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Abstract. We show that the dynamics of the surface plasmon in metallic nanoparticles damped by its
interaction with particle-hole excitations can be modelled by a single degree of freedom coupled to an
environment. In this approach, the fast decrease of the dipole matrix elements that couple the plasmon to
particle-hole pairs with the energy of the excitation allows a separation of the Hilbert space into low- and
high-energy subspaces at a characteristic energy that we estimate. A picture of the spectrum consisting
of a collective excitation built from low-energy excitations which interacts with high-energy particle-hole
states can be formalised. The high-energy excitations yield an approximate description of a dissipative
environment (or “bath”) within a finite confined system. Estimates for the relevant timescales establish the
Markovian character of the bath dynamics with respect to the surface plasmon evolution for nanoparticles
with a radius larger than about 1 nm.

PACS. 73.20.Mf Collective excitations – 78.67.n Optical properties of low-dimensional, mesoscopic, and
nanoscale materials and structures – 71.45.Gm Exchange, correlation, dielectric and magnetic response
functions, plasmons

1 Introduction

One of the main questions driving the experimental and
theoretical research of the last twenty years on metallic
nanoparticles is how large in size do we have to go to ob-
serve bulk properties. The answer of course depends on
the physical property under study. It is furthermore never
clearcut. But in many cases the size needed to observe
bulk-like behaviour is surprisingly small. Furthermore, the
size dependence of quantitative features can already be
smooth for very small systems. For instance, the binding
energy of Na9 clusters is quite close to that of Na8, even
if these two systems are very different from the molecu-
lar point of view [1]. Such a continuity points towards the
relatively minor importance of the ionic cores and sup-
ports the descriptions based on the jellium model, where
the conduction electrons are subject to a uniform neu-
tralising background [2]. This view has been validated by
the evidence of electronic shells provided by the abun-
dance spectra of alkaline clusters [3]. Within the jellium
approximation, the density of electronic states is given by
a bulk-like contribution to which we have to add surface
and periodic-orbit (or shell) corrections [4].

The optical properties of metallic clusters are domi-
nated by the response of the conduction electrons. Ex-

cept for the smallest clusters, where the transitions be-
tween single particle levels dictate the optical response,
the optical absorption is dominated by a collective ex-
citation, the surface plasmon. This resonance is located
near the classical Mie frequency ωM = ωp/

√
3, where

ωp = (4πnee
2/me)

1/2 is the bulk plasma frequency and e,
me, and ne denote the electronic charge, mass, and den-
sity, respectively. Nevertheless, surface effects lead to a
reduction of the surface plasmon frequency with respect
to the bulk value ωM [2, 5, 6]. The question of how large
the size of the nanoparticle has to be in order to observe
a collective excitation in a finite system has the surpris-
ing answer that a very small cluster, like for instance Na6,
may already be enough [7, 8].

For nanoparticle radii a between about 0.5 and 5 nm
(N = 8 to 14000 conduction electrons for the case of Na)
the main effect limiting the lifetime of the resonance is the
Landau damping, i.e., decay into particle-hole pairs. The
resulting linewidth is given by

γtot(a) = γi + γ(a) + γosc(a) , (1)

where γi is the intrinsic bulk-like linewidth. The second
term in the right-hand side of (1) decreases with the na-
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noparticle size as [9–11]

γ(a) =
3vF

4a
g0

(

εF

~ωM

)

, (2)

with εF = ~
2k2

F/2me and vF the Fermi energy and veloc-
ity, respectively. The monotonically increasing function g0

is defined as

g0(x) =
1

12x2

{

√

x(x + 1)
(

4x(x + 1) + 3
)

− 3(2x + 1) ln
(√

x +
√

x + 1
)

−
[

√

x(x − 1)
(

4x(x − 1) + 3
)

− 3(2x − 1) ln
(√

x +
√

x − 1
)

]

Θ(x − 1)
}

, (3)

Θ(x) being the Heaviside step function. The last contri-
bution γosc ∼ cos (2kFa)/(kFa)5/2 to the linewidth (1) is
nonmonotonic in a, and arises from the correlation of the
densities of states of the particles and holes [12, 13]. It
becomes relevant for the smallest sizes of the considered
interval, typically for radii in the range 0.5–1.5nm. For
radius larger than 5 nm the Landau damping competes
with radiation damping in limiting the lifetime of the res-
onance. For radii smaller than 0.5 nm the interaction with
the ionic background becomes dominant, and the jellium
model no longer provides a useful description.

The use of femtosecond pulsed lasers in pump-probe
spectroscopy has rendered possible to experimentally ad-
dress the surface plasmon dynamics [14–17]. The theoret-
ical descriptions built to study this problem [5, 6, 13, 18]
treat the collective coordinate as a special degree of free-
dom, which is coupled to an environment constituted by
the degrees of freedom of the relative coordinates. Fric-
tion arising from particle-hole pairs has been studied in
bulk systems [19]. In the present work we are interested
in the case where the excitation spectrum arises from a
finite number of particles. The finite number of electrons
makes the term “environment” not completely justified
in this situation, and leads us to reformulate the above-
mentioned question in dynamical terms as: How large in
size do we need to go to be allowed to describe the rel-
ative coordinates of the electron gas as an environment
damping the collective excitation?

This last question is the main subject of the present
paper. In particular, we determine which are the energies
of the electronic excitations that are active in the damp-
ing of the surface plasmon, and which is the characteris-
tic response time of the large enough electronic environ-
ment. The latter is important in justifying the Markovian
approximation that is assumed to describe the dynam-
ics of the surface plasmon coupled to particle-hole excita-
tions [20].

The paper is organised as follows: In Section 2 we re-
call the random phase approximation for the surface plas-
mon and the separation of the excitation spectrum in low-
and high-energy particle-hole excitations. In Section 3, we
show how the surface plasmon is built from low-energy
particle-hole excitations and in Section 4 the cutoff energy

separating the above-mentioned low- and high-energy sec-
tors is determined. In Section 5 the time dynamics of the
environment giving rise to the damping of the collective
excitation is considered. We end with the conclusions in
Section 6.

2 Random phase approximation for the

surface plasmon

The understanding of collective excitations in metallic clus-
ters has benefited from the accumulated knowledge in the
related problem of nuclear physics, i.e., the description of
the giant dipolar resonance [21, 22]. The simplest many-
body approach yielding collective excitations in a finite
system is the Tamm-Dancoff description, where the ex-
cited states are built from the Hartree-Fock ground state
and all possible one particle-one hole (1p-1h) excitations.
The basis considered is then mixed by the matrix elements
of the residual interaction

Vres =
1

4

∑

αβγδ

v̄αβγδc
†
αc†βcδcγ − VHF , (4)

where c†α (cα) creates (annihilates) the single-particle state
|α〉 of the Hartree-Fock problem. In the above equation,
v̄αβγδ = vαβγδ − vαβδγ with vαβγδ the two-body matrix
element of the Coulomb interaction, while

VHF =
1

4

∑

αβ

v̄αβαβc†αcαc†βcβ (5)

is the Hartree-Fock interaction Hamiltonian. Diagonaliza-
tion within this reduced Hilbert space gives the excitation
energies. This task is considerably simplified under the as-
sumption that the matrix elements v̄αβγδ of the residual
interaction (4) are separable [23],

v̄αβγδ = λdαγd∗δβ , (6)

where dαγ = 〈α|z|γ〉 are dipole matrix elements and λ is a
positive constant characterising the repulsive residual in-
teraction. Within the Tamm-Dancoff approximation, the
excitation energies are given by the secular equation

1

λ
=

∑

ph

|dph|2
E − ∆εph

, (7)

where p (h) denotes a particle (hole) state above (below)
the Fermi level, and ∆εph = εp−εh are particle-hole (p-h)
excitation energies.

One important drawback of the Tamm-Dancoff ap-
proximation is that its ground state does not include cor-
relations. This is not the case with the random phase ap-
proximation (RPA) where the basis of the reduced Hilbert
space is built from all possible 1p-1h creations and de-
structions acting on the ground state. Using again the
separability hypothesis (6) for the residual interaction, the
RPA secular equation

1

λ
= S(E) (8)
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is different from (7). Here we have defined the RPA sum

S(E) =
∑

ph

2∆εph|dph|2
E2 − ∆ε2

ph

. (9)

The validity of the RPA [8] and of the separability hypoth-
esis within the time-dependent local density approxima-
tion [24] have been well established, even in small clusters.

Nuclear physics textbooks (see, e.g., Ref. [21]) show
how to solve the secular equations (7) and (8) graphi-
cally under the implicit assumption that the p-h spec-
trum is bounded in energy. In that case, the solutions of
the secular equations are merely renormalizations of the
p-h energies ∆εph except for the largest excitation energy
which corresponds to the collective mode. However, it is
clear that in a metallic cluster the p-h excitations are not
bounded from above on the scale of the plasma energy. As
we will see in the sequel, it is the fast decay of the dipole
matrix elements dph with the p-h energy that ensures the
applicability of the standard picture.

An ingenious way of describing the collective excita-
tion in metallic clusters which circumvents the problem
of the unbound p-h spectrum is the separation of the re-
duced 1p-1h RPA Hilbert space in a low-energy sector
(the restricted subspace), containing p-h excitations with
low energy, and a high-energy sector (the additional sub-
space) [11, 22]. The residual interaction gives rise to the
collective excitation as a coherent superposition of a large
number of basis states of the restricted subspace. This
excitation energy lies in the high-energy sector, and the
nonvanishing coupling with p-h states of the additional
RPA subspace results in the broadening of the collective
resonance. In this approach the cutoff energy separating
the two subspaces is somehow arbitrary, as long as it is
taken smaller than the resonance energy. The arbitrari-
ness of the cutoff is not problematic for calculating the
lifetime of the resonance [11], but the approximate theo-
retical description of other physical quantities might de-
pend on the cutoff. For example, in the approach where
the environment is separated from the low-energy excita-
tions that compose the collective plasmon excitation, the
timescales that characterise the dynamics of the electronic
environment [20] depend on the cutoff energy. Moreover,
it was shown in [6] that the environment-induced redshift
of the resonance frequency depends logarithmically on the
cutoff. In the following we will provide an estimation of
the cutoff energy separating the two subspaces.

3 The surface plasmon as a superposition of

low-energy particle-hole excitations

The secular equations (7) and (8) depend crucially on the
form of the dipole matrix element dph. Assuming that the
p-h states are confined within a hard-wall sphere, one can
decompose [11]

dph = Ampmh

lplh
Rlplh(εp, εh) . (10)

0

2 · 10
4

4 · 10
4

k
2 F
ε F
S(

E
)

k
2 F
ε F
S(

E
)

∆εmin/εF ∆εc/εF

0 0.3 0.6 0.9 1.2

E/εFE/εF

k2
FεF

λ

Fig. 1. RPA sum (13) for a Na nanoparticle with kFa = 30
(solid black line). The p-h excitation energies ∆εph (repre-
sented by vertical grey lines) have been obtained from the
semiclassical spectrum (41). There are about 15000 degener-
ate excitations in the interval shown, and the smallest excita-
tion ∆εmin ≃ εF/10 has a degeneracy N = 380. The dashed
line takes only into account the contribution of ∆εmin (see
Eq. (24)). The cutoff energy ∆εc separating the two RPA sub-
spaces is also shown in the figure (see Eq. (30)). Above ∆εc the
two sums are close to each other, showing that for high energies
the RPA sum is essentially given by the contributions coming
from the low-energy p-h excitations. The horizontal dotted line
indicates the position of the coupling constant λ entering the
RPA secular equation (8), according to the estimate (25).

The angular part is expressed in terms of Wigner-3j sym-
bols as

Ampmh

lplh
= (−1)mp

√

(2lp + 1)(2lh + 1)

×
(

lp lh 1
0 0 0

) (

lp lh 1
−mp mh 0

)

(11)

and sets the selection rules lp = lh ± 1 and mp = mh for
the total and azimuthal angular momenta, respectively.
The radial part depends on the energies of the p-h states
as

Rlplh(εp, εh) =
2~

2

mea

√
εpεh

∆ε2
ph

. (12)

With the help of equations (10)–(12) and using the
appropriate dipole selection rules, we can write the RPA
sum (9) as

S(E) =
32k−2

F

3

(

εF

kFa

)2
∑

nh,lh
np,lp=lh±1

flp

εpεh

(E2 − ∆ε2
ph)∆ε3

ph

,

(13)
where nh and np are radial quantum numbers. We have
defined flp = lh +1 if lp = lh +1 and flp = lh if lp = lh−1.
Using the semiclassical quantisations (40) and (41) of Ap-
pendix A, we finally obtain the result shown in Figure 1.

In the figure we show (solid black line) the resulting
E-dependence of (13). The crossings of this curve with
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the horizontal dotted one with height 1/λ yield the exci-
tation spectrum within the RPA. The lowest p-h energy
estimated in Appendix A is

∆εmin ≃ εF

kFa/π
. (14)

Whenever the energy E coincides with a p-h excitation en-
ergy ∆εph, we have a divergence in S(E) (see vertical grey
lines in Fig. 1). For the lowest energies E of the interval
considered the sum is dominated by the term associated
with the divergence closest to E. On the other hand, for
the largest energies E, the fast decay of dph with ∆εph

means that the divergences are only relevant for energies
extremely close to them. Away from the divergences the
sum is dominated by the contributions arising from the
low-energy p-h excitations.

To gain physical insight and proceed further in the
analysis of the electron dynamics in metallic nanoparti-
cles, we introduce the typical dipole matrix element for
states separated by a given energy difference ∆ε,

dp-h(∆ε) =

[

1

ρp-h(∆ε)

∑

ph

|dph|2δ(∆ε − ∆εph)

]1/2

=

[

1

ρp-h(∆ε)

∫ εF

εF−∆ε

dε C(ε, ∆ε)

]1/2

. (15)

Here, we have introduced the local density of dipole matrix
elements

C(ε, ∆ε) =
∑

ph

|dph|2δ(ε − εh)δ(ε + ∆ε − εp) . (16)

As shown in Appendix B, this can be expressed as

C(ε, ∆ε) =
1

3π2

a2

∆ε2
F

( ε

∆ε

)

, (17)

where

F (x) = (2x + 1)
√

x(x + 1) − ln
(√

x +
√

x + 1
)

. (18)

For ∆ε ≪ ε, equation (17) simplifies to

C(ε, ∆ε) ≃ 2a2

3π2

ε2

∆ε4
. (19)

In expression (15),

ρp-h(∆ε) =
∑

ph

δ(∆εph − ∆ε)δlh,lp±1δmh,mp
(20)

is the density of p-h excitations with energy ∆ε respect-
ing the dipole selection rules. In order to simplify the pre-
sentation, we do not consider spin degeneracy factors. In
Appendix C we show that for ∆ε ≪ εF we have

ρp-h(∆ε) ≃ (kFa)4

4π2

∆ε

ε2
F

, (21)

and therefore in such a limit the typical matrix element
(15) can be approximated by

dp-h(∆ε) ≃ 2
√

2k−1
F√

3kFa

( εF

∆ε

)2

. (22)

As a check for our estimation of the typical dipole matrix
element, we have evaluated the energy-weighted sum rule
∑

ph ∆εph|dph|2 using (22) and obtained about 70% of the

exact result (3/4π)~2N/2me [2]. This is quite reasonable
regarding all the approximations we made to obtain (22).

In order to illustrate the importance of the low-energy
p-h excitations, we present in Figure 1 (dashed line) the
contribution to the RPA sum coming only from the in-
frared p-h excitation energy with the appropriate degen-
eracy factor N (see Eq. (43) in App. A). Indeed, we can
estimate (9) as

S(E) ≈ N × 2∆εmin

[

dp-h(∆εmin)
]2

E2 − ∆ε2
min

. (23)

With the results (14), (22), and (43), we obtain

S(E) ≈ 64k−2
F

3π5
(kFa)3

εF

E2 − (εFπ/kFa)2
. (24)

While in the lower part of the energy interval in Figure 1
the two curves exhibit considerable discrepancies, in the
second half of the interval they are very close (except of
course at the divergences). Since the collective excitation
is found in this last interval, we see that it is mainly the
low-energy p-h excitations that are relevant for the defi-
nition of the collective excitation.

Since the resonance energy is known from experiments,
we can obtain the value of the coupling constant λ. Indeed,
using the estimate (24) evaluated at E = ~ωM in the sec-
ular equation (8), we obtain

1

λ
≃ 64k−2

F

3π5
(kFa)3

εF

(~ωM)2
(25)

to leading order in kFa ≫ 1. Notice that this result is
consistent with the estimate obtained from the energy-
weighted sum rule given in [11]. For the case studied in
Figure 1, our estimate (25) yields k2

FεF/λ ≈ 1600. As the
radius a increases the lowest p-h energy decreases like 1/a,
the degeneracy at this value increases as a2, and the den-
sity of p-h excitations contributing to (9), ρp-h(∆ε), grows
as a4. This increase in the number of excitations contribut-
ing to the sum is partially cancelled by the 1/a behaviour
of the typical dipole matrix element, resulting in a de-
crease of the coupling constant λ proportional to the num-
ber of particles in the cluster, λ ∼ 1/a3, and a value of
the plasmon frequency which remains almost unaffected.
Therefore, for a larger nanoparticle size, the divergences
shown in Figure 1 would be more dense in energy, starting
at a lower energy, and the vertical scale would increase as
a3, thus obtaining a similar value for the plasmon excita-
tion energy ~ωM.
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4 Separation of the reduced and additional

particle-hole subspaces

As we have shown in the last section, the high-energy part
of the p-h spectrum is not crucial for the determination
of the energy of the collective excitation. In what follows
we make this statement more quantitative and estimate
the upper-bound cutoff ∆εc of the low-energy excitations
that we need in order to obtain a stable position of the
surface plasmon.

In order to obtain a quantitative estimate of the cutoff,
we require that by changing it from ∆εc to (3/2)∆εc, the
position of the plasmon changes only by a fraction of its
linewidth γ, the smallest energy scale with experimental
significance. Our criterion leads to the condition

S∆εc
(~ωM) = S 3

2
∆εc

(~ωM + ~γ) , (26)

with the RPA sum S that has been defined in (9). The
additional subscript refers to the upper bound of the p-h
energies.

The left-hand side of (26) can be estimated according
to

S∆εc
(~ωM) ≃

∫ ∆εc

∆εmin

d∆ε ρp-h(∆ε)
2∆ε

[

dp-h(∆ε)
]2

(~ωM)2 − ∆ε2
,

(27)
with dp-h and ρp-h as defined in (15) and (20), respectively.
Using (21) and (22), we obtain

S∆εc
(~ωM) ≃ 4k−2

F

3π2

(

kFa
εF

~ωM

)2 (

1

∆εmin
− 1

∆εc

)

(28)

to leading order in kFa. Similarly,

S 3

2
∆εc

(~ωM + ~γ) ≃ 4k−2
F

3π2

(

kFa
εF

~ωM

)2 (

1 − 2γ

ωM

)

×
(

1

∆εmin
− 2

3∆εc

)

. (29)

Using the expressions (2) and (14) for γ and ∆εmin, re-
spectively, finally yields according to the criterion (26) the
cutoff energy

∆εc ≃
π

9g0(εF/~ωM)
~ωM , (30)

with the function g0 defined in (3). For Na clusters, we
have εF/~ωM = 0.93 and our criterion yields a value ∆εc ≃
(3/5)εF.

We have verified the robustness of our criterion (26)
by exploring different physical parameters, like the size of
the cluster. Indeed, it can be seen in Figure 1 that above
∆εc the RPA sum evaluated from (13) (solid line) and
the estimate (24) (dashed line) are close to each other,
showing that for high energies the RPA sum is essentially
given by the contributions coming from the low-energy p-
h excitations. We have checked that this feature of ∆εc is
independent of the size a of the nanoparticle.

In order to have a well-defined collective excitation, the
cutoff energy ∆εc must obviously be larger than the min-
imal p-h excitation energy (14). For Na, we find that this
condition is already verified with only N = 20 conduction
electrons in the nanoparticle, in agreement with the ex-
periments of reference [7] and the numerical calculations
of reference [8].

The splitting in low and high-energy p-h excitations is
important in order to justify the separation of the elec-
tronic degrees of freedom into centre-of-mass and relative
coordinates [5, 6, 13, 18]. Within such an approach, the
Hamiltonian of the electronic system is written as

H = Hcm + Hrel + Hc . (31)

The first term describes the centre-of-mass motion as a
harmonic oscillator. The second term describes the rela-
tive coordinates as independent fermions in the effective
mean-field potential. The coupling term Hc describes the
creation or annihilation of a surface plasmon by destruc-
tion or creation of p-h pairs. Its strength is given by the
coupling constant Λ = (~meω

3
M/2N)1/2 and the dipole

matrix element dph [6]. It is important to remark that,
even if we have used the separability hypothesis of the
residual interaction to justify the decomposition (31), the
model that is put forward does not rely on such an ap-
proximation.

5 Dynamics of the relative-coordinate system

The decomposition (31) of H suggests to treat the collec-
tive coordinate as a simple system of one degree of freedom
which is coupled to an environment with many degrees of
freedom. The latter are the relative coordinates described
by Hrel. This is the approach taken in [20]. In this pic-
ture, the time evolution of the centre-of-mass system (i.e.,
the surface plasmon) strongly depends on the dynamics of
the relative-coordinate system. Such a dynamics is char-
acterised by a correlation function which can be written
at zero temperature as [20]

C(t) = Λ2
∑

ph

|dph|2ei∆εpht/~Θ(∆εph − ∆εc) . (32)

In order to evaluate the above expression, it is helpful to
introduce its Fourier transform

Σ(∆ε) =
2π

~
Λ2

∑

ph

|dph|2δ(∆ε − ∆εph)Θ(∆εph − ∆εc)

(33)
which has been calculated in [6]. Finite temperatures were
shown to result in a small quadratic correction. Consis-
tently with the results of the preceding sections, we em-
ploy our low energy estimates (21) and (22) to obtain

Σ(∆ε) ≃ 3vF

4a

(

~ωM

∆ε

)3

Θ(∆ε − ∆εc) . (34)

This result is consistent with the one of reference [6] (see
Eq. (34) in there) in the limit ∆ε ≪ ~ωM and for zero
temperature.
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In principle we could calculate C(t) by taking the in-
verse Fourier transform of (34). The decay of C(t) for very
long times is dominated by the discontinuity of Σ at ∆εc.
This is somehow problematic since ∆εc can only be es-
timated as we did in Section 4, and since the functional
form of the long time decay depends on how sharply the
cutoff is implemented. However, it is important to realise
that it is not the very long time behaviour that determines
the relevant decay of the correlation function, but rather
the typical values at which C(t) is reduced by an impor-
tant factor from its initial value C(0). We then estimate
the correlation time as the mean decay time of C(t),

〈τcor〉 =

∣

∣

∣

∣

∫ ∞

0

dt t
d

dt

(

C(t)

C(0)

)∣

∣

∣

∣

=
1

C(0)

∣

∣

∣

∣

∫ ∞

0

dt C(t)

∣

∣

∣

∣

. (35)

If C(t) were an exponentially decreasing function, 〈τcor〉
would simply reduce to the inverse of the decay rate. Using
the definition (33), we get

〈τcor〉 =

~

∫ ∞

∆εc

d∆εΣ(∆ε)/∆ε

∫ ∞

∆εc

d∆εΣ(∆ε)

. (36)

Given the fast decay of the function Σ ∼ 1/∆ε3, the above
integrals are dominated by their lower limit ∆εc and we
have

〈τcor〉 ≃
2

3

~

∆εc
. (37)

Since ∆εc is of the order of (3/5)εF, we see that the re-
sponse time (or correlation time) of the electronic envi-
ronment is of the order of its inverse Fermi energy.

The estimation of the characteristic response time of
the electronic environment is crucial in justifying the Mar-
kovian approximation used in [20]. In that work, the de-
grees of freedom corresponding to the relative coordinates
were integrated out and treated as an incoherent heat bath
that acts on the collective coordinate. Such an approach
relies on the fast response of the environment as com-
pared to the time evolution of the surface plasmon. The
typical scale for the latter is the inverse of the decay rate,
τsp = 1/γ. Using (2) and (30), we therefore have

τsp

〈τcor〉
=

π

9[g0(εF/~ωM)]2
~ωM

εF
kFa . (38)

For the example of Na nanoparticles worked in Section 3,
we have τsp/〈τcor〉 ≃ kFa. This is a safe limit since in not
too small nanoparticles, kFa ≫ 1. As the size of the cluster
increases, the applicability of the Markovian approxima-
tion is more justified. This is expected since the electronic
bath has more and more degrees of freedom, approach-
ing an “environment” in the sense of quantum dissipation.
Since the physical parameters of alkaline nanoparticles en-
tering (38) are close to that of noble-metal clusters, the
dynamics of the surface plasmon can be expected to be
Markovian in that case too.

6 Conclusions

We have studied the role of particle-hole excitations on
the dynamics of the surface plasmon. A key concept in
this analysis is the separation into low-energy excitations
which lead to the collective excitation once they are mixed
by the residual interaction, and high-energy excitations
that act as an environment damping the resonance. Using
the random phase approximation and assuming the sep-
arability of the residual interaction, we have established
a criterion for estimating the cutoff energy separating the
low- and high-energy subspaces. The resulting cutoff en-
ergy is approximately (3/5)εF for the case of Na nanopar-
ticles.

Since the number of electrons in the cluster is finite,
the assumption that the high-energy particle-hole excita-
tions act on the collective excitation as an environment,
introducing friction in its dynamics, may be questionable.
What settles this issue is the ratio between the typical evo-
lution time of the collective excitation and the one of the
high-energy particle-hole excitations. The former is given
by the inverse of the plasmon linewidth, while the latter
is obtained from the decay of the correlation function of
the environment. We have found that this ratio improves
with increasing cluster size. Even for a small cluster with
a = 1 nm, the ratio is approximately 10, justifying the
use of the Markovian approximation which assumes a fast
time evolution of the environment with respect to the one
of the collective excitation.

The relevance of memory effects in the electronic dy-
namics of small clusters is of current interest, due to the
advance in time-resolved experimental techniques [14–17].
First-principle calculations have recently addressed this is-
sue by comparing time-dependent density functional the-
ories with and without memory effects for small gold clus-
ters [25]. For very small clusters (N < 8) memory effects
were shown to be important. We stress that the mem-
ory considered in [25] is that of the electron gas as a
whole, while we are concerned in this work with the mem-
ory arising from the dynamical evolution of the relative-
coordinate subsystem. It would be interesting to consider
cluster sizes intermediate between the ones considered in
the present work and those of reference [25] in order to
study the emergence of memory effects.

We thank F. Guinea, G.-L. Ingold, and E. Mariani for help-
ful discussions. We acknowledge financial support from the
ANR, the Deutsche Forschungsgemeinschaft, the EU through
the MCRTN program, the French-German PAI program Pro-
cope, and the Ministerio de Educación y Ciencia (MEC).

A Lowest energy of the particle-hole

spectrum

If we consider the cluster as a hard-wall sphere of radius a,
its eigenstates are given in terms of spherical Bessel func-
tions. Using the large ka expansion of the latter (semiclas-
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sical high-energy limit), the quantisation condition reads

ka = π

(

l

2
+ n

)

(39)

with l and n non-negative integers. The energy of a single-
particle (hole) state is related to its wavevector kp(h), its
total angular momentum lp(h), and its radial quantum
number np(h) as

εp(h) =
~

2k2
p(h)

2me

= εF

(

π

kFa

)2 (

lp(h)

2
+ np(h)

)2

. (40)

Thus, the energy of a p-h excitation entering the RPA sum
(13) is

∆εph = εF

(

π

kFa

)2 (

lp − lh
2

+ np − nh

)

×
(

lp + lh
2

+ np + nh

)

. (41)

Notice that using the exact quantum mechanical spec-
trum in (13) would not change significantly the result de-
picted in Figure 1, since the approximation (39) is very
reliable for states close to the Fermi energy. We have also
checked that generating the p-h excitation energies ran-
domly in the RPA sum (9) does not affect the physical
picture of Figure 1. Indeed, the main ingredient to under-
stand such a picture is the fast decay of the dipole matrix
element with the p-h energy.

The expressions for the dipole matrix element (12) as
well as for the typical dipole matrix element (22) diverge
in the limit of a small p-h energy. It is therefore crucial
for our analysis to determine the appropriate minimal p-h
energy ∆εmin that renders this divergence unphysical.

This can be achieved by imposing the dipole selection
rules in (41) and that the energy difference is minimal. The
first condition dictates that lh = lp ± 1 and mh = mp.
Therefore there are two ways of obtaining the minimal
energy difference: np = nh with lp = lh+1 and np = nh+1
with lp = lh − 1. In both cases we have

∆εmin ≃ εF

kFa/π

kh

kF
. (42)

Since we are interested in states close to the Fermi level,
we can simplify (42) to expression (14).

If we consider sodium clusters with kFa = 30 (a =
3.3 nm and N ≃ 4000 conduction electrons per spin direc-
tion), we have ∆εmin ≈ εF/10. This is a much larger en-
ergy than the lowest one we can observe in the numerically
generated excitation spectrum (see Fig. 1 in Ref. [12]).
However, the two results are reconciled once we take into
account the large degeneracy yielded by our approximate
quantisation condition (39).

The degeneracy of p-h excitations with minimal energy
is given by twice the number of pairs (lh, nh) compatible

with kh = kF and ∆εph = ∆εmin. Indeed, we have seen
that there are two possible particle states p starting from h
and verifying the above-mentioned conditions. For each n
between 1 and kFa/π, there is a value of l = 2(kFa/π−n)
and therefore the number of degenerate p-h excitations
with energy ∆εmin is

N = 2

kFa/π
∑

n=0

(2l + 1)

= 2

kFa/π
∑

n=0

[

4

(

kFa

π
− n

)

+ 1

]

≃ 4

(

kFa

π

)2

. (43)

This degeneracy factor has to be included in Figure 1,
and it is crucial for the determination of the collective
excitation.

B Local density of the dipole matrix element

Equation (16) defines the local density of dipole matrix
elements connecting states at energies ε and ε + ∆ε. We
used particle and hole states in our definition, since this
is the main interest of our work. But note that the calcu-
lation presented in this appendix is not restricted to that
case and can be easily extended to any states. The result
would be of course unchanged.

Local densities of matrix elements of arbitrary oper-
ators have been thoroughly studied as they can be eas-
ily connected with physical properties, ranging from far-
infrared absorption in small particles [26] to electronic
lifetimes of quantum dots [27]. A semiclassical theory for
the local density of matrix elements has been developed
[28–30], where (16) can be expressed as a smooth part
given by correlations along classical trajectories plus a pe-
riodic orbit expansion. We will not follow here this general
procedure, but use the simple form of the dipole matrix
elements (10) for states confined in a hard-wall sphere
and the semiclassical approximation applied to the radial
(fixed l) problem [12,13].

Introducing the l-fixed density of states, which in lead-
ing order in ~ is given by

̺l(ε) =

√

2mea2ε/~2 − (l + 1/2)2

2πε
, (44)

we can write with the help of equations (10)–(12)

C(ε, ∆ε) =

(

2~
2

mea

)2
εε′

3∆ε4

×
lmax
∑

lh=0

̺lh(ε) [(lh + 1)̺lh+1(ε
′) + lh̺lh−1(ε

′)]

(45)

where lmax is the maximum allowed lh for an energy ε,
while ε′ = ε + ∆ε. In the semiclassical limit we can take
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lh ≃ lh + 1 ≫ 1 and convert the sum into an integral.
Thus,

C(ε, ∆ε) ≃ 1

6π2

(

2~
2

mea

)2
1

∆ε4

×
∫

q

2mea2

~2
ε

0

dl l

√

2ma2

~2
ε − l2

√

2ma2

~2
ε′ − l2 .

(46)

Performing the remaining integral over the angular mo-
mentum l finally yields the result (17).

C Density of particle-hole excitations

The density of p-h excitations with energy ∆ε is defined
in (20) and can be written as

ρp-h(∆ε) =

∫ εF

εF−∆ε

dεh

∑

lh

(2lh + 1)̺lh(εh)

× [̺lh+1(εh + ∆ε) + ̺lh−1(εh + ∆ε)] . (47)

Using the semiclassical density of states (44) and perform-
ing the sum in the limit lh ≫ 1, we obtain

ρp-h(∆ε) ≃ ∆ε2

8π2

(

2mea
2

~2

)2 ∫ εF

εF−∆ε

dεh
F (εh/∆ε)

εh(εh + ∆ε)
,

(48)
where the function F has been defined in (18). Performing
the remaining integral over the hole energy in the limit
∆ε ≪ εF is straightforward and leads to the result (21).
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