of the first term in the square brackets on the right hand side of (A8)
and the definition of φd in (A3) we find that the sum of the first three terms on the right hand side is zero for d → 0.
The last term in the square brackets in (A8) converges by a factor φd faster to zero than the sum of the first three

terms. By carrying out a similar analysis for the last term in (A7) we get limd→0

∫

−d/2<x<0,y>0
d2r(~∇Pφd,d)

2 = 0.

Due to the mirror symmetry according to the y-axis and x-axis of Pφd,d we then find also that

lim
d→0

∫

−d/2<x<d/2

d2r (~∇Pφd,d)
2 = 0 (A9)

and thus limd→0 T1 = 0 for −d/2 < x < d/2. At last, we have to show that limd→0(T2 + T3). It is easily seen
from the definitions (A5) and (A6) that T2 and T3 converge much faster to zero than T1. Summarizing, we get
limd→0(T1 + T2 + T3) = 0.

Now we obtain by the help of limd→0〈Ψφ,d|Hss(φ, d)|Ψφ,d〉 = EGS

0,0 shown above and the Rayleigh-Ritz variational
principle that

lim
d→0

(EGS

φ,d − EGS

0,0) ≤ 0 . (A10)

Furthermore, we obtain from the definition of Ψφ,d (A2) that the number of orthogonal states with an energy lower
than or equal to EGS

0,0 is larger than or equal to the degeneracy of the ground state energy EGS

0,0 for d → 0.

2. The proof of limd→0(E
GS

φ,d − E
GS

0,0) ≥ 0

Now we have to show the reverse, i.e. given the (degenerate) ground state wavefunction ΨGS

φ,d of energy EGS

φ,d,

we construct an approximate ground state wavefunction Ψ0,0 for Hss(0, 0) (1). This is done by defining Ψ0,0 as in
(A2) with substitutions ΨGS

0,0 → ΨGS

φ,d, arg[~r−i ] → −arg[~r−i ] and arg[~r+
i ] → −arg[~r+

i ]. Then we have to show that

limd→0〈Ψ0,0|Hss(0, 0)|Ψ0,0〉 − EGS

φ,d = 0. It is clear that the proof works analogously to the proof of (A10).
The ground state energy EGS

φ,d is given by

EGS

φ,d =

∫

d2r[(−i~∇ + ~A(~r) + φ~f(~r−) − φ~f(~r+))ΨGS

φ,d]
∗ [(−i~∇ + ~A(~r) + φ~f(~r−) − φ~f(~r+))ΨGS

φ,d] . (A11)

The energy expectation value 〈Ψ0,0|Hss(φ, d)|Ψ0,0〉 is given by EGS

φ,d + T̃1 + T̃2 + T̃3 where T̃1, T̃2 is given by T1,

T2 (A4), (A5) with the substitution ΨGS

00 → ΨGS

φ,d. T̃3 is given by T3 (A6) with the substitutions ΨGS

00 → ΨGS

φ,d and
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~A(~r) → ~A(~r) + φ~f (~r−) − φ~f(~r+). In order to show the inequality limd→0(E
GS

φ,d − EGS

0,0) ≥ 0 we have to show that

limd→0(T̃1 + T̃2 + T̃3) = 0. This can be shown rather easily by using (A9), (A11), and further the well known Schwarz
inequality |

∫

A
d2rf∗(~r)g(~r)|2 ≤

∫

A
d2r|f(~r)|2 ·

∫

A
d2r|g(~r)|2 valid for L

2 wavefunctions f and g in the area A.
Summarizing, we obtain

lim
d→0

(EGS

φ,d − EGS

0,0) ≥ 0 . (A12)

Furthermore, we obtain that the number of orthogonal states with an energy lower or equal to EGS

φ,d is larger than or
equal to the degeneracy of the ground state energy EGS

φ,d for d → 0.
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